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A B S T R A C T

The low cost of natural gas has driven significant interest in using C1 carbon sources (e.g. methane, methanol,
CO, syngas) as feedstocks for producing liquid transportation fuels and commodity chemicals. Given the large
contribution of sugar and lignocellulosic feedstocks to biorefinery operating costs, natural gas and other C1

sources may provide an economic advantage. To assess the relative costs of these feedstocks, we performed flux
balance analysis on genome-scale metabolic models to calculate the maximum theoretical yields of chemical
products from methane, methanol, acetate, and glucose. Yield calculations were performed for every metabolite
(as a proxy for desired products) in the genome-scale metabolic models of three organisms: Escherichia coli
(bacterium), Saccharomyces cerevisiae (yeast), and Synechococcus sp. PCC 7002 (cyanobacterium). The calculated
theoretical yields and current feedstock prices provided inputs to create comparative feedstock cost surfaces. Our
analysis shows that, at current market prices, methane feedstock costs are consistently lower than glucose when
used as a carbon and energy source for microbial chemical production. Conversely, methanol is costlier than
glucose under almost all price scenarios. Acetate feedstock costs could be less than glucose given efficient acetate
production from low-cost syngas using nascent biological gas to liquids (BIO-GTL) technologies. Our analysis
suggests that research should focus on overcoming the technical challenges of methane assimilation and/or yield
of acetate via BIO-GTL to take advantage of low-cost natural gas rather than using methanol as a feedstock.

1. Introduction

Abundant, low cost C1 compounds such as methane, methanol, and
carbon monoxide have garnered attention as potentially inexpensive
sources of carbon and energy in biocatalytic processes for producing
commodity chemicals (Conrado and Gonzalez, 2014; Haynes and
Gonzalez, 2014; Whitaker et al., 2015). Over the last decade, natural
gas supply has reached all-time highs with costs consistently lower than
petroleum. Despite these economic advantages, large volumes of nat-
ural gas are flared at wellheads daily to reduce greenhouse gas emis-
sions or directly leaked, both intentionally and unintentionally, to the
environment during production (Howarth et al., 2011; Salmon and
Logan, 2013). Nighttime satellite images of these areas show light in-
tensities equivalent to major US cities and illustrate the enormous po-
tential that is wasted. Alternative uses, such as pipelining to refineries,
catalytic conversion to syngas or methanol, or combustion for elec-
tricity and heat have not been deployed due to costs, wide geographic
distribution, and/or poor proximity to end-users. Given that feedstocks
are the major operating cost of producing biomanufactured chemicals

(Klein-Marcuschamer et al., 2011), the choice of carbon source can
have a significant impact on profitability. Given the potential process
advantages, the economic potential of C1 feedstocks for biomanu-
facturing of commodity chemicals warrants evaluation.

Cost is not the only criteria when considering methane, as gas-phase
feedstocks suffer from a few bioprocess drawbacks. First, uptake of gas-
phase feedstocks can be mass-transfer limited and significantly slower
than uptake of traditional aqueous feedstocks, such as sugars and or-
ganic acids, depending on bioreactor conditions (Conrado and
Gonzalez, 2014). Second, methane utilization by methylotrophs re-
quires an electron acceptor – most frequently oxygen – which raises
safety concerns over potentially explosive mixtures of feedstock gases
(Whitaker et al., 2015). Third, the conversion of methane to methanol,
catalyzed by methane monooxgynease, is a slow step that limits overall
productivity. For these reasons, we were curious if alternative deriva-
tives of C1 compounds, methanol and acetate, would have economic
advantages over glucose. Methanol, produced by steam reformation to
syngas and catalytic conversion to methanol, is the first intermediate in
methane assimilation. Acetate can be produced from natural gas by
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combining catalytic water-gas shift with anaerobic fermentation of the
resulting syngas by acetogens. These so-called biological gas-to-liquid
(Bio-GTL) processes have been recently demonstrated for producing
lipids and biodiesel (Hu et al., 2016). This low-cost process makes
acetate an interesting potential feedstock to replace glucose in bioca-
talytic processes. Feeding aqueous methanol or acetate would circum-
vent many of the technical hurdles in a bioreactor while potentially
leveraging the low-cost and abundant supply of C1 feedstocks.

The last factor in selecting a feedstock is the relative amount needed
to generate a given amount of product. Sugars are the dominant feed-
stock for bioconversions because metabolism efficiently extracts energy
and electrons for use in synthesizing chemical products. Assimilation of
C1 compounds is not as energy efficient given higher energy and re-
ducing power costs. There are several pathways for assimilating me-
thane and methanol; each differs in energetic yield, connections to
central metabolism, and kinetics. Methane and methanol assimilation
both occur through the assimilation of formaldehyde. The first step in
methane catabolism is oxidation to methanol by a methane mono-
oxygenase (Hwang et al., 2014). Methanol is further oxidized to for-
maldehyde by an alcohol oxidase or methanol dehydrogenase (Müller
et al., 2015; Whitaker et al., 2015). Formaldehyde is then assimilated
through one of three pathways: the ribulose monophosphate (RuMP)
pathway, the dihydroxyacetone (DHA) pathway, or the serine pathway
(Fig. 1) (Yurimoto et al., 2005). The DHA — found only in fungi — and
RuMP — common in gamma-proteobacteria and only found in bacteria
and archea — pathways both use a five carbon sugar as a substrate to
assimilate formaldehyde and produce a six carbon sugar (Hwang et al.,
2014; Müller et al., 2015; Whitaker et al., 2015; Yurimoto et al., 2005).
Every three turnovers of these cycles produces a single dihydrox-
yacetone phosphate. In contrast, the serine pathway — common in
alpha-proteobacteria — assimilates formaldehyde through reaction
with glycine to create serine (Hwang et al., 2014; Yurimoto et al.,
2005). Every two turnovers of this cycle assimilates two formaldehydes
and one carbon dioxide to produce a 2-phosphoglycerate (the base
cycle can be augmented with other reactions to produce acetyl-CoA and
TCA cycle intermediates with additional cycles and assimilation of
CO2). To obtain energy, formaldehyde is oxidized to carbon dioxide to
generate reducing equivalents that can be converted to ATP via the
electron transport chain and ATP synthase (Yurimoto et al., 2005).
Overall, the RuMP pathway is considered the most efficient pathway in
terms of energetic yield and is the preferred C1 assimilation pathway in
studies of C1 catabolism as a feedstock (Müller et al., 2015). Beyond the
formaldehyde assimilating pathways, there is a small class of C1 cata-
bolizing, non-photosynthetic bacteria that use the Calvin-Benson-Bas-
sham (CBB) cycle to assimilate carbon dioxide by oxidation of C1

carbon sources to produce the energy needed to run the CBB (Hwang
et al., 2014). This does not appear to be an efficient pathway and is not
biologically common, so we did not include it in our analysis. In ad-
dition, Bogorad et al. (2014, 2013) created a synthetic methanol con-
densation cycle (MCC) for the efficient assimilation of methanol by
using a combination of the RuMP cycle and synthetic non-oxidative
glycolysis in Escherichia coli. We tested this pathway for improved yield
as part of a set of analysis looking at the impact of including carbon
efficient assimilation pathways and show little difference on predicted
product yields in E. coli.

Acetate is typically assimilated into central metabolism as acetyl-
CoA. Acetate is a common by-product during rapid growth in bacteria
and re-assimilates during stationary phase at the cost of one ATP. For
this reason, most organisms, including those studied here, have path-
ways for assimilating acetate. In E. coli, and many other microorgan-
isms, acetate assimilation proceeds through acetyl-phosphate (cata-
lyzed by ackA/pta). In other organisms, such as the cyanobacterium
Synechococcus sp. strain PCC 7002 studied here, acetate assimilation
proceeds through a transient acyl-AMP intermediate as part of an acyl-
CoA ligase mechanism (Begemann et al., 2013). Other pathways for
acetate assimilation involve CoA transfer from other metabolites (e.g.
propionyl-CoA, succinyl-CoA).

To assess the tradeoffs between feedstock cost and product yield, we
have performed an economic analysis using maximum theoretical
yields calculated by flux balance analysis of genome-scale metabolic
models. We performed the analysis on models of three organisms, the
bacterium E. coli, the yeast Saccharomyces cerevisiae, and the cyano-
bacterium Synechococcus sp. strain PCC 7002, augmented with all three
common methane assimilation pathways (serine, RUMP, DHA). For
each model, we calculated the theoretical yield for every metabolite in
each model from each feedstock – glucose, methane, methanol, and
acetate as well as xylose and glycerol for E. coli only. We use the cal-
culated theoretical yields and current feedstock prices to create surfaces
of feedstock costs. Our analysis shows that despite the lower stoichio-
metric yield from methane, methane feedstock costs are consistently
lower than glucose when used as carbon and energy sources to make
products. Conversely, methanol is equal to or costlier than glucose.
Acetate is much more difficult to give an accurate estimate of com-
parable feedstock cost with glucose given current technological change
and price variation. Our analysis suggests that methane is the most
promising C1 feedstock, assuming it is possible to overcome any tech-
nical hurdles associated with its use as a feedstock.

Fig. 1. Formaldehyde assimilation pathways. The
ribulose mono-phosphate (RuMP) pathway is a bac-
terial formaldehyde assimilation pathway that uses
ribulose-5-phosphate as a substrate for formaldehyde
assimilation. The dihydroxyacetone (DHA) pathway
is a fungal formaldehyde assimilation pathway that
uses xylulose-5-phosphate as a substrate for for-
maldehyde assimilation. The serine pathway is a
bacterial pathway that uses glycine to assimilate
formaldehyde. The serine pathway also assimilates
one carbon dioxide for every two formaldehydes
assimilated. All three pathways produce glycolytic
intermediates. The abbreviations are defined as fol-
lows: CH4 – methane, MeOH – methanol, CHO –
formaldehyde, CO2 – carbon dioxide, H6P – hexulose
6-phosphate, F6P – fructose 6-phosphate, FBP –
fructose 1,6 bisphosphate, DHAP – dihydroxyacetone
phosphate, G3P – glyceraldehyde 3-phosphate, E4P –
eyrthrose 4-phosphate, S7P – septulose 7-phosphate,
R5P – ribose 5-phosphate, Xu5P – xylulose 5-phos-
phate, Ru5P – ribulose 5-phosphate, DHA – dihy-

droxyacetone, Ser – serine, HPyr – hydroxypyruvate, Glyc – glycerate, 2PG – 2-phosphoglycerate, 3PG –3-phosphoglycerate, PEP – phosphoenolpyruvate, HCO3 – bicarbonate, OAc –
oxaloacetate, MAL – malate, MALC – malyl-CoA, AcC – acetyl-CoA, GLX – glyoxylate, GLY – glycine.
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2. Methods

2.1. Genome-scale metabolic modeling

Established genome-scale metabolic models of E. coli (iJO1366)
(Orth et al., 2011), S. cerevisiae (iMM904) (Mo et al., 2009), and Sy-
nechococcus sp. strain PCC 7002 (iSYP708) (Vu et al., 2013) were used
to calculate theoretical yields. Each model was augmented with reac-
tions necessary for C1 metabolism, including methane/methanol ex-
change, methane/methanol transport, methane/methanol oxidation,
the RuMP pathway, the DHA pathway, the serine pathway, and for-
maldehyde oxidation to carbon dioxide. Acetate assimilation pathways
were already present in each model. For PCC 7002, which lacks a
glyoxylate shunt, acetate is assimilated as acetyl-CoA that is respired
through an alternate TCA cycle present in cyanobacteria. The resulting
reducing equivalents are used to create ATP through the electron
transport chain and to fix CO2 via the Calvin cycle to fix. A complete
table of the modeled media and uptake constraints are in
Supplementary Tables 1–3. All reactions that were added to the base
models are listed in Supplementary Tables 4–6. Reactions for hetero-
logous pathways or carbon efficient pathways were not included in the
augmented model during yield ratio calculations. These were only in-
cluded individually for additional analyses. Please note genome scale
metabolic models are only capable of simulating the biological features
that are encoded within the model. Our chosen S. cerevisiae and S. PCC
7002 models are less developed than the widely accepted E. coli model
and therefore may not capture all biological features.

Flux balance analysis (FBA) was used to calculate the maximum
theoretical yield of specific metabolites under carbon-limited condi-
tions for each augmented model (Orth et al., 2010; Papoutsakis, 2000).
The yields were calculated for every metabolite within a model. The
formulation is shown in (1) where I is the set of all metabolites and J is
the set of all reactions. Itarget is the target metabolite for the current
iteration. Si j, is the stoichiometric matrix, vj is the flux vector, and pi is a
metabolite accumulation rate vector. pi is constrained to zero for all
metabolites besides the metabolite whose yield is being maximized
(Itarget). Biomass generation was either unconstrained or forced to be
greater than or equal to 10% of the maximum biomass exchange flux
for each substrate. Calculations were performed for the carbon sources:
methane, methanol, glucose, acetate, glycerol (E. coli only), and xylose
(E. coli only).

∑
∈

pmax
v p i I i, target (1a)

∑ ∙ = ∀ ∈
∈

S v p i Ij J i j j i, (1b)

= ∀ ∉p i I0i
target (1c)

≤ ≤ ∀ ∈α v j Jβj j j (1d)

All models were solved with the assumption that cells could uptake
unlimited amounts of O2 (aerobic conditions) and other inorganic nu-
trients (metals, phosphate, ammonium, protons, etc.) required for
growth and/or to balance metabolism. Carbon uptake was restricted to
a maximum of 10 mmol/gDW/h of each substrate. The E. coli model
included a term for maintenance energy, which was set to 3.15 mmol/
gDW/h as determined by Orth et al. (Orth et al., 2011). In the yeast
model, we added all augmented reactions to the cytoplasm compart-
ment. The cyanobacterial model (iSYP708) contains a light uptake
constraint of zero forcing cells to uptake a single carbon/energy source.
These simulations were performed to evaluate the impact of different
carbon sources on improving chemical production through a diurnal
light/dark cycle (McEwen et al., 2013).

2.2. Economic analysis

To evaluate each feedstock, we calculated the relative feedstock
costs for producing one mole of each metabolite in the metabolic
models. Dividing the molar price of each feedstock by the theoretical
yield of that feedstock yields the individual feedstock cost. Here, we
used Eq. (2) to calculate an average relative feedstock cost (RC) be-
tween glucose and an alternate carbon source. In Eq. (2), YR represents
ratio of theoretical yields (molar yield on the alternative carbon source
divided by molar yield on glucose), Pa is the molar price of the alternate
carbon source, and Pg is the molar price of glucose. YR is estimated by a
linear regression through the origin between the molar yields of each
metabolite when produced using glucose and the alternative carbon
source. The sensitivity of the relative feedstock cost was calculated by
varying feedstock prices and creating a surface for visualization.

=RC P
P YR

* 1a

g (2)

3. Results

3.1. Molar theoretical yields

In order to assess the relative value of feedstocks for producing
chemicals, we performed flux balance analysis of three genome-scale
metabolic models augmented with reactions required for assimilating
C1 substrates. We compared the maximum theoretical yield of each
metabolite from alternative carbon sources – methane, methanol, and
acetate – to the corresponding yield on glucose (Fig. 2a–c). In each
case, there was a strong correlation with a high R0

2 value for a linear
regression through the origin. In subsequent analyses, we used the slope
of the regression to represent the ratio of theoretical yield of chemicals
from each feedstock and organism. Among the feedstocks, glucose gave
the highest theoretical yield followed by acetate, methanol, and me-
thane, consistent with the number of carbons in each feedstock. Inter-
estingly, methane, which is more reduced than methanol, has lower
yields. This can be explained by the high cost of activating the C-H bond
in methane, which requires a reducing equivalent. This investment is
not recovered in the net exothermic reaction of methane conversion to
methanol. When normalized by carbon number in the feedstock
(Fig. 2d) the curves collapse and show interesting differences in slope
depending on the organism. For E. coli, these curves collapse with
YRmethanol > YRmethane ~ YRglucose >YRacetate. For S. cerevisiae, these
curves collapse with YRmethanol ~ YRglucose> YRacetate ~ YRmethane. For
S. PCC7002, these curves collapse with YRmethanol ~
YRmethane>YRacetate> YRglucose. Supplemental Table 7 summarizes the
ratios of theoretical yield.

Both methanol and glycerol had higher carbon yields than glucose
for E. coli while only methanol had a higher carbon yield for S. cerevisiae
(Fig. 2d and Supplemental Table 7). For S. PCC7002: methane, me-
thanol, and acetate all had higher carbon yields than glucose, which
suggests S. PCC7002 may not utilize glucose as efficiently. The max-
imum P/O ratios for each metabolic model was calculated
(Supplemental Table 8). The E. coli model had a higher P/O value
(1.375) than the S. cerevisiae model (1.125), which could explain why
maximum yields for some compounds were higher in E. coli than S.
cerevisiae. S. PCC7002 had the highest P/O ratio at 2.5; however, this is
based on genome annotations and should be confirmed experimentally.

3.2. Impact of specific pathways

With unconstrained growth, most solutions resulted in no biomass
generation, while some required growth to generate the product. We
repeated our analysis to require biomass production of at least 10% of
the maximum biomass generation rate (for a given feedstock) to see if
consistent relative theoretical yields were maintained. As seen in
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Fig. 2e, a 10% biomass generation constraint resulted in ratios of the-
oretical yield that were approximately 10% lower. This finding shows
that the consistent ratios of theoretical yield are not an artifact of
running FBA without biomass production.

We included a set of heterologous pathways to test whether our
predictions extended to non-native metabolites. This includes en-
gineered pathways for production of butanol, isobutanol, and 3-me-
thylbutanol. Each pathway branches from a different area of metabo-
lism, specifically: acetyl-CoA, pyruvate, and branch-chain amino acid
biosynthesis. Each pathway was run individually for each organism and
tabulated along with a set of other metabolites of interest in Tables 1–3.
Fig. 2f shows the results of this analysis in comparison to the linear
regressions determined by the data in Fig. 2a. This test shows that
important metabolic nodes and heterologous products both conform to
the determined yield ratios.

We can analyze the relative importance of the different for-
maldehyde assimilation pathways by testing the effect of using only a
single pathway at a time (Fig. 3a–c). When reduced to a single for-
maldehyde assimilation pathway from all three pathways simulta-
neously, the maximum theoretical yield of certain products decreased.
For all three organisms growing on glucose, the formaldehyde assim-
ilation pathways had little impact on the relative product yield. For E.
coli, the DHA and RuMP pathways appear to act identically and with
equal importance for production on methane and methanol. In S. cer-
evisiae, the RuMP pathway is the most effective formaldehyde assim-
ilation pathway. In S. PCC 7002, all three pathways seem to have a
similar effect whether acting alone or together in the full model. In-
cluding any formaldehyde assimilation pathway showed an increase in
yield over the base model. These results do not include kinetic in-
formation, but do provide insight into which formaldehyde assimilation

Fig. 2. The comparative product yields for alternative carbon sources compared to glucose are shown with individual products (points) as well as the least squares linear fit through the
origin (lines). Equations for each alternative carbon source can be found in Supplemental Table 7. A, B, and C: Comparative yields for E. coli, S. cerevisiae, and S. PCC7002 respectively are
shown for acetate, methanol, and methane carbon sources (E. coli also shows results for glycerol and xylose). D: E. coli comparative yields normalized on a per carbon basis on multiple
substrates. E: E. coli comparative yields with a minimum of 10% of the maximum biomass growth rate (dashed lines) compared to no biomass requirement (solid lines). F: Comparative
yields for a subset of data points from A as well as three heterologous pathway target products, as listed in Table 1, in comparison to the linear regressions determined in A.
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pathway should be included when engineering an organism for C1

catabolism. Generally, the serine pathway is a poor choice based on
stoichiometry when utilizing C1 carbon sources.

Finally, we also considered inclusion of other efficient carbon uti-
lization pathways to investigate their impact on maximum theoretical
yield (non-oxidative glycolysis, Wood-Ljungdhal pathway, and 3-hy-
droxypropionate 4-hydroxybutyrate). None of the additional pathways
showed a major increase in theoretical yield when compared with the
same carbon source feed (glucose, methane, or methanol) (Fig. 3d).
Specifically, the MCC functions for C1 assimilation, but we were unable
to show any improvement upon using the non-oxidative glycolysis

pathway over the Embden-Meyerhof-Parnas pathway (Fig. 3d).
(Bogorad et al., 2014)

3.3. Price adjusted yield ratio surfaces

Molar yields indicate that glucose is the preferred feedstock for
biological chemical production, but on a per carbon basis, other feed-
stocks are more efficient. To evaluate the relative costs of different
feedstocks, we created relative cost surfaces using estimated ranges of
feedstock prices and the ratios of theoretical yield calculated from FBA.
We used bulk purchase pricing and stock market values (specifically,
natural gas and sugar prices) over a 5-year period to determine each
carbon source's range of bulk purchase prices. We estimate that sugar
prices are currently between $0.10 and $0.30/lb ($0.0264/mol to
$0.0792/mol), methanol prices are between $1.00–1.60/gal
($0.01068/mol to $0.01709/mol), and methane prices are between
$2.75-$4.50/MMBTU ($0.0022/mol to $0.0036/mol). It was more
difficult to determine an estimate for acetate prices. Acetate comes in
multiple forms and could be made commercially via a Bio-GTL process,
which has not been economically analyzed in the public literature.
Using bulk pricing for both sodium acetate and acetic acid, we calcu-
lated the highest price that we used (approximately $0.50/kg, or $0.03/
mol). Acetate production from syngas in Bio-GTL processes could have
very high yield (Hu et al., 2016) and therefore be less expensive.
Therefore, we used a high molar conversion of syngas to acetate with a
low cost of syngas to represent the lower bound on price ($0.05/kg, or
$0.003/mol). This range is a best estimate and more information could
adjust this range further.

Relative cost surfaces were constructed by plotting the relative
feedstock cost of metabolites in an organism's genome-scale model
(Fig. 4). The sliding color scheme represents the regions where the al-
ternative carbon source is more expensive than glucose (red) for pro-
ducing the average chemical, less expensive than glucose (blue), or
equivalent (yellow). The surfaces showed little variation between three
organisms studied, with glucose having a slightly bigger economic ad-
vantage in yeast. The surfaces show that methane is the only feedstock
that is consistently less expensive than glucose at current feedstock
prices. Conversely, methanol is more expensive than glucose as a
feedstock over the range of current prices. The large uncertainty in
acetate prices prevents a general statement, but low acetate prices have
the potential to be a less expensive feedstock than glucose, albeit still
more expensive than methane.

3.4. Discussion

Our analysis, based on feedstock price and theoretical conversion
yields, suggests that methane is the most attractive feedstock for mi-
crobial cell factories. This assumes that technical barriers to using
methane can be overcome. For instance, biological assimilation kinetics
of methane tend to be relatively slow and are a rate-limiting step in
methane conversion to value-added chemicals. The main cause of the
slow kinetics is the long turnover time of the methane monooxygenase
active site (Hwang et al., 2014). The reactivation of the active site is a
slow process that results in an overall low methane assimilation rate.
With protein engineering, it could be possible to overcome this barrier.
There are also difficulties in scaling-up microbial production using a
methane feedstock. Methane assimilation pathways require both me-
thane and oxygen supply for effective function. This combination of
gases can be explosive, which introduces a safety concern when using
industrial-size reactors. Another difficulty is the slow mass transfer of
methane into aqueous solutions (Conrado and Gonzalez, 2014). If these
barriers are overcome, methane has the potential to be a more profit-
able feedstock than glucose.

A caveat to this analysis is that it only considers feedstock costs and
does not consider differences in other costs associated with these
feedstocks, such as operating costs, capital costs, conversion

Table 1
Model results for a set of interesting metabolites, including the products of the hetero-
logous pathways that were tested (marked with *), for E. coli. These values are used to
produce Fig. 2f.

E. coli

Glucose Xylose Glycerol Acetate Methanol Methane

Glycine 2.804 2.326 1.5 0.72 0.5 0.456
Leucine 0.778 0.639 0.439 0.202 0.167 0.126
Lysine 0.776 0.638 0.448 0.191 0.167 0.125
Serine 2 1.667 1 0.472 0.333 0.333
Tryptophan 0.449 0.371 0.255 0.101 0.091 0.07
Pyruvate 2 1.667 1 0.607 0.333 0.333
Succinate 1.5 1.25 0.75 0.423 0.25 0.25
Hexadecanoate 0.261 0.217 0.152 0.07 0.059 0.043
Butanol* 1 0.833 0.583 0.271 0.229 0.167
3-methylbutanol* 0.796 0.654 0.449 0.208 0.174 0.127
Isobutanol* 1 0.833 0.583 0.269 0.229 0.167

Table 2
Model results for a set of interesting metabolites, including the products of the hetero-
logous pathways that were tested (marked with *), for S. cerevisiae. These values are used
to produce Fig. 2f.

S. cerevisiae

Glucose Acetate Methanol Methane

Glycine 3 0.784 0.5 0.5
Leucine 0.753 0.175 0.163 0.132
Lysine 0.708 0.179 0.165 0.127
Serine 2 0.43 0.333 0.333
Tryptophan 0.426 0.087 0.091 0.073
Pyruvate 2 0.5 0.333 0.333
Succinate 1.5 0.386 0.25 0.25
Hexadecanoate 0.212 0.055 0.052 0.037
Butanol* 1 0.264 0.237 0.167
3-methylbutanol* 0.776 0.178 0.163 0.132
Isobutanol* 1 0.224 0.214 0.167

Table 3
Model results for a set of interesting metabolites, including the products of the hetero-
logous pathways that were tested (marked with *), for S. PCC7002. These values are used
to produce Fig. 2f. The PCC7002 model does not contain hexadecanoate.

S. PCC7002

Glucose Acetate Methanol Methane

Glycine 0.79 0.134 0.176 0.134
Leucine 0.508 0.086 0.114 0.086
Lysine 0.099 0.019 0.024 0.017
Serine 0.752 0.128 0.168 0.128
Tryptophan 0.26 0.044 0.058 0.044
Pyruvate 2 0.405 0.333 0.333
Succinate 1.474 0.32 0.25 0.25
Hexadecanoate N/A N/A N/A N/A
Butanol* 1 0.286 0.243 0.167
3-methylbutanol* 0.8 0.158 0.184 0.133
Isobutanol* 1 0.182 0.238 0.167
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inefficiencies (i.e. operating at a fraction of theoretical yield), separa-
tions, wastes, etc. A true measure of profitability will require a more
detailed technoeconomic analysis of any potential process. For instance,
if a technological advance in methane-to-methanol catalytic conversion
occurs, the price of methanol could drop considerably and make me-
thanol more competitive with glucose. Methanol provides other tech-
nical advantages over methane such as faster mass transfer, faster up-
take rate, simplified gassing, and reduced safety concerns that our
feedstock analysis does not consider. However, considering current
prices, it is clear that methane is the preferred feedstock.

If we are unable to engineer microbes for efficient methane assim-
ilation for chemical production (i.e. achieve yields approaching theo-
retical limits), the more attractive strategy would be to convert me-
thane to acetate (via syngas) instead of converting methane to
methanol. The price of acetate is a large uncertainty in our analysis, but
new BIO-GTL technologies that leverage less-expensive, nitrogen-con-
taining syngas could make the lower end of our estimate range a reality.
Assuming a low-cost bio-GTL process works at industrial scale, then
acetate would compete with glucose as a feedstock.

Our analysis shows a consistent trend when comparing theoretical
yields on different feedstocks, suggesting that a general relationship is
derivable. This trend is interesting because it suggests that product
yield varies with carbon source identity independent of the specific
product (i.e. products have similar relative yields on different carbon
sources). We postulate that this linear relationship is obtained because

of the structure of metabolism in which catabolic and anabolic path-
ways are linked by common central metabolites. In other words, all of
the substrates we simulated connect to central metabolism through the
catabolic pathways described in the introduction, in the process gen-
erating NAD(P)H and ATP to varying extents depending on the sub-
strate. Conversely, all products (except those metabolites found in the
catabolic pathways) are produced from the same anabolic pathways
independent of carbon source. Therefore the difference in a product's
yield on different carbon sources can be traced to the difference in NAD
(P)H/ATP produced via the catabolic pathways used to convert carbon
sources into precursors for that product.

Thermodynamics could provide a possible explanation for the linear
relationship between product yields on different feedstocks. A ther-
modynamic estimate of the maximum theoretical product yield from a
specific substrate can be calculated using the carbon number and de-
gree of reduction of both the substrate and product (Doran, 2012). This
is calculated using Eq. (3), where fmax is the number of moles of product
that can be made from 1 mol of substrate, w and j are the number of
carbon atoms in the substrate and product and γs and γp are the degree
of reduction of substrate and product, respectively (Doran, 2012).

=f
wγ
jγmax

s

p (3)

For a given product, j and γp will remain constant when comparing
different substrates, while w and γs will be unique to the substrate used.

Fig. 3. A–C: C1 assimilation pathway usage across different substrates and organisms. These box plots summarize the yield of each metabolite from the model and carbon source listed as
a ratio to the yield from the full model using all three formaldehyde assimilation pathways. The base model has no formaldehyde assimilation pathways. The box plot whiskers are
determined using Tukey method and outliers are not shown (outliers shown in Supplemental Figure 1). D: A comparison of different pathways for carbon efficient assimilation of
glycolytic substrates in E. coli. All pathways provided similar yield ratios (using linear regression) and were tested only feeding the substrate listed below each set of bars. (Base =
Oxidative Glycolysis only, NOG = Non-oxidative Glycolysis, WLI = Wood-Ljungdhal Pathway, 3HP4HB = 3-hydroxypropionate 4-hydroxybutyrate Pathway).
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This allows for a comparison between maximum theoretical yields of
different substrates on a thermodynamic basis. The numerator of Eq. (3)
is 8 for methane, 6 for methanol, 8 for acetate, and 24 for glucose. This
implies yields from glucose will be 3 times higher than from methane or
acetate and 4 times higher than yields from methanol. When normal-
ized for carbon content, methane generates a theoretical yield twice
that of glucose. In our analysis, when yields were normalized to the
carbon number in the feedstock, the largest difference between feed-
stocks was significantly less than 2 (Fig. 2). Therefore, the degree of
reduction is not completely responsible for remaining difference in
yields on various feedstocks. One reason for the discrepancy is the re-
quirement of additional electrons and energy in the specific biological
pathways (e.g. MMO) used to conduct the transformations. For this
reason, analysis using genome-scale metabolic models is an improve-
ment over analysis using just stoichiometry.
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