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ABSTRACT: Ingested nanomaterials are exposed to many metab-
olites that are produced, modified, or regulated by members of the
enteric microbiota. The adsorption of these metabolites potentially
affects the identity, fate, and biodistribution of nanomaterials passing
the gastrointestinal tract. Here, we explore these interactions using in
silico methods, focusing on a concise overview of 170 unique enteric
microbial metabolites which we compiled from the literature. First, we
construct quantitative structure−activity relationship (QSAR) models
to predict their adsorption affinity to 13 metal nanomaterials, 5
carbon nanotubes, and 1 fullerene. The models could be applied to
predict log k values for 60 metabolites and were particularly applicable
to ‘phenolic, benzoyl and phenyl derivatives’, ‘tryptophan precursors and metabolites’, ‘short-chain fatty acids’, and ‘choline
metabolites’. The correlations of these predictions to biological surface adsorption index descriptors indicated that hydrophobicity-
driven interactions contribute most to the overall adsorption affinity, while hydrogen-bond interactions and polarity/polarizability-
driven interactions differentiate the affinity to metal and carbon nanomaterials. Next, we use molecular dynamics (MD) simulations
to obtain direct molecular information for a selection of vitamins that could not be assessed quantitatively using QSAR models. This
showed how large and flexible metabolites can gain stability on the nanomaterial surface via conformational changes. Additionally,
unconstrained MD simulations provided excellent support for the main interaction types identified by QSAR analysis. Combined,
these results enable assessing the adsorption affinity for many enteric microbial metabolites quantitatively and support the qualitative
assessment of an even larger set of complex and biologically relevant microbial metabolites to carbon and metal nanomaterials.

■ INTRODUCTION
The gastrointestinal tract harbors a dense community of viruses,
archaea, bacteria, fungi, and protozoa, collectively termed the
enteric microbiota. In humans, the enteric microbiota constitute
a similar order of magnitude of cells as all host cells combined.1

Altogether, these enteric microbiota members have been
estimated to comprise nearly a factor 1000 more genes than
the host.2 Using this large set of genes, entericmicrobes compete
and cooperate with one another3 and interact with the host.4 As
part of all of these interactions, enteric microbes produce and
excrete, modify and regulate metabolites. Many of these
metabolites become available in the intestinal lumen, where
they function as antimicrobial agents, signaling molecules, and
substrates.5

For over a decade, biomolecules have been shown to play a
key role in the behavior and toxicity of engineered nanomaterials
(ENMs).6,7 Many biomolecules, and proteins in particular, have
been found to associate with the large surface area of ENMs,
forming a shell of biomolecules referred to as the ‘biomolecular
corona’8 or ‘ecological corona’9 from a biomedical or ecological
perspective, respectively. By changing or masking the surface
properties of ENMs, biocoronae can affect the colloidal

stability10 and identity11 of ENMs. The principles that govern
the biocorona-mediated recognition of ENMs are increasingly
well understood.12 Nevertheless, environmental metabolites,
including many other metabolites than proteins, affect the
biodistribution and toxicity of ENMs in a yet unpredictable
fashion.
When ENMs are ingested, they will be exposed to the myriad

of enteric microbial metabolites that are available in the
intestinal lumen. Consequently, they may acquire enteric
microbial metabolites in their biocoronae. Several specific
interactions between microbial metabolites, the ENM surface,
and biological membranes and receptors have already been
found to affect the fate and biodistribution of ENMs. In bacterial
cultures, for example, bacterial flagellin was found to reduce the
colloidal stability of nanosilver, thereby decreasing its
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antimicrobial activity.13 Furthermore, conjugation of latex
nanoparticles with invasin, a bacterial surface protein, has
been shown to facilitate the uptake of these particles across the
intestinal epithelium of rats.14 Other research investigating the
interactions of microbial metabolites with ENMsmostly focused
on complex mixtures of environmentally relevant biomolecules,
such as extracellular polymeric substances,15 or employed the
properties of specific microbial biomolecules to develop ENMs
that function as biosensors or nanocarriers.16−18 Less specific
physisorption processes between enteric microbial metabolites
and ENMs, that do not concern specific interaction targets, like
receptors, and include other metabolites than proteins, have
barely been investigated. Here, we focus on the potential
contribution of this understudied set of enteric microbial
metabolites to biocoronae formation onto ingested ENMs in the
intestinal lumen.
In the present study, we construct models and generate data to

initiate the assessment of the role of enteric microbial
metabolites in biocorona formation onto ingested ENMs.
First, we compile a concise overview and categorization of
metabolites that are available in the intestinal lumen for
biocorona formation. This is based on a literature review.
Subsequently, we employ the biological surface adsorption index
(BSAI) theory to construct a set of quantitative structure−
activity relationship (QSAR) models to predict adsorption
affinities for enteric microbial metabolites to various metal and
carbon ENMs. In addition to this statistical approach to studying
nano−bio interactions at low computational cost, we perform a
computationally demanding free-energy analysis based on
molecular dynamics (MD) simulations. For these investigations
based on physical modeling, we focus on a selection of vitamins
that cannot be assessed using current QSAR models, to obtain
direct molecular information on characteristics of nano−bio
interactions that need to be considered for these microbial
metabolites. Ultimately, this could be used to improve current
QSAR models. Additionally, through a combination of QSAR
investigations and classical and unconstrained MD simulations,
we explore what interaction types are key to the adsorption of
enteric microbial metabolites to metal and carbon ENMs.
Overall, we anticipate that the results of these investigations
support the qualitative and quantitative assessment of bio-
logically relevant adsorption interactions between enteric
metabolites and ingested ENMs.

■ RESULTS AND DISCUSSION
Inventory of Enteric Microbial Metabolites. We base

this study on a literature search, generating a concise overview of
metabolites that are produced or regulated by gastrointestinal
microbiota. Ten reviews on intestinal microbial metabolism
were selected for this inventory,4,20−28 following the procedure
described in the Methods section. This led to a total of 170
unique enteric microbial metabolites. These microbial metab-
olites were assigned to 13 different functional or structure-based
metabolite categories, adopting the categorization conventions
from the cited literature. The metabolite categories (with
abbreviations specified between brackets) included ‘microbe-
associated molecular patterns (MAMPs)’, ‘vitamins’, ‘short-
chain fatty acids (SCFAs)’, ‘primary bile acids (PBAs)’,
‘secondary bile acids (SBAs)’, ‘conjugated bile acids (CBAs)’,
‘tryptophan precursors and metabolites (tryptophan)’, ‘poly-
amines’, ‘choline metabolites (choline)’, ‘neurotransmitters’,
‘lipids and lipid precursors (lipid)’, ‘phenolic, benzoyl, and
phenyl derivates (phenolic)’, and ‘proteins/enzymes’ (Table 1).

Most of the identified enteric microbial metabolites were
categorized as ‘phenolic, benzoyl, and phenyl derivates’ (24
metabolites), followed by ‘MAMPs’ (23 metabolites), ‘trypto-
phan precursors and metabolites’ (17 metabolites), ‘SBAs’ (16
metabolites), ‘lipids and lipid precursors’ (13 metabolites),
‘proteins/enzymes’ (12 metabolites), ‘vitamins’ (11 metabo-
lites), ‘SCFAs’ (8 metabolites), ‘CBAs’ (7 metabolites),
‘neurotransmitters’ (6 metabolites), ‘choline metabolites’ (6
metabolites), ‘polyamines’ (4 metabolites), and ‘PBAs’ (2
metabolites). Acetylcholine and 5-hydroxytryptamine were
assigned to the categories ‘tryptophan precursors and
metabolites’ and ‘neurotransmitters’. The remaining 21
metabolites that had not been assigned to any of these
categories, were listed as ‘other’.
Given the large metabolic potential and high intra- and

interindividual variation of the enteric metabolome,2 the actual
set of available enteric microbial metabolites is likely large and
diverse. In order to decide if the selected reviews represent an
adequate proportion of this diversity in available enteric
microbial metabolites, we determined the percentage of new
metabolites that were identified with including increasing
numbers of reviews in the inventory (Figure 1). The first three

reviews that were included20,21,25 reported 80.5% (137
metabolites) of the 170 identified microbial metabolites. The
next two reviews that were included4,28 contributed 14.1% (24
metabolites) of the total number of unique metabolites, and the
final five reviews22−24,26,27 contributed only 5.3% (9 metabo-
lites) of the total number of identified metabolites. This
saturation in the total number of identified metabolites suggests
that sufficient reviews were included in the inventory. Moreover,
the metabolites included in the first three reviews represented all
of the 13 metabolite categories. This may result from the
conserved functional capacity of the enteric metabolome29 and
predicts that any metabolite that is not included in the inventory
will likely be functionally and structurally equivalent to the
metabolites included in our study. For this reason, we decided
that the 170 considered metabolites represented sufficient
diversity in enteric microbial metabolites for our further
analyses.
QSARModels for Log k Predictions. In the next two parts

of our study, we investigate the adsorption affinity for the

Figure 1. Total number of unique enteric microbial metabolites
identified upon including increasing numbers of reviews in the
inventory. Primary bile acids (“gray”), secondary bile acids (“white”),
and conjugated bile acids (“gray”) are stacked (bottom-up).
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identified enteric microbial metabolites (Table 1) to metal and
carbon ENMs using QSAR models and MD simulations.
Proteins were excluded from these analyses, because their
three-dimensional folding properties require different physical
modeling approaches. For the QSARmodels, we focus on the 19
ENMs that have been characterized by Chen et al.,30 including
13 metal ENMs, 5 carbon nanotubes, and 1 fullerene (Table 2).
The core materials of the metal ENMs include aluminum
hydroxide oxide (AlO(OH)), silver (Ag), barium sulfate
(BaSO4), silicon dioxide (SiO2), titanium dioxide (TiO2), zinc
oxide (ZnO), and zirconium(IV)oxide (ZrO2).
We consecutively apply two QSAR models for each of the

ENMs to predict log k values. The first model that we apply is the

BSAI model established by Xia et al.,19 which uses Abraham’s
molecule descriptors [E,S,A,B,V] and corresponding nano-
descriptors [r,p,a,b,v] to predict the adsorption affinity for
biomolecules to ENMs following:

= + · + · + · + · + · =k c E r S p A a B b V v i nlog , 1, 2, 3 , ...,i i i i i i

(1)

where c is the adsorption constant, Ei is the excess molar
refraction, Si is the effective solute dipolarity and polarizability,
Ai is the effective solute hydrogen-bond acidity, Bi is the effective
solute hydrogen-bond basicity, Vi is theMcGowan characteristic
volume, and n is the number of biomolecules included. The
nanodescriptors [r,p,a,b,v] weigh the contributions of inter-
actions between biomolecules and the ENM surface resulting

Table 2. Overview of the Nanomaterials Included in the Present Studya

type name core material surface coating diameter (nm)b length (μm)b SSA (m2/g)c

metal nanomaterial

AlOOH AlO(OH) none 37 NA 47
TiO2 NM105 TiO2 none 21 NA 51
ZnO NM110 ZnO none 80 NA 12
SiO2_Amino SiO2 amino groups 15 NA 200
SiO2_Phosphat SiO2 phosphate 15 NA 200
Ag200_PVP Ag polyvinylpropylene 134 NA 4.5
BaSO4_NM220 BaSO4 polymer 32 NA 41
Ag50_Citrat Ag citrate 20 NA 30
SiO2_Naked SiO2 none/hydroxyl 15 NA 200
ZrO2_Amino ZrO2 amino groups 10 NA 105
ZrO2_TODacid ZrO2 trioxadecanoic acid 9 NA 117
ZrO2_PEG ZrO2 polyethylene glycol (PEG600) 9 NA 117
SiO2_PEG SiO2 polyethylene glycol (PEG500) 15 NA 200

multiwalled carbon nanotube

sMWCNT carbon none 8−15 0.5−2 95
MWNT_OH carbon hydroxyl (3.7 wt % −OH) 8−15 ∼50 95
MWNT carbon none 8−15 ∼50 95
MWNT_COOH_20 nm carbon carboxyl (2 wt % −COOH) 10−20 10−30 95
MWNT_COOH_50 nm carbon carboxyl (0.73 wt % −COOH) 30−50 10−20 95

fullerene FullrC60 carbon none 1 NA 98
aReprinted (adapted) with permission from ref 30. Copyright 2014 American Chemical Society. bDimensions refer to the primary particle size of
nanomaterials. The outer diameter of carbon nanotubes is indicated. cSSA, specific surface area.

Table 3. CDK Models for the Prediction of the Log k Adsorption Affinity of Metabolites to Metal and Carbon Nanomaterials

ENM model R2
train
a R2

validate
a ADb

Ag50_Citrat log k ∼ 2.39 + 0.40·ALogP − 0.54·Fsp3 + 0.37·khs.sOH − 0.04·WTPT.4 − 0.004·ATSm1 0.82 0.83 0.94
Ag200_PVP log k ∼ 2.63 + 0.30·ALogP + 0.32·khs.sOH − 0.01·nAtom − 0.25·Fsp3 + 0.22·nAcid 0.71 0.77 0.93
AlOOH log k ∼ 1.79 + 0.49·ALogP + 0.45·nHBDon − 0.57·Fsp3 + 0.004·ATSm1 − 0.41·nBase 0.83 0.84 0.93
BaSO4 log k ∼ 1.73 + 0.30·ALogP + 0.03·nAtomP + 0.23·nHBDon + 0.004·ATSm1 + 0.11·nSmallRings 0.86 0.86 0.92
FullrC60 log k ∼ 0.15 + 0.79·ALogP − 0.14·khs.aasC + 1.53·khs.sssSiH − 0.0001·WPATH − 0.63·khs.aasN 0.91 0.90 0.94
sMWCNT log k ∼ 1.76 + 0.003·ATSp1 + 0.09·nAtomP − 0.39·khs.ssssC + 0.33·khs.sBr − 0.13·khs.sOH 0.88 0.93 0.93
MWNT_COOH_20 nm log k ∼ −0.81 + 0.12·AMR − 1.18·Fsp3 + 0.02·ATSm4 + 0.53·MDEO.11 + 0.17·khs.aaaC 0.94 0.97 0.93
MWNT_COOH_50 nm log k ∼ −0.005 + 0.11·AMR − 0.15·nRotB − 0.14·C1SP3 + 0.006·TopoPSA + 0.19·khs.aaaC 0.97 0.98 0.93
MWNT_OH log k ∼ −0.35 + 0.005·ATSp1 + 0.18·nAtomP − 0.60·khs.ssssC + 0.60·khs.sBr + 0.23·nHBDon 0.92 0.96 0.94
MWNT log k ∼ 1.53 + 0.004·ATSp1 − 0.65·khs.ssssC + 0.06·nAtomP + 0.44·MDEO.11 − 0.18·khs.sOH 0.91 0.94 0.94
SiO2_Amino log k ∼ 1.71 + 0.50·ALogP + 0.36·nHBDon − 0.41·nBase + 0.31·nAcid − 0.90·khs.sssSiH 0.85 0.87 0.93
SiO2_Naked log k ∼ 2.40 + 0.40·XLogP − 0.49·Fsp3 + 0.35·khs.sOH − 0.07·Kier2 − 0.21·khs.ssNH 0.80 0.82 0.92
SiO2_PEG log k ∼ 1.58 + 0.49·XLogP − 0.0004·f ragC + 0.41·nHBDon − 0.26·khs.ssssSi − 0.42·nBase 0.77 0.77 0.94
SiO2_Phosphat log k ∼ 1.93 + 0.48·ALogP + 0.37·nHBDon − 0.22·Fsp3 − 0.35·nBase + 0.30·nAcid 0.84 0.86 0.93
TiO2 log k ∼ 1.96 + 0.40·ALogP + 0.36·nHBDon − 0.52·Fsp3 + 0.41·SCH.7 − 0.004·ATSm1 0.85 0.86 0.93
ZnO log k ∼ 1.62 + 0.54·ALogP + 0.41·nHBDon − 0.41·nBase − 0.32·Fsp3 + 0.95·khs.sssSiH 0.86 0.87 0.94
ZrO2_Amino log k ∼ 1.71 + 0.53·ALogP + 0.37·khs.sOH − 0.0002·ATSp5 + 1.09·khs.sssSiH + 0.30·nAcid 0.79 0.83 0.94
ZrO2_PEG log k ∼ 2.22 + 0.60·ALogP + 0.45·khs.sOH − 0.07·Kier1 + 0.34·Fsp3 + 1.14·khs.sssSiH 0.77 0.80 0.95
ZrO2_TODacid log k ∼ 1.61 + 0.46·XLogP + 0.41·khs.sOH − 0.002·ECCEN + 0.22·khs.ssssSi − 0.36·nAcid 0.74 0.79 0.92

aAdjusted R2 values are presented for the training set (R2
train) and for the validation set (R2

validate).
bAD, applicability domain; fraction of

compounds from the training and validation set that are within the applicability domain thresholds of Williams plots (Figure S6).
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from lone-pair electrons (Ei·r), polarity/polarizability (Si·p),
hydrogen-bond acidity (Ai·a), hydrogen-bond basicity (Bi·b),
and hydrophobicity (Vi·v). We adopted the nanodescriptors
derived by Chen et al., which have been corrected for the effects
of interactions between probe molecules, using Langmuir model
extrapolations.30

We applied the BSAI model (eq 1) to a set of molecules
(∼2000 molecules) for which the required Abraham’s molecule
descriptors [E,S,A,B,V] have been determined experimentally.31

However, these molecules only include 18 out of the 170 enteric
microbial metabolites. Because open-source toolkits for
cheminformatics such as Chemistry Development Kit (CDK;
http://cdk.github.io/) and RDKit (https://www.rdkit.org)
cannot derive Abraham’s molecule descriptors from the
molecular structure of the metabolites, we used the log k
predictions from the BSAImodel to build a secondQSARmodel
for each of the ENMs.We exclusively usedmolecular descriptors
from CDK as the descriptors for these second QSARmodels. As
a result, these models could be applied to predict log k values
based on the molecular structure of enteric microbial
metabolites. In the remainder, we refer to the two QSAR
models as ‘BSAI models’ (eq 1) and ‘CDKmodels’ (Table 3 and
Tables S7 and S9). Furthermore, we refer to nanodescriptor ‘r’
as ‘re’ and to nanodescriptor ‘p’ as ‘ps’, to avoid confusion with the
Pearson correlation coefficient (r) and statistical p-values,
respectively. The subscripts for these nanodescriptors were
selected based on their corresponding Abraham molecule’s
descriptors E and S.
Since the CDKmodels only function as ameans to apply BSAI

models to molecules without known Abraham’s molecule
descriptors, we omit a detailed discussion of the descriptors
that are included in CDK models (Table S2). Nevertheless, it is
worth noting that the first descriptor in all models (ALogP,
XLogP,AMR, andATSp1), explainingmost of the variance in log
k predictions, correlates with the Abraham’s molecule descriptor
V (ρ = 0.66, 0.60, 0.96, and 0.90, respectively, p < 0.001; Figure
S1). This is consistent with the large contribution of Abraham’s
molecule descriptor V in BSAI models19 and reflects the
importance of interactions between hydrophobic sites of
biomolecules and hydrophobic regions on the ENM surface.
Xia et al. confirmed this experimentally forMWCNTs, obtaining
a significant correlation between the log k measurements for
probe compounds and their log Ko/w values.

19

Applicability Domain of the QSAR Models. The set of
enteric microbial metabolites that can be analyzed using the
QSAR models depends on the chemical space that can be

described by the molecules that were used to train the BSAI and
CDK models. For all models, we determined this applicability
domain (AD) using Insubria graphs. Instead of cross-validated
residuals, which are used to construct Williams plots, these
graphs present model predictions against the diagonal hat values
of the model’s design matrix (Figure 2).32 All molecules with a
hat value smaller than the critical hat value (h*), as defined in the
Methods section, and with predicted values within predefined
thresholds are considered to be within the AD of QSARmodels.
Some researchers exclusively apply the h* threshold to define
the AD of QSAR models.33,34 In this case, the AD derived using
Insubria graphs shows high similarity to the AD based on
Mahalanobis distances (Figure S3).
The AD thresholds that are applied to BSAI models,

determine how many molecules are available for the
construction of CDK models. To investigate the effects thereof,
we built CDK models using BSAI model predictions that were
selected using three different AD approaches, as exemplified in
Figure 2. For the first AD approach, we applied both the h*
threshold and thresholds for the predicted log k value, defined by
the mean (x) and standard deviation (σ) of log k predictions for
probemolecules (x± 3·σ) (Figure 2a). These probe compounds
are the 23 out of the 25 compounds that were used by Chen et al.
to derive the BSAI model,30 which are present in the data set
with known Abraham descriptors31 (Table S3). For the second
AD approach, we only applied the h* threshold (Figure 2b). For
the third approach, we applied no AD thresholds (Figure 2c).
This resulted in a total number of 701 molecules (h* and log k
thresholds), 1525 molecules (h* threshold), and 1996
molecules (no thresholds) that could be used to build CDK
models.
For all AD approaches, CDK models that were built at the

cross-validation ratio of 80/20 (training set/validation set)
explained most of the variance in log k predictions from the
BSAI models (Tables S5, S6, and S8). According to theWilliams
plots (Figures S6, S8, and S12), over 93% of the training and
validation compounds fell within the AD of CDK models for
each of the AD thresholds (Tables S5, S6, and S8). We noted
some deviation from normality of model residuals in Q-Q plots,
potentially introducing bias to the standard error of estimates.35

No issues were identified for the remaining model assumptions.
When comparing CDK models from each of the AD

approaches, the best fit between BSAI and CDK models in
terms of log k predictions for the training set and the validation
set was obtained for CDK models that were built without AD
thresholds for BSAI model predictions (Table 3; R2

train = 0.71−

Figure 2. Thresholds for the applicability domain of BSAI models. Three different approaches are shown, using the naked SiO2 BSAI model as an
example. (a) Thresholds defined by the predicted log k values (x± 3·σ) of probe compounds (white circles) and the critical hat value (h* = 0.78). (b)
Thresholds set by h* only. (c) No thresholds.
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0.97; R2
validate = 0.77−0.98), followed by CDK models that were

built with the h* threshold only (Tables S8 and S9; R2
train =

0.75−0.90; R2
validate = 0.75−0.95), and CDK models that were

built with the h* and log k thresholds (Tables S6 and S7; R2
train =

0.65−0.83; R2
validate = 0.64−0.86). The same trend was obtained

for the AD of CDK models. The largest set of enteric microbial
metabolites was within the AD of all CDKmodels that were built
without AD thresholds (60 metabolites), followed by the AD of
all CDK models that were built with the h* threshold only (51
metabolites), and the AD of all CDKmodels were built with the
h* and log k thresholds (38 metabolites) (Table 4, Table S4).

These trends show that both the fit, in terms ofR2 values, and the
applicability of CDK models, as determined using Insubria
graphs, improve when these models are built based on a larger
number of BSAI predictions. Although this favors the
application of CDK models that are built without BSAI
thresholds, this introduces the risk of basing CDK models on
incorrect BSAI predictions. Nevertheless, given the strong
correlation (ρ > 0.96) between predictions of CDKmodels from
each of the BSAI AD approaches (Figure S2), we describe the
results of CDK models that were built without applying BSAI
AD thresholds in the main text and include the results of the
other CDK models in the Supporting Information. We only
describe results that are supported by models from each of the
AD approaches, unless specifically stated otherwise.
The applicability of CDKmodels, as determined based on h*,

shown in Insubria graph of Figures S7, S9, and S13, was
dependent on metabolite category (Table 4). The models could
be applied to all ‘SCFAs’, and most ‘tryptophan metabolites’,
‘choline metabolites’, and ‘phenolic, benzoyl and phenyl
derivatives’. The models were less applicable to the metabolite
categories ‘neurotransmitters’, ‘vitamins’, and ‘lipids and lipid
precursors’. For these categories, the models could only be
applied to histamine (or γ-aminobutyric acid in h* threshold
models), niacin, and linoleic acid. The CDK models could not
be applied to any of the ‘MAMPs’, ‘bile acids’, and ‘polyamines’.
These categories comprise large metabolites, which can adopt
different spatial conformations, and molecules with rich surface
functionalities, including many hydroxyl or amino groups per
metabolite. This is in agreement with the limitations of the BSAI
model, which cannot successfully describe surface interactions
of biomolecules with certain degrees of flexibility in bonds,
cannot differentiate between the different isomeric spatial
conformations of biomolecules and are not applicable to
biomolecules with diverse moieties and functional groups, like
phosphate, thiophosphoryl groups, and nitrile bonds.7,36 For
biomolecules with these characteristics, MD simulations can be
used to study ENM surface interactions at a higher computa-
tional cost. This could potentially lead to the identification of
descriptors that can increase the AD of QSAR models.7,36 In the

Table 4. Number of Enteric Microbial Metabolites within the
Applicability Domain of All CDK Models

metabolite
categorya

total
number of
metabolites

h* and log k
BSAI model
thresholdsb

h* BSAI
model

thresholdsb
no BSAI

thresholdsb

microbe-associated
molecular
patterns

21 0 0 0

vitamins 11 1 1 1
short-chain fatty
acids

8 8 8 8

bile acids 25 0 0 0
tryptophan
precursors and
metabolites

17 8 9 14

polyamines 4 0 0 0
choline metabolites 6 0 4 4
phenolic, benzoyl
and phenyl
derivatives

24 18 17 19

lipids and lipid
precursors

13 0 0 1

neurotransmitters 6 0 1 1
other 20 3 11 12
total 155 38 51 60
aProteins were excluded prior to building CDK models. bColumns
specify the thresholds applied for the BSAI model. For all CDK
models, the h* threshold was applied, as shown in the corresponding
Insubria graphs of Figures S7, S9, and S13.

Figure 3. Differences between log k predictions for enteric microbial metabolites to metal nanomaterials, carbon nanotubes, and fullerenes. Subplot
(a) depicts the results of distance-based redundancy analysis (dbRDA), correlating the five nanodescriptors [re,ps,a,b,v] to distances between the log k
predictions for each of the 5 carbon nanotubes (red circles), the fullerene (green circle), and each of the 13metal nanomaterials (blue circles). Subplots
(b−i) depict log k predictions for: lipids and lipid precursors (b); tryptophan metabolites (c); phenolic, benzoyl, and phenyl derivatives (d); vitamins
(e); neurotransmitters (f); short-chain fatty acids (g); choline metabolites (h); and other enteric metabolites (i). The number of metabolites per
category (n) is indicated between brackets. Asterisks and letters indicate significant differences. Abbreviations: n.s., not significant; *, p < 0.05; ***, p =
0.001.
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final part of our study, we apply these simulations to investigate
what kind of interactions differentiate the adsorption behavior of
vitamins that are within or outside the AD of QSAR models
(Figures 4−6). Vitamins were specifically selected for these
investigations, rather than metabolites of the other categories
that are outside of the AD of CDKmodels, because they include
relatively small molecules in terms of number of atoms, but
comprise diverse structural properties. This allows to perform
more simulations within a given computational time, thereby
obtaining more diverse molecular information.
Log k Predictions from the QSAR Models. In the

following comparison between the adsorption affinities for
microbial metabolites to metal and carbon ENMs, we focus on
the core set of 60 metabolites that are included in the AD of
QSARmodels for all ENMs (Table 4). The AD of the individual
models was larger, as determined based on h*, shown in the
Insubria graphs presented in Figures S7, S9, and S13. The sizes
thereof ranged from 77 metabolites (‘SiO2_PEG’ model) to 120
metabolites (‘FullrC60’ model) and can be found in the
Supporting Information for more detailed investigations on
specific ENMs (Table S4).
Metal and carbon ENMs could clearly be distinguished based

on log k predictions for the enteric microbial metabolites.
Moreover, we found a remarkable distance between log k
predictions for the Buckminster fullerene (C60) and predictions
for all other ENMs (Figure 3a and Figures S10a and S14a). This
is in line with other unique interaction properties of C60
fullerenes, which may act like hydrophobic organic molecules,
by adsorbing to larger biomolecules, either individually, or in
aggregated form, potentially changing properties of these larger

biomolecules.37 For this reason, log k predictions for the
fullerene will be discussed separately below. All nanodescriptors
except for re (F1,13 = 0.34, p > 0.05) correlated with log k-based
distances between ENMs, as detected by distance-based
redundancy analysis (Figure 3a). For the three nanodescriptors
with the most significant correlations, namely a (F1,13 = 29.32; p
= 0.001), b (F1,13 = 22.18; p = 0.001) and ps (F1,13 = 28.35; p =
0.001), this result was supported by the CDKmodels built using
the different AD approaches for the BSAI model (Figure S10a,
Figure S14a). This indicates that in particular hydrogen-bond
interactions and interactions resulting from the polarity and
polarizability of metabolites distinguish the adsorption affinities
for enteric microbial metabolites to ENMs. Although hydro-
phobicity-driven interactions contribute most to the overall
predicted adsorption affinity for enteric microbial metabolites to
ENM surfaces, these interactions explain less of the differences
in log k predictions between metal and carbon ENMs (F1,13 =
7.57; p = 0.013) than the hydrogen-bond interactions and
interactions driven by polarity and polarizability.
For metabolites of most categories, predicted log k values

were highest for carbon nanotubes, followed by metal ENMs
and fullerenes (Figure 3b−i and Figures S10b−i and S14b−i).
By exception, predicted log k values for ‘choline metabolites’
were similar for metal ENMs and carbon nanotubes (median
(interquartile range (IQR)) log k = 1.55 (1.34−1.77) and 1.70
(0.30−2.03), respectively, p > 0.05) and predicted log k values
for ‘SCFAs’ were higher for metal ENMs than for carbon
nanotubes (median (IQR) log k = 2.61 (2.38−2.88) and 2.19
(1.50−2.54), respectively, p < 0.001) (Figure 3g and Figures
S10g and S14g). This suggests that acidic groups experience

Figure 4.Comparison of adsorption affinities for four vitamins with different structural properties as determined by QSAR andMD simulation to SiO2
(a,c) and multiwalled carbon nanotubes (MWCNTs) (b,d). Insubria graphs (a,b) present the applicability of QSARmodels for the vitamins. Subplots
(c,d) present Pearson correlations (r) between QSAR and MD results for the vitamins including thiamine (solid line) or excluding thiamine (dotted
line).
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stronger interactions with metal ENMs than with carbon
nanotubes. This is consistent with the results of our dbRDA
analysis, identifying a highly significant contribution of nano-
descriptor a to log k-based distances between metal ENMs and
carbon nanotubes (Figure 3a and Figures S10a and S14a).
Accordingly, computational and experimental investigations for
citrate and other carboxylic acids showed that specifically the
carboxylate groups of these molecules interact with Au and
Fe3O4 ENMs.38−40 In contrast, and in line with our results, the
QSAR models developed by Roy et al. predict a negative impact
of C−O groups and aliphatic primary alcohols on the adsorption
affinity for organic pollutants to carbon nanotubes.41 Notably,
this did not result in higher log k estimates for ‘tryptophan
precursors and metabolites’ and ‘phenolic, benzoyl, and phenyl
derivatives’ to metal ENMs than to carbon nanotubes. Although
both of these categories comprise biomolecules with acidic
functional groups, the QSAR models predicted significantly
higher log k values for these categories to carbon nanotubes
(median (IQR) log k = 5.50 (4.75−6.43) and 4.64 (3.88−5.33),
respectively) than to metal ENMs (median (IQR)) log k = 3.23
(2.91−3.48) and 3.05 (2.66−3.33), respectively) (Figure 3c,d
and Figures S10c,d and S14c,d). Nevertheless, in contrast to
‘SCFAs’ and ‘choline metabolites’, which solely consist of small
aliphatic biomolecules, ‘tryptophan precursors and metabolites’,
and ‘phenolic, benzoyl, and phenyl derivatives’ comprise
unsaturated (poly)cyclic molecules. This suggests that π−π
stacking interactions contribute more to the interaction between
these molecules and ENMs than the interactions of acidic
functional groups. We further investigate the relative contribu-
tions of such different interaction types to the adsorption affinity
for enteric metabolites to ENMs by way of unconstrained MD
simulations as discussed below.
Molecular Dynamics Simulations: A Case Study. In the

final part of our study, we performMD simulations to investigate
what distinguishes ENM interactions of metabolites that are

within or outside of the AD of QSAR models. A recent study by
Comer et al. that focuses on calculating the adsorption affinity of
about 30 small aromatic compounds to carbon nanotubes forms
an inspiration and starting point for this investigation.42 Using a
computational protocol that is very similar to ours, the authors
identified an excellent correlation (r ≥ 0.9) between calculated
and measured values for the complete set of compounds. Rather
than restricting ourselves to π−π stacking interactions that are
important for MWCNT, we also consider the extended
interaction network between a metal substrate (SiO2) and
biologically relevant molecules like vitamins. We even go one
step beyond a direct comparison between adsorption affinities
and conduct a proof of principle aimed at rationalizing which of
the nanodescriptors obtained by QSAR analysis contribute to
key interactions identified using unconstrained MD. The small
set of vitamins, including thiamine, pyridoxine, biotin, and
folate, was selected because of the significant spread in the
predicted log k values by QSAR. Moreover, the set was selected
to represent different structural properties, such as different
numbers of aromatic rings (1−3), differences in charge (0 or
+1), and different numbers of acidic and basic functional groups.
Finally, the set included vitamins that are outside the AD of
QSAR models for SiO2 (biotin and folate) as well as vitamins
that are within this AD (thiamine, pyridoxine) for comparison
(Figure 4a). All four vitamins are inside of the AD of the
sMWCNT model (Figure 4b), while only thiamine and biotin
are within the AD of the MWNT model. For this reason, log k
predictions from the sMWCNT model are used for comparison
with log k values determined by classical MD simulations for
MWCNT. In the remainder, our MD-derived (log kMD) values,
calculated using eq (eq 2), are directly compared to the QSAR
predictions (log kQSAR).
The results for the four vitamins can be found in Figure 4c,d

and illustrate the significance of our direct comparison. In the
case of SiO2, log kQSAR and log kMD results should be compared

Figure 5. (a) LJ andCoulombic contributions for all the considered vitaminmolecules with a SiO2 surface. (b) Hydrogen-bond forming groups (in red
and blue) identified on the four vitamin molecules. Simulation snapshots portray different configurations for pyridoxine (c) and folate (d) during the
500 ns MD simulation. The positions of interacting chemical groups are indicated with dashed lines. The carbon, oxygen, nitrogen, sulfur, and
hydrogen atoms are shown in pale yellow, red, blue, yellow, and white, respectively.
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with caution, because two out of the four vitamins are outside of
the AD of the QSAR models, and because log kQSAR predictions
from models that were derived using the alternative AD
approaches, correlate differently with the MD results (Figures
S11c and S15c). For the comparison of MWCNT results, we
note that the presence of a data point with high leverage (folate)
results in high R2 values. Nonetheless, we find that the computed
log kMD and predicted log kQSAR values feature the same orders of
magnitude and show a reasonable, but nonsignificant correlation
(rSiOd2

= 0.40 and rMWNT = 0.84; p > 0.05). In both cases, we find
that excluding thiamine improves the correlation between log
kMD and log kQSAR results (rSiOd2

> 0.99, pSiOd2
= 0.02, and rMWNT =

0.96; p > 0.05). While this discrepancy for thiamine is hard to
pinpoint to a single cause, it may well be due to the usual choice
in our MD approach to exclude electronic polarizability43 since
thiamine has an explicit +1 charge. In particular, a previous study
ofWu et al. supports our suggestion that polarizability effects are
essential for this particular vitamin.44 The study focused on the
controlled release of thiamine hydrochloride with mesoporous
silica tablets and showed that the pH of the medium affects
thiamine release. For reasons of computational efficiency, state
of the art force fields in classical MD only consider fixed atomic
charges that are determined prior to simulation via more
resolved (and costly) methods like density functional theory.
While polarizable force fields have been developed and applied
to study various phenomena, including adsorption on graphene
surfaces,45 it is difficult to assess beforehand if the substantial
computational cost of including polarizability will lead to greater
accuracy. In our limited case study, the improved correlation
between QSAR and MD methods in terms of log k values when
charged vitamins are omitted indicates that it merits including
polarizable force fields in MD simulations for charged enteric
microbial metabolites. Next, we performed unconstrained MD
to evaluate key interactions for vitamins inside of as compared to
vitamins outside of the AD of QSAR models.
The interaction energies between SiO2 and each vitamin

molecule were separated into Lennard- Jones (LJ) and
electrostatic contributions (Figure 5a), where LJ is a
combination of very short-ranged repulsion due to the overlap
of the electron clouds and longer-ranged van der Waals
attraction via induced dipoles. The vitamin size is accounted
for by its radius of gyration rgyr. We observe that the most
dominant interaction for all vitamins is of a LJ type, except for
thiamine. Folate (rgyr = 0.57 nm) has the highest LJ contribution,
irrespective of its low log k value, while the smaller pyridoxine
(rgyr = 0.24 nm) has the lowest LJ contribution but the highest
log k value. In the case of thiamine (rgyr = 0.36 nm), electrostatic
(Coulomb) interactions dominate, which can be due to the
explicit +1 charge that is present on the thiamine molecule.
To further investigate the relation between dominant

interactions and log k values, we additionally considered the
hydrogen bonding between these molecules and the SiO2 slab.
Using interatomic distances, we identified different chemical
groups for each vitamin that are observed to form hydrogen
bonds with the ENM surface during the 500 ns simulation,
considering a cutoff of 0.24 nm to the SiO2 surface (Figure 5b).
Time evolution plots for these hydrogen-bond interactions are
included in the Supporting Information (Figure S4). Both
pyridoxine and folate form on average 2−3 hydrogen bonds with
the SiO2 slab. However, considering the increased size of folate
(rgyr = 0.57 nm), it may also exhibit effects of steric hindrance
while interacting with the slab. Different configurations

extracted from the unbiased MD simulation pathway (Figure
5c,d) showed a perturbed conformation, that is, a bent folate,
while its smaller size enables pyridoxine (rgyr = 0.24 nm) to lie
parallel to the slab without bending. As the smaller molecule
does not need to adapt its conformation to the slab geometry,
the hydrogen bonding gains stability, rendering pyridoxine more
probable of forming hydrogen bonds with SiO2 than folate.
Overall, pyridoxine sits on the slab, while folate undergoes
several conformational changes to stabilize around the SiO2 slab;
see some of the simulation snapshots of folate and pyridoxine
with SiO2 shown in Figure 5c,d. This is fully in line with the
QSAR predictions, which infer that hydrogen-bond acidity and
basicity play a dominant role in the adsorption affinity of these
vitamins for SiO2.
Finally, to investigate the conformational space sampled by

each molecule, we performed cluster analysis over all 500 nsMD
trajectories. As a condition for defining a new cluster, we
considered a difference of 0.25 nm in the root-mean-square
displacement (RMSD, corrected for the center of mass drift). As
can be expected, only a single cluster was identified for the small
and rigid vitamins: thiamine, pyridoxine, and biotin. In contrast
to this finding, we identified five different clusters for the longest
vitamin folate. Exemplary conformations taken from each cluster
are shown in Figure S5 of the Supporting Information.
Overall, adsorption affinities determined using all-atom MD

were found to agree well with values predicted by QSAR
modeling for several complex molecules. The benefit of
molecular simulation is that it provides molecular insight into
the nature of the principal interactions between these molecules
and a relevant ENM, enabling a more fundamental under-
standing. Moreover, in silico determination of adsorption
affinities can be useful for part of the materials spectrum
where experimental measurement is complicated, expensive or
even ruled out, that is, to generate reliable training data for the
computationally much more efficient (nano)QSAR in that part
of the spectrum. We particularly see this limited case study as a
showcase for the potential of physical modeling in this work field
and for unraveling correlations that are not clarified in theQSAR
approach. We believe that a broader application of this approach
will help experimentalists and nanotoxicologists to further
improve the applicability of QSAR and to better understand the
affinity of biologically relevant molecules on the various ENM
surfaces. In particular, although being computationally very
costly compared to QSAR, MD simulation is an ecofriendly and
cost-effective technique for performing affinity analysis prior to
or even replacing in vitro experiments.
Examples for Future Perspectives. For future perspec-

tives, the combination of (1) the biological functions of enteric
microbial metabolites, (2) their predicted adsorption affinities
to metal and carbon ENMs, (3) key interaction types inferred
from QSAR models and MD simulations, and (4) the direct
molecular information obtained from MD simulations can be
used to rationalize what biologically relevant interactions could
occur between ingested ENMs and microbial metabolites in the
gastrointestinal tract. In this section, we present two relevant
examples to illustrate this rationale. We note that these examples
focus on hypotheses that are based on the current understanding
of the enteric microbial metabolome. Following the same
principles, our results can be employed to rationalize what
adsorption interactions may occur for enteric microbial
metabolites that are yet to be discovered.
The first example focuses on the hypothesis that ingested

ENMs can sequester essential SCFAs via the adsorption of these

Journal of Chemical Information and Modeling pubs.acs.org/jcim Article

https://doi.org/10.1021/acs.jcim.2c00492
J. Chem. Inf. Model. 2022, 62, 3589−3603

3597

https://pubs.acs.org/doi/suppl/10.1021/acs.jcim.2c00492/suppl_file/ci2c00492_si_001.pdf
https://pubs.acs.org/doi/suppl/10.1021/acs.jcim.2c00492/suppl_file/ci2c00492_si_001.pdf
https://pubs.acs.org/doi/suppl/10.1021/acs.jcim.2c00492/suppl_file/ci2c00492_si_001.pdf
https://pubs.acs.org/doi/suppl/10.1021/acs.jcim.2c00492/suppl_file/ci2c00492_si_001.pdf
pubs.acs.org/jcim?ref=pdf
https://doi.org/10.1021/acs.jcim.2c00492?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as


metabolites to the ENM surface, thereby causing nutrient
deficiencies. As presented in Table 1, these fatty acids are
synthesized by microbiota in the colon from indigestible fibers.
Malfunction of intestinal microbiota can result in low availability
of beneficial SCFAs, possibly causing intestinal inflammation.46

Especially under these conditions, it is relevant to consider the
potential adsorption of SCFAs to ENMs that are administered
orally to treat or prevent intestinal inflammation.47−49 In the
case of SCFAs, which are within the AD of QSAR models, our
QSAR predictions can readily be used to assess this. Log k
predictions for SCFAs were significantly higher to metal ENMs
than to carbon ENMs, indicating that the adsorption-driven
sequestration of SCFAs forms a larger concern for metal ENMs
than for carbon ENMs. Nevertheless, the results for more
lipophilic metabolites put this into perspective, showing that the
overall predicted adsorption affinities for SCFAs are relatively
low to both carbon and metal ENMs.
The second example focuses on the hypothesis that active

resorption of microbial metabolites can facilitate the transfer of
ENMs across the gut epithelium when resorbed metabolites are
adsorbed to ENMs. Such interactions not only have been
demonstrated for vitamin B12

18 but can also be expected for
secondary and conjugated bile acids (Table 1). In contrast to
SCFAs, bile acids are not in the AD of the QSAR models. In this
case, the key interaction types and molecular information
obtained from MD simulations can be used to assess their
adsorption affinity qualitatively. First, bile acids are large,
amphiphatic molecules. Given the key contribution of hydro-
phobicity-driven interactions to the overall adsorption affinity
for metabolites, the hydrophobic face of these molecules can be
expected to interact with the ENM surface, resulting in relatively
high adsorption affinities for these molecules to both metal and
carbon ENMs. Second, similar to other unsaturated (poly)cyclic
metabolites like ‘tryptophan precursors and metabolites’ and
‘phenolic, benzoyl, and phenyl derivatives’, bile acids can
generally be expected to have higher affinity to carbon than to
metal ENMs, as a result of π−π stacking interactions between
their steroid core and the carbon ENM surface. Third, the
polarity of glycine and taurine amino acid conjugates can be
expected to affect the adsorption affinity for bile acids to carbon
and metal ENMs differently, specifically favoring adsorption to
carbon ENMs. As shown in the MD simulations for folate, the
ability of these more flexible conjugates to bend toward the
ENM surface can moreover improve the stability of these bile
acids onto the carbon ENM surface. Thus, the probable ranking
of the adsorption affinity for bile acids to ENMs, from high to
low, is conjugated bile acids and carbon ENMs, secondary bile
acids and carbon ENMs, secondary bile acids and metal ENMs -
conjugated bile acids and metal ENMs. This ranking, and similar
qualitative assessments based on our results, can support the
rationalization of biologically relevant physisorption interactions
that can occur between enteric microbial metabolites and
ingested ENMs. The two examples also illustrate how
knowledge on adsorption interactions between ENMs and
microbial metabolites can serve as a stepping stone for modeling
mechanistic pathways for toxic or therapeutic nanomaterials.

■ CONCLUSIONS
We set out to investigate the potential interactions between
ingested metal and carbon ENMs and the diverse set of enteric
microbial metabolites that are available in the gastrointestinal
tract. Our investigations indicate that evaluating these
interactions merits an integrative approach, taking biological

considerations into account and combining different exper-
imental or computational methods. In view of this, the overview
and classification of enteric microbial metabolites, which we
provide as a starting point for QSAR models and MD
simulations, allows to assess the relevance of adsorption
interactions from a biological perspective. Relevant consid-
erations include the potential of biomolecules like ‘MAMPs’ to
activate immune responses or to mask ENMs from immuno-
recognition, the potential of rare and essential metabolites, like
‘vitamins’, to cause nutrient deficiencies following sequestration
by adsorption to ENMs, and the potential of effectively resorbed
metabolites, like ‘vitamins’ and ‘bile acids’, to affect the
biodistribution of associated ENMs.
The QSAR models developed in the second part of our study

provide a set of readily available log k predictions for biologically
relevant metabolites like ‘short-chain fatty acids’ and ‘tryptophan
precursors andmetabolites’. The correlation of these predictions
to BSAI nanodescriptors revealed that hydrophobicity-driven
interactions are important to the overall interaction strength of
enteric microbial metabolites, while hydrogen-bond interactions
and interactions resulting from the polarizability and polarity of
metabolites largely explain differences in the interactions of
these metabolites with metal and carbon ENMs. Ultimately,
these insights can aid in the qualitative assessment of the
adsorption affinity for metabolites like ‘MAMPs’ and ‘bile acids’,
which cannot yet be assessed quantitatively using the QSAR
models.
The MD simulation case study, which forms the third part of

our study, exemplifies how conformational properties compli-
cate extending the linear relationships of the QSAR models to
larger, more flexible molecules, which may gain stability by
bending toward the ENM surface. Our results furthermore
indicate that it is worth including polarizable force fields in
further MD investigations on charged metabolites, while
computational cost can be saved by excluding these force fields
for investigations on uncharged metabolites. Using uncon-
strained MD simulations, we moreover found excellent
agreement with QSAR models on the main interaction types
that facilitate the interactions between enteric microbial
metabolites and ENMs. This provides confidence to evaluate
the adsorption interactions for larger, flexible biomolecules to
the ENM surface qualitatively, based on these interaction types.
Therefore, we anticipate that the results of our study can be
employed to rationalize the adsorption interactions that may
occur between ingested metal and carbon ENMs and a large set
of diverse enteric microbial metabolites in a biologically relevant
way.

■ METHODS
Literature Search for Enteric Microbial Metabolites. In

order to generate an overview of microbial metabolites that
occur in the intestinal lumen, we retrieved names of enteric
microbial metabolites from reviews on gut microbial metabo-
lism. The reviews were accessed through the Web of Science
Core Collection database (1945−2020) via Leiden University’s
library, by applying the search string: “(microbiome OR
microbiota OR microflora) AND (gut OR *intestine* OR
enteric) AND metabolite* AND (“microbial metabol*” OR
(host AND interact*))”. Reviews were added to the literature
search until no new categories of microbial metabolites were
identified and until the total number of identified metabolites
had saturated (Figure 1). Metabolites were included in the
overview if they had been found to be present in the gut lumen,
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had been reported to be produced and excreted by gut
microbiota, to be products of microbial modifications, or to be
regulated by gut microbiota. In case metabolite names referred
to groups of molecules (such as ‘lipopolysaccharides’), one or
several representative molecules were selected from the
PubChem database (https://pubchem.ncbi.nlm.nih.gov). To
this end, we either selected molecules that had been used in
experimental work to represent the concerning metabolite
groups or selected molecules that had been identified in the gut
lumen. Finally, we retrieved simplified molecular-input line
entry-specifications (SMILES) from the PubChem database for
each of the metabolites included in the overview. In case both
isomeric and canonical SMILES were available for the
metabolites, isomeric SMILES were selected.
BSAIModels for Log k Prediction.We built QSARmodels

to predict log k values for the identified enteric microbial
metabolites to 13 metal ENMs and 6 carbon ENMs (Table 2).
We refer to the Supporting Information of Chen et al. for a
detailed physicochemical characterization of these ENMs,
including measurements by transmission electron microscopy,
Brunauer−Emmlett−Teller surface area analysis, dynamic light
scattering, analytical ultracentrifugation, fluorescence correla-
tion spectroscopy, X-ray diffraction, X-ray photoelectron
spectroscopy, and electron spin resonance.30 For each of the
ENMs, we first applied the BSAI model published by Xia et al.19

(eq 1) to predict log k values for metabolites with known
Abraham’s molecule descriptors. We subsequently used these
log k predictions to build QSARmodels that could be applied to
predict log k values for the enteric microbial metabolites.
For BSAI predictions, we adopted the nanodescriptors

derived by Chen et al.30 and obtained molecules with known
Abraham’s molecule descriptors from Bradley et al.31 We
prepared the data set of Bradley et al. in three steps. First,
incorrect SMILES of 14 compounds that could not be parsed in
the steps described below (keys ‘1833’, ‘1838’, ‘1843’, ‘1844’,
‘1848’, ‘2004’, ‘2012’, ‘2344’, ‘2523’, ‘2656’, ‘2843’, ‘2855’,
‘2931’, ‘3034’) were corrected using SMILES from the
ChemSpider database (www.chemspider.com) (Table S1).
Second, compounds with poor or suspicious data quality, or
including metals or salts (keys ‘23’, ‘2030’, ‘2033’, ‘2034’, ‘2994’,
‘4001’), were excluded following the recommendations by the
authors. Third, double, triplicate, and quadruplet entries of 431
compounds were removed, randomly selecting one of the
references reporting Abraham descriptors for each of the
concerning compounds. Similarly, isomers, which have identical
values for each of the Abraham’s molecule descriptors, were
removed from the data set. This resulted in a data set comprising
1996 unique compounds with known Abraham descriptors.
Applicability Domain of BSAI Models. We assessed the

AD of BSAI models for each of the 19 ENMs using Insubria
graphs.32 These graphs present the diagonal hat values of the
design matrix ([E,S,A,B,V]) on the x-axis and QSAR predictions
(log k values) on the y-axis. Of the 25 probe compounds that
were used by Chen et al. to derive nanodescriptors,30 23 probe
compounds were included in the data set with known Abraham
molecule’s descriptors. We used these compounds to derive the
critical hat threshold (h*) as 3·(N + 1)/n, where N is the
number of descriptors in the model, and n is the number of
probe compounds included in the data set. For the predicted log
k values, we defined AD thresholds by the mean of the log k
predictions for probe compounds and 3 times the standard
deviation of these predictions (x ± 3·σ). Subsequently, we
selected compounds from Insubria graphs by: (1) applying both

the h* and log k thresholds, (2) applying the h* threshold only,
and (3) applying no thresholds. For the first approach, including
log k thresholds, we only continued with compounds that fell
within the log k thresholds for all 19 ENMs. For comparison, we
also derived the BSAI AD based on Mahalanobis distance, as
described below (Ordination Methods for QSAR Models
section). We did not continue QSAR analysis with these
compounds, due to the high similarity with the h* threshold AD.
CDK Models for Log k Prediction. Using BSAI log k

predictions that were selected using each of the three
aforementioned AD approaches, we applied multiple linear
regression (MLR) to build QSAR models that can predict log k
values using molecular descriptors from CDK. The molecular
descriptors were computed in R (v. 3.6.3; www.r-project.org),
accessing CDK functionality using the “rcdk” package (v.
3.5.0).50 To load molecules into the R environment, SMILES
were parsed, implicit hydrogen atoms were converted to explicit
hydrogen atoms, and aromaticity was checked. Thereafter,
molecular descriptors were evaluated, and the data set was split
into a training set and a validation set using the createData-
Partition function of the “caret” package (v. 6.0-86). The
molecules with the lowest and highest BSAI model prediction,
calculated as the mean predicted log k value for the 19 ENMs,
were included in the training set. These were keys ‘2924’ and
‘1700’ (mean log k = 2.02 and 4.24), keys ‘2400’ and ‘1253’
(mean log k = 0.98 and 5.53), and keys ‘518’ and ‘74’ (mean log k
= 0.40 and 10.56), when applying the h* and log k threshold, the
h* threshold only, and no thresholds, respectively. The
remaining molecules were divided into five quantiles, based on
the predicted log k values from the BSAI model. Molecules of
each of the quantiles were randomly divided over the training set
and validation set. We evaluated the performance of four
different cross-validation ratios (training set/validation sets =
90/10, 80/20, 70/30, and 60/40). Using the training set of each
cross-validation ratio, MLR models were derived by forward
selection. A total of five molecular descriptors were selected for
the models, including the independent molecular descriptor
explaining most of the model variance at each of the consequent
forward selection steps. To ensure the independence of
descriptors, molecular descriptors were only included if they
did not result in variance-inflation factors larger than two, as
assessed using the vif function from the ‘car’ package (v. 3.0-8).
Log k Predictions and Statistical Analyses for QSAR

Models.We selected CDK models of the cross-validation ratio
with the best internal validation score, evaluated as the mean
adjusted R2 value of models for all 19 ENMs. Diagnostic plots of
the models were inspected to identify outliers (Cook’s distance
plot) and to evaluate the model assumptions of linearity
(residuals vs fitted values plot), normally distributed residuals
(Q-Q plots), and homoscedasticity (scale-location plots). The
AD of the models was assessed using Williams plots.
Compounds were considered to be outside of the AD of models
if cross-validated residuals are smaller than−3 or larger than 3 or
if the diagonal hat values are larger than 3·(N + 1)/n, whereN is
the number of descriptors in the model, and n is the number of
molecules in the training set. Correlations between Molecular
Descriptors from CDK and Abraham’s molecule descriptors
were assessed using to the Spearman’s rank correlation
coefficient, calculated using the cor.test function of the ‘stats’
package (v. 3.6.3).
To prepare themicrobial metabolite data for log k predictions,

SMILES were parsed, implicit hydrogen atoms were converted
to explicit hydrogen atoms, and aromaticity was checked.
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Thereafter, molecular descriptors were evaluated using ‘rcdk’.
Metabolites that were assigned to the metabolite category
‘proteins/enzymes’ were excluded due to their large size and
three-dimensional conformations, which could not be ac-
counted for using this QSAR approach. The applicability of
the models for the other metabolites was assessed using Insubria
graphs, by applying the h* threshold. Log k predictions of
metabolites that were considered to be within the AD of CDK
models were compared between metal and carbon ENMs, for
each metabolite category separately. To this end, the Kruskal−
Wallis rank sum test was applied in combination with the Dunn’s
test from the ‘FSA’ package (v. 0.8.32).51 For all Dunn’s tests,
Holm adjusted p-values are reported.
Ordination Methods for QSAR Models. We used

ordination methods to compare ENMs based on log k
predictions from QSAR models and to derive the AD of BSAI
models based on Mahalonobis distances. For both analyses, we
used R functions that are available in the package ‘vegan’ (v. 2.5-
6).
Log k data was transformed to remove negative values by

subtracting the minimum log k value from all predicted log k
values. Using the vegdist function, a Bray−Curtis dissimilarity
matrix was constructed for the transformed data. The
contribution of each of the five nanodescriptors to these log k-
based distances between ENMs was tested by way of dbRDA.
To this end, the dbrda function was used, assessing the marginal
effects of the nanodescriptors.
To derive the distance-based AD for BSAI models,

Mahalonobis distances were computed for the data set with
known Abraham molecule’s descriptors using the vegdist
function. Subsequently, the metaMDS function was applied to
place each of themolecules in a two-dimensional space by way of
nonmetric multidimensional scaling. All compounds with equal
or smaller distance to the centroid of all 23 probe compounds in
this two-dimensional space were considered to be within the
BSAI model AD.
Computational Method: System Description and

Simulation Parameters. The initial structure of a solvated
multiwalled carbon nanotube (MWCNTs), SiO2, and all the
four vitamins, namely, pyridoxine, folate, thiamine, and biotin
were built using the CHARMM-GUI builder.52 A realistic
representation of the ENM structure is required for an accurate
prediction of the interaction between the nanoparticle surface
and a vitamin. Hence, we considered a 5 × 5 × 4 nm3 SiO2 slab

and a three-layered graphene sheet with an area of 6.5 × 6.5 nm2

and periodic boundary conditions, resulting in infinite surface
along the Cartesian x−y direction. The SiO2 ENM used in the
experiment usually occurs in a range of 20−200 nm, while the
carbon nanotube typically has an outer diameter between 8 and
15 nm and a length of ∼50 μm. We postulated that the sizes of
the vitamins examined in this study are tiny compared to the
considered ENMs, meaning that a flat surface representation is
adequate. All the systems comprise ∼40,000 atoms, each varying
a little based on the size of the vitamins. All all-atom simulations
were performed with GROMACS 2020.53 The CHARMM36
force field54 was used for all vitamins, while SiO2 andMWCNTs
parameters were procured from the INTERFACE force field,55

which is integrated within the CHARMM force field. The water
molecules were simulated using the TIP3P force field.56 A
Nose−́Hoover thermostat57 at 310 K and a Parrinello−Rahman
barostat58 at 1 atm were considered. All hydrogen atoms were
constrained with the LINCS algorithm,59 and long-range
electrostatics were evaluated with particle-mesh Ewald.60 A 1.4
nm cutoff was used for both the electrostatics and LJ
interactions. All MD simulations employed a 2 fs time step in
the standard Leap-Frog integrator,61 and periodic boundary
conditions were considered throughout the study. The setup for
biotin and both considered ENMs are visualized in Figure 6.
Visual Molecular Dynamics 1.9.3 (VMD)62 was used for
visualization.
Constrained MD Simulation. The potential of mean force

(PMF) was determined using metadynamics63 as implemented
in the Plumed plugin64 patched with GROMACS, at all-atom
resolution with explicit solvent. The considered collective
variable for the generation of PMFs is the distance between
the center of mass (COM) of the SiO2 or MWCNTs slab and
the COM of the respective vitamin. Each system underwent
5000 steps of energy minimization with the standard steepest
descent method65 followed by 100 ps of standard equilibration.
Consequently, a 300 ns production run was conducted to
generate the free energy profile. Each run was performed on 48
processors, resulting in 25−30 ns per day, that is, 10−12 days
per ENM and vitamin. The reduced performance compared to
the unconstrained simulations can be attributed to the more
frequent output requirement while performing free energy
calculations. As previously discussed by Comer et al.,42 the
adsorption affinity (k) of any given vitamin with SiO2 surface can
be calculated from the PMF as

Figure 6. Simulation snapshots for biotin adsorbing on a SiO2 (a) and MWCNTs (b) surface. The surfaces extend infinitely along the x-y directions
due to periodic boundary conditions. All the atoms are shown as spheres, while bonds are represented as white sticks. The silicon, oxygen, carbon,
sulfur, and hydrogen atoms are shown in yellow, red, green, yellow, and white. For reasons of visual clarity, the water molecules are represented by a
blue transparent isosurface of the water density.
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= [ ]k dz w zexp ( )
c

i
calc

0

calc
(2)

where c is the cutoff distance provided by the onset of the (bulk)
plateau region in the PMF, that is, the adsorbed region, β =
(kBT)−1 corresponds to the reciprocal of the thermal energy with
the Boltzmann constant kB and temperature T (in Kelvin), and
wicalc(z) is the PMF determined by constrained MD. We have
omitted the usual material dependent prefactor to the right-hand
side of eq 2, because it has to be determined experimentally, and
thus introduces uncertainty. In particular, it will not change the
ranking of vitamin affinities when considering a single material.
In order to compare kcalc with log k predictions from QSAR
models, the Pearson correlation coefficient (r) was calculated in
R using the cor.test function of the stats package (v. 3.6.3).
Unconstrained MD Simulation. Unconstrained simula-

tions were also required in order to differentiate between the
several factors, including hydrogen bonding, π−π stacking,
charged (electrostatic) interactions, and others that may play a
role in adsorption. For the unconstrained simulation, the same
SiO2 slab setup as before was considered for each vitamin.
Unconstrained simulations for MWCNTs were not considered
because only LJ interactions between the vitamins and this
nanomaterial will play a role, meaning that a breakdown in other
types of interactions is not meaningful. It can be inferred that the
interaction between MWCNTs and each respective vitamin will
purely be LJ interaction. Initially, we performed energy
minimization, followed by 10 ns of NPT equilibration and a
final production run of 500 ns. Each run was performed on 48
processors, resulting in ∼70 ns per day. For the purpose of
analysis, a rerun of the MD trajectories was performed to extract
the different contributions to the interaction energies between
the SiO2 and each vitamin molecule. The number of hydrogen
bonds formed as a function of time was computed using the
GROMACS built-in routine gmx hbond.

■ DATA AND SOFTWARE AVAILABILITY
The QSARmodels, training and validation data sets, SMILES of
enteric microbial metabolites, calculated CDK descriptors,
applicability domains of QSAR models, and predicted log k
values are available free of charge as Supporting Information.
Data and results from MD simulations are available via Zenodo
(DOI: 10.5281/zenodo.6800734).
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