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Abstract: This study investigated the influence of Canarium album extract (CAext) on intestinal
microbiota composition of mice fed a high-fat diet (HFD). Kun Ming (KM) mice were fed either a
normal chow diet or a HFD for six weeks. At the seventh week, HFD-fed mice were gavaged daily
with saline, or a different dose of CAext for four weeks, respectively. Then, the composition of the
gut microbiota was analyzed by high-throughput sequencing technology. Analysis of fecal microbial
populations, grouped by phyla, showed significant increases of Firmicutes and Verrucomicrobia, but a
decrease of Bacteroidetes in all CAext-fed mice. Particularly, CAext gavage in a low dose or a medium
dose caused a significant increase in the proportion of Akkermansia. These findings suggested that
CAext can alter the gut microbiota composition of HFD-fed mice, and had a potential prebiotic effects
on Akkermansia.
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1. Introduction

The mammalian gut is inhabited by a vast number of microorganisms [1]. It has been well
recognized that a balanced gut microbiota composition confers benefits to the host, whereas gut
microbiota imbalance may lead to various metabolic diseases [2]. As the composition of diet has
significant effects on gut microbiota, the interest in food-based strategies able to modulate the
gut microbiota composition, and probably their functional effects, has rapidly increased in recent
years [3]. It has been reported that plant-derived polysaccharide foods increase colonic bifidobacterial
numbers [4], whereas a long-term diet rich in saturated fat, such as high-fat diet (HFD), increases
the proportion of Firmicutes to Bacteroidetes, which is associated with obesity-induced metabolic
diseases [5–7].

Polyphenols are poorly absorbed by the small intestine [8], and as much as 90% of polyphenols
arrive at the large intestine [9], where interactions may happen between polyphenols and gut
microbiota. Polyphenols can be converted to bioactive compounds that may exert physiological
effects by the gut microbiota, while the composition of microbiota can be modified by polyphenols [10].
Canarium album is a type of polyphenol-rich fruit with a total phenolic content of 1174.0–1799.6 mg
gallic acid equivalents/100 g fresh weight [11]. Its high polyphenol content is related to
hepatoprotective [12], antioxidant [13], anti-inflammatory [14], and antiviral [15] effects. We previously
found that polyphenol-rich Canarium album extract (CAext) restrains excessive lipid accumulation
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induced by oleic acid in hepatocarcinoma cells [16]. However, whether the pharmacological effects of
polyphenols are attributed to its interactions with gut microbiota is not fully understood [10]. In light
of this, the aim of the present study was to investigate the in vivo effects of CAext on the composition
of intestinal microbiota of HFD-feeding mice.

2. Results

To understand the effect of CAext administration on the composition of gut microbiota, the gut
microbiota composition was analyzed by Miseq sequencing on the V3–V4 region of 16S rRNA of
bacteria. A total of 189,910 valid sequences and 146,325 operational taxonomic units (OTUs) were
obtained after quality control, and the average length of each sequence was 442 bp.

Microbial phylotype richness was estimated by Chao and Ace, and the diversity of the bacterial
community was revealed by Shannon [17]. As shown in Table 1, there was a significant overall decrease
in the richness and the diversity of gut microbiota in the mice fed by HFD (p < 0.05). The NC group
had the highest microbial phylotype richness and diversity in all groups, whereas the CAext groups
had the lowest richness and diversity in all groups.

Table 1. Effect of CAext on the phylotype richness and the diversity of gut microbiota.

NC
HFD

MC CAext-L CAext-M CAext-H

Ace 298.38 ± 11.63 a 266.80 ± 11.07 b,c 272.74 ± 14.05 b 251.69 ± 13.70 c 222.70 ± 10.44 d

Chao1 304.65 ± 19.48 a 269.87 ± 15.92 b 279.94 ± 22.79 a,b 254.45 ± 18.83 b 223.33 ± 13.17 c

Shannon 4.19 ± 0.02 a 3.73 ± 0.02 b 3.07 ± 0.02 c 3.20 ± 0.02 d 3.54 ± 0.02 e

Data are presented as mean ± SD. NC, normal control, mice were fed with a normal chow and intragastrically
administered 20 mL/kg saline; MC, model control, mice were fed with a high-fat feed and intragastrically
administered 20 mL/kg saline; CAext-L, CAext-M, CAext-H mice were fed with a high-fat feed and intragastrically
administered 10 mg/(kg·d), 15 mg/(kg·d), and 20 mg/(kg·d) Canarium album extract (CAext), respectively. Different
letters indicate significant difference between treatment groups (p < 0.05).

Principal coordinate analysis (PCoA) based on the OTUs’ abundance of different groups was
performed to evaluate the similarities and differences among groups (Figure 1). The five groups were
separated as two clusters along PC1 (57.67%), suggesting that there were significant differences in the
dominant bacterial population among the groups. The MC group was clearly separated along PC2
axis, indicating that CAext administration had a substantial effect on the gut microbial composition of
HFD-fed mice. Cluster analysis of gut microbiota among different groups also had a similar result
(Figure 2).
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Figure 1. Principal coordinate analysis (PCoA) plots based on the OTU abundance of gut microbiota 
of each mouse. The closer the spatial distribution between spots, the greater the bacterial similarity 
among different groups. NC, normal control, mice were fed with a normal chow and intragastrically 
administered 20 mL/kg saline; MC, model control, mice were fed with a high-fat feed and 
intragastrically administered 20 mL/kg saline; CAext-L, CAext-M, CAext-H mice were fed with a 
high-fat feed and intragastrically administered 10 mg/(kg·d), 15 mg/(kg·d), and 20 mg/(kg·d) Canarium 
album extract (CAext), respectively. 

 
Figure 2. Clustering analysis dendrogram of gut microbiota based on distances among different 
groups. NC, normal control, mice were fed with a normal chow and intragastrically administered 20 
mL/kg saline; MC, model control, mice were fed with a high-fat feed and intragastrically administered 
20 mL/kg saline; CAext-L, CAext-M, CAext-H mice were fed with a high-fat feed and intragastrically 
administered 10 mg/(kg·d), 15 mg/(kg·d), and 20 mg/(kg·d) Canarium album extract (CAext), 
respectively. 

Figure 1. Principal coordinate analysis (PCoA) plots based on the OTU abundance of gut microbiota
of each mouse. The closer the spatial distribution between spots, the greater the bacterial similarity
among different groups. NC, normal control, mice were fed with a normal chow and intragastrically
administered 20 mL/kg saline; MC, model control, mice were fed with a high-fat feed and
intragastrically administered 20 mL/kg saline; CAext-L, CAext-M, CAext-H mice were fed with
a high-fat feed and intragastrically administered 10 mg/(kg·d), 15 mg/(kg·d), and 20 mg/(kg·d)
Canarium album extract (CAext), respectively.
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Figure 2. Clustering analysis dendrogram of gut microbiota based on distances among different
groups. NC, normal control, mice were fed with a normal chow and intragastrically administered
20 mL/kg saline; MC, model control, mice were fed with a high-fat feed and intragastrically
administered 20 mL/kg saline; CAext-L, CAext-M, CAext-H mice were fed with a high-fat feed
and intragastrically administered 10 mg/(kg·d), 15 mg/(kg·d), and 20 mg/(kg·d) Canarium album
extract (CAext), respectively.
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Analysis of relative bacterial abundance at the phylum level revealed the major differences of
the dominant bacterial population among groups (Figure 3). Compared to the NC group, the relative
abundance of Bacteroidetes was significantly reduced, whereas that of Firmicutes increased in all
HFD-fed groups, especially in CAext-L and CAext-H group (p < 0.05). The Firmicutes to Bacteroidetes
(F/B) ratio were respectively 0.50, 0.69, 1.79, 0.67, 1.09 in NC, MC, CAext-L, CAext-M, CAext-H
group. Furthermore, the relative abundance of Verrucomicrobia was statistically higher in CAext-L and
CAext-M groups compared with the NC or MC group (p < 0.05).
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Figure 3. Relative abundance at the phylum level of gut microbiota among different groups. Other
phyla refer to a taxa with a relative abundance ≤1% in any sample. NC, normal control, mice were fed
with a normal chow and intragastrically administered 20 mL/kg saline; MC, model control, mice were
fed with a high-fat feed and intragastrically administered 20 mL/kg saline; CAext-L, CAext-M, CAext-H
mice were fed with a high-fat feed and intragastrically administered 10 mg/(kg·d), 15 mg/(kg·d),
and 20 mg/(kg·d) Canarium album extract (CAext), respectively.

At the genus level (Figure 4), consumption of HFD statistically reduced the relative abundance of
genus Bacteroidales_S24-7, which might be related to the reduction in the Bacteroidetes phylum, while
the increase of the Firmicutes phylum might be attributed to the significant increase in the Allobaculum
genus of all HFD-fed groups (p < 0.05). Compared to the MC group, CAext administration significantly
decreased the abundance of Bacteroidales_S24-7 (p < 0.05). However, no significant difference was
obtained for the abundance of Allobaculum between MC and CAext groups (p > 0.05). As shown
in Figure 4, CAext-L and CAext-M administration significantly increased the relative abundance of
Akkermansia within the Verrucomicrobia phylum compared to the NC group or MC group (13.89 ± 3.78%
in CAext-L, 11.68 ± 4.12% in CAext-M vs. 6.01 ± 3.92% in NC, 4.37 ± 3.03% in MC; p < 0.05).
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Figure 4. Relative abundance at the genus level of gut microbiota among different groups. Other genera
refer to a taxa with a relative abundance ≤1% in any sample. NC, normal control, mice were fed with a
normal chow and intragastrically administered 20 mL/kg saline; MC, model control, mice were fed
with a high-fat feed and intragastrically administered 20 mL/kg saline; CAext-L, CAext-M, CAext-H
mice were fed with a high-fat feed and intragastrically administered 10 mg/(kg·d), 15 mg/(kg·d),
and 20 mg/(kg·d) Canarium album extract (CAext), respectively.

3. Discussion

HFD feeding can alter the diversity and composition of intestinal microbiota [18], and CAext
administration further reshapes the gut microbiota of HFD-fed mice. Using high-throughput
sequencing, we found significant changes in gut microbiota composition of different treatment groups.
The richness and the diversity of gut microbiota significantly decreased in all HFD-fed groups (Table 1).
Similarly, Xia et al. [19] investigated the effect of whole grain Qingke on intestinal microbiota of rats
under HFD, and found that the alpha diversity indices were lower in the HFD group than in the other
groups, and ascribed this decrease to dominant bacteria restraining others’ growth. Bacteroidetes and
Firmicutes are two major phyla dominant in most mammalian gut microbiota. Several studies have
shown that obese subjects have a lesser proportion of Bacteroidetes, a higher proportion of Firmicutes,
and a higher F/B ratio compared to normal subjects [8,20]. Our results found that HFD loading induced
a drop in Bacteroidetes and an increase in Firmicutes (Figure 3). Particularly, CAext administration was
associated with a striking increase in the F/B ratio (0.50 in NC group vs. 1.79, 0.67, 1.09 in CAext-L,
CAext-M, and CAext-H, respectively). Similar results were found by Anhe et al. [21], indicating
that Firmicutes significantly increased and Bacteroidetes significantly decreased after polyphenol-rich
cranberry extract treatment. Queipo-Ortuno et al. [22] found that both the concentration of Firmicutes
and Bacteroidetes were significantly increased after a polyphenol-rich red wine period.

In the present study, we found that the relative abundance of Verrucomicrobia was statistically
higher in CAext group compared with NC or MC group (Figure 3). This increasing of the proportion of
Verrucomicrobia attributed to a significant increase of genus Akkermansia (Figure 4). Several studies have
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shown that different sources of dietary polyphenols increased the relative abundance of Akkermansia.
Axling et al. [23] reported that green tea polyphenol increased the proportion of Akkermansia.
Kemperman et al. [24] also found that complex polyphenols from black tea increase the relative
abundance of Akkermansia. Akkermansia-like microorganisms are widely distributed in the intestines of
the animals and human beings [25], and at least eight different species of the Akkermansia genus colonize
the intestines of humans [26]. Akkermansia is a Gram-negative, strict anaerobe and mucin-degrading
bacterium [27]. The beneficial effects of Akkermansia muciniphina have been extensively studied [28–30].
Multiple findings suggested that the improvement of metabolic disorders were associated with the
increase of the Akkermansia population [31]. It has also been proved that Akkermansia administration
has probiotic effects, which are associated with the ability of Akkermansia to preserve the mucus
layer thickness [25], therefore reducing gut permeability [29], systemic lipopolysaccharide levels [21],
host adiposity [32], and inflammatory markers [29].

Because of the tissue anatomical and physiological differences between species [33], animal models
of HFD cannot fully replicate the complexity of human pathological conditions [34,35]. The results
of this study may only provide a reference for studying the effect of CAext on the human microbial
ecosystem. Another limitation is whether Akkermansia-related beneficial effects are sufficient to prevent
the negative metabolic phenotype associated with major modifications in the proportions of Firmicutes
and Bacteroidetes. Further research should be performed to clarify the effects of CAext on Akkermansia,
and the mechanisms by which CAext or polyphenols reshape the gut microbiota with benefits to
the host.

4. Materials and Methods

4.1. Preparation of CAext

CAext were prepared according to the method of Liu et al. [16]. Total polyphenol content
was measured using the method of Giampieri et al. [36]. Total polyphenols content of CAext was
465.35 ± 13.67 mg/g.

4.2. Animal Experiments

All animal procedures were approved by the animal ethics committee of Fujian University of
Traditional Chinese Medicine (Ethic Approve No. FJATCM-IAEC 2016012). Forty male KM mice
(20 ± 2 g), purchased from The Fujian Wus Laboratory Animal Co., Ltd. (Fujian, China), were housed
in a room with a temperature of 24 ± 2 ◦C, a humidity of 55 ± 5%, and a 12:12 h light:dark cycle
(8:00 am–8:00 pm).

The mice were fed a normal standard chow diet during their one week acclimatization period.
After that, eight mice were randomly selected as the normal control group (NC), fed with a normal
standard chow diet, and the rest of the thirty-two mice were fed with HFD for six weeks. According
to Li et al. [37], the composition of the normal standard chow diet and the HFD with small changes
are shown in Table 2. At the seventh week, the mice fed with HFD were randomly divided into the
following four groups: model control group (MC, n = 8), low dose of CAext-treated group (CAext-L,
n = 8), medium dose of CAext-treated group (CAext-M, n = 8), and high dose of CAext-treated group
(CAext-H, n = 8). The mice in MC and NC groups were treated with a dose of 20 mL/kg saline once
a day by gavage. The mice of the CAext-L, CAext-M, or CAext-H groups were orally administered
a dose of 10 mg/kg, 15 mg/kg, or 20 mg/kg CAext once a day, respectively. After four weeks of
treatment with the above solution, all mice were sacrificed. The feces were collected and stored at
−80 ◦C for further analysis.
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Table 2. The composition of the normal standard chow diet and the HFD.

Ingredients (g/100 g) Normal Standard Chow Diet HFD

Corn starch 30 26.3
Wheat bran 25 21.9
Fish meal 5 4.4

Soy bean flour 20 17.5
Wheat flour 16 14.0

Yeast powder 1 0.9
Bone meal 2 1.8

Salt 1 0.9
Cholesterol - 2

Lard oil - 10
Sodium deoxycholate - 0.3

4.3. Fecal DNA Extraction

Total DNA from fecal samples of eight mice per group was extracted using a TIANamp Stool
DNA Kit (DP328, Tiangen Biotech (Bejing) Co., Ltd., Beijing, China). The concentration and the purity
of DNA were determined using the NanoDrop 2000 spectrophotometer (Thermo Scientific, Waltham,
MA, USA). The integrity of the extracted DNA was measured on 1.0% agarose gel.

4.4. Fecal Microbiota Analysis

The extracted DNA was used as a template to amplify the V3-V4 region of the bacteria 16S
rRNA gene (forward primer for V3 5′-ACTCCTACGGGAGGCAGCA-3′, reverse primer for V4
5′-GGACTACHVGGGTWTCTAAT-3′). The amplification program was as follows: initial denaturation
at 95 ◦C for 3 min, amplification for 27 cycles of denaturation at 95 ◦C for 30 s, annealing at 55 ◦C for
30 s, and extension at 72 ◦C for 45 s, then extension at 72 ◦C for 10 min.

Sequencing was performed according to the protocol of Illumina Miseq platforms at Shanghai
Majorbio Bio-Pharm Technoloy Co., Ltd., Shanghai, China.

To obtain high-quality reads, the raw reads were quality filtered using QIIME software
(Version 1.9.0, http://qiime.org). The chimeric sequences were identified and removed with the
UCHIME algorithm (UCHIME Algorithm, http://www.drive5.com/usearch/manual/uchime_algo.
html). The remaining sequences with 97% identity were clustered into the same operational taxonomic
units (OTUs) using Usearch software (Version 7.1, http://drive5.com/usearch/). The representative
sequences of each OUT were assigned to RDP classifier (Version 2.2, http://rdp.cme.msu.edu/
classifier). Alpha diversity index based on the OTUs was conducted by Mothur software (Version
1.30.0, http://www.mothur.org). All the statistical analyses of the sequenced data were performed by
using the R software package (Version 3.2.3, http://www.R-project.org).

4.5. Statistical Analysis

Results are represented as mean ± SD. Statistical analysis was performed through one-way
analysis of variance (ANOVA) using IBM SPSS 22.0 (IBM, Armonk, NY, USA), p < 0.05 was considered
statistically significant.

5. Conclusions

In conclusion, administration of polyphenol-rich CAext altered the composition of the gut
microbiota with an increase in the relative abundance of Firmicutes and Verrucomicrobia, along with a
decrease in Bacteroidetes. Furthermore, CAext-L and CAext-M greatly increased the population of the
Akkermansia. Further studies will elucidate the prebiotic effect of CAext on the gut microbiota.

http://qiime.org
http://www.drive5.com/usearch/manual/uchime_algo.html
http://www.drive5.com/usearch/manual/uchime_algo.html
http://drive5.com/usearch/
http://rdp.cme.msu.edu/classifier
http://rdp.cme.msu.edu/classifier
http://www.mothur.org
http://www.R-project.org
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