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Abstract: Aldose reductase (AR) is an aldo-keto reductase that catalyzes the first step in the polyol
pathway which converts glucose to sorbitol. Under normal glucose homeostasis the pathway repre-
sents a minor route of glucose metabolism that operates in parallel with glycolysis. However, during
hyperglycemia the flux of glucose via the polyol pathway increases significantly, leading to exces-
sive formation of sorbitol. The polyol pathway-driven accumulation of osmotically active sorbitol
has been implicated in the development of secondary diabetic complications such as retinopathy,
nephropathy, and neuropathy. Based on the notion that inhibition of AR could prevent these com-
plications a range of AR inhibitors have been developed and tested; however, their clinical efficacy
has been found to be marginal at best. Moreover, recent work has shown that AR participates in the
detoxification of aldehydes that are derived from lipid peroxidation and their glutathione conjugates.
Although in some contexts this antioxidant function of AR helps protect against tissue injury and
dysfunction, the metabolic transformation of the glutathione conjugates of lipid peroxidation-derived
aldehydes could also lead to the generation of reactive metabolites that can stimulate mitogenic
or inflammatory signaling events. Thus, inhibition of AR could have both salutary and injurious
outcomes. Nevertheless, accumulating evidence suggests that inhibition of AR could modify the
effects of cardiovascular disease, asthma, neuropathy, sepsis, and cancer; therefore, additional work
is required to selectively target AR inhibitors to specific disease states. Despite past challenges, we
opine that a more gainful consideration of therapeutic modulation of AR activity awaits clearer
identification of the specific role(s) of the AR enzyme in health and disease.

Keywords: aldose reductase; diabetes; inhibitors; inflammation; diseases; oxidative stress

1. Introduction

Based on sequence identity, aldo-keto reductases (AKRs) have been grouped into
distinct families, AKR1to AKR15; each family contains multiple subfamilies. The AKR1
family has been divided into five subfamilies, A to E. Of these, AKR1B is the most studied
subfamily because of the potential role of its founding member, aldose reductase (AKR1B1),
in the development of diabetic complications (Figure 1). Aldose reductase (AR) is the first
enzyme of the polyol pathway that converts glucose to sorbitol using NADPH as a cofactor.
Kinetic properties of AR for glucose, galactose, and various compounds areshown in Table 1.
Sorbitol generated by the reaction is converted to fructose by sorbitol dehydrogenase (SDH).
These enzymes constitute the ‘polyol pathway’, an alternate route of glucose metabolism,
which functions in parallel with glycolysis (Figure 2).
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Figure 1. The human aldose reductase (AR). Quantum model of catalysis based on mobile proton 

revealed by subatomic X-ray and neutron diffraction studies of human aldose reductase (h-AR). The 

structure presents results of combined studies of the enzyme human aldose reductase (h-AR, 36 

kDa) using single-crystal X-ray data (0.66 A, 100 K; 0.80 A, 15 K; 1.75 A, 293 K), neutron Laue data 

(2.2 A, 293 K), and quantum mechanical modeling. These complementary techniques unveiled the 

internal organization and mobility of the hydrogen bond network that defines the properties of the 

catalytic engine, explaining how AR overcomes the simultaneous requirements of efficiency and 

promiscuity and thus offering a general mechanistic view for this class of enzymes [1], 

doi:10.2210/pdb2R24/pdb.  
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Figure 1. The human aldose reductase (AR). Quantum model of catalysis based on mobile proton
revealed by subatomic X-ray and neutron diffraction studies of human aldose reductase (h-AR). The
structure presents results of combined studies of the enzyme human aldose reductase (h-AR, 36 kDa)
using single-crystal X-ray data (0.66 A, 100 K; 0.80 A, 15 K; 1.75 A, 293 K), neutron Laue data (2.2 A,
293 K), and quantum mechanical modeling. These complementary techniques unveiled the internal
organization and mobility of the hydrogen bond network that defines the properties of the catalytic
engine, explaining how AR overcomes the simultaneous requirements of efficiency and promiscuity
and thus offering a general mechanistic view for this class of enzymes [1], doi:10.2210/pdb2R24/pdb.
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Figure 2. The ‘polyol’ pathway. Products of this pathway are known to affect several vital physiolog-
ical functions of the cell in the body.
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Several studies have demonstrated a role for hyperglycemia in the pathogenesis
of diabetic microvascular complications such as retinopathy, nephropathy, neuropathy,
and cognitive disorders [2,3]. In addition, the incidence and severity of diabetic micro-
vasculopathy are also modulated by the genotype of an individual [4,5]. Although the
molecular basis of how hyperglycemia causes tissue injury is still unknown, the mechanism
has been linked to what has been termed ‘oxidative stress’ because of the impact of accumu-
lation of sorbitol and advanced glycation end products (AGEs), as outlined in Figure 3. As
a putative osmotic regulator under hyperglycemic conditions, AR has been under constant
investigation as a critical target to prevent and control diabetic complications, with the
view that inhibition of AR could serve as an effective strategy in the prevention or delay
of diabetic complications [6]. Although sorbitol is suspected as a main culprit in diabetic
complications, the role of sorbitol in this process remains controversial [7–9]. Glucose that
enters the cell is metabolized in part to sorbitol via AR. AR has very low affinity for glucose,
and less than 3% of glucose is processed via this pathway under normal physiological
conditions. However, glucose conversion to sorbitol is more pronounced under conditions
of chronic hyperglycemia, leading to an accumulation of sorbitol within cells which could
increase cell osmolality, and a consequent depletion in intracellular myoinositol. These
change, could in turn decrease sodium-potassium adenosine triphosphatase (Na-K-ATPase)
activity, and possibly shift the redox potential within the cell. Hyperglycemia could also
contribute directly to the decline in cell myoinositol levels by competitively interfering
with myoinositol uptake from the extracellular fluid via the sodium-myoinositol cotrans-
porter [8]. If sustained, this chain of events could induce oxidative stress (Figure 3), because
high ambient glucose levels increase mitochondrial synthesis of ROS, activating protein
kinase C (PKC) and increasing the expression of SDH.
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processes (such as overutilization of NADPH by AR that causes an inability to regenerate GSH and thus decreases the
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enzymatic glycation agents. Additionally, glucose auto-oxidation generates H2O2, O2-, and OH−, and thus contributes to
oxidative stress in cells. Furthermore, binding of AGEs to RAGE is known to generate intracellular stress.

The generation of superoxide and other ROS are believed to underlie many of the
oxidative changes in hyperglycemic conditions. However, despite strong evidence that
oxidative stress is associated with diabetic complications, clinical trials with several antiox-
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idants (Table 2) such as (Table 2), α-lipoic acid, vitamins C and E, and growth factors in
diabetic neuropathy and retinopathy failed to establish therapeutic efficacies [10], despite
strongly positive results (with several exceptions) in rodents [11]. Nonetheless, oxidative
stress-induced inflammation is now considered a major contributor to several other disease
conditions including sepsis, carcinogenesis and metastasis, allergic asthma, and uveitis as
well as the cataract surgery-related posterior capsular opacification. Since ROS-mediated ac-
tivation of redox-sensitive transcription factors and subsequent expression of inflammatory
cytokines, chemokines, and growth factors are characteristics of inflammatory disorders, it
was envisioned that by blocking the molecular signals of ROS that activate redox-sensitive
transcription factors, various inflammatory diseases could thereby be ameliorated. Indeed,
it has been demonstrated that ROS-induced lipid peroxidation-derived lipid aldehydes
such as HNE and their glutathione-conjugates (e.g., glutathione-4-hydroxy-trans-2-nonenal,
GS-HNE) are efficiently reduced by AR to their corresponding alcohols, which mediate
the inflammatory signals [12] (Table 1). These results clearly demonstrated that inhibition
of AR significantly prevented the inflammatory signals induced by cytokines, growth
factors, endotoxins, high glucose, allergens, and auto-immune reactions in both cellular
and in animal models. It was also reported that an AR inhibitor, fidarestat, significantly
prevented tumor necrosis factor-alpha (TNF-α), growth factors, lipopolysaccharides (LPS),
and environmental allergen-induced inflammatory signals that cause various inflamma-
tory diseases. In animal models of inflammatory diseases such as diabetes, cardiovascular
disease, uveitis, asthma, and cancer (colon, breast, prostate, and lung), inhibition of AR sig-
nificantly ameliorated the disease outcomes. These results from cellular and animal models
representing several inflammatory conditions suggest that ROS-induced inflammatory
response could be attenuated by inhibiting AR, thereby decreasing disease progression.
Because AR inhibitors have already undergone clinical trials for diabetic neuropathy and
found to be safe (though clinically not very effective), these observations indicate that
they can certainly be developed as potential therapeutics for several inflammation-related
diseases in humans [13].

Table 1. Aldose reductase (AR) enzyme kinetics. The values for glucose, galactose, and various cytotoxic compounds
specific to the AR are shown.

Cytotoxic Compound Km (mM) kcat (min−1)
kcat/Km

(min−1·µM−1) Reference(s)

Acrolein (Figure 4a) 0.80 ± 0.21 37.6 47 M−1 min−1 [14]

4HNE
(Figure 4b) 22 102 4.6 × 106 M−1 min−1 [15]

Glyoxal
(Figure 4c) 514 154 3.0 × 105 M−1 min−1 [15]

Methylglyoxal
(Figure 4d) 0.008 142 1.8 × 107 M−1 min−1 [15,16]

ONE
(Figure 4e) 0.0042 ± 0.0046 92.2 ± 3.55 2190 ± 120 M−1 min−1 [17]

Glucose
(Figure 4f) 0.68 0.15 9.1 × 102 M−1 min−1 [16,18,19]

Galactose
(Figure 4g) 21 222 10.57 M−1 min−1 [20]
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Table 2. A select list of aldose reductase (AR) inhibitors. Different categories (types, and subtypes) of AR inhibitors have
been developed and tested both in experimental animals as well as in human subjects.

Categories (Types/Subtypes) AR Inhibitors Reference(s)

Naturally Occurring
• D-saccharic acid 1,4—lactone
• Resveratrol
• Vitamin K1

[21–23]

Flavanone Glucoside • Hesperidin
• B-Glucogallin [24–28]

Alkaloids

• Berberine
• Palmatine
• Coptisine
• Iateorrhizine

[29–43]

Spirohydantoin • Sorbinil
• Fidarestat (SNK-860) [44–52]

Acetic Acid • Alrestatin [53–61]

Carboxyl Acid
• Tolrestat
• Epalrestat
• Ponalrestat

[62–90]

Flavanoids • Quercetin [29,37,91–98]

Spiroscinimide

• Ranirestat (AS-3201)
• Zopolrestat
• NZ-314
• Ponalrestat
• (z)2-(5-(4-methoxybenzylidine)-2,4-

dioxothiazolidin-3-yl) acetic
acid

• Zenarestat

[50,61,81–83,87,88,90,99–129]
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1.1. Structure of Aldose Reductase

The NADPH dependent cytosolic AKRs are monomeric enzymes which fold into a typ-
ical (α/β)8-barrel structural protein, with a molecular weight ranging from 30–40 kDa [1,2].
Currently, there are more than 150 members distributed in the prokaryotic and eukaryotic
kingdoms, including yeasts, plants, invertebrates, and vertebrates; these are expressed in a
wide variety of cells and tissues across species [130] (Figure 1). Substrate specificity and
inhibitor selectivity are determined by interaction with residues located in three highly vari-
able loops (A, B, and C) (Figure 4). As mentioned earlier, AKR1B1 is related to secondary
diabetic complications, while AKR1B10 is induced in cancer cells and is active with all-
trans-retinaldehyde. Residues that interact with all-trans-retinaldehyde and differ between
AKR1B1 and AKR1B10 are Leu125Lys and Val131Ala (loop A), Leu301Val, Ser303Gln, and
Cys304Ser (loop C). Recently, the importance of Lys125 as a determinant of AKR1B10
specificity for retinoids was demonstrated. Residues 301 and 304 are also involved in
interactions with substrates or inhibitors. When members of the rodent AKR1B subfamily
AKR1B3 (AR), AKR1B7 (mouse vas deferens protein), AKR1B8 (fibroblast-growth factor
1-regulated protein), and AKR1B9 (Chinese hamster ovary reductase) were tested against
all-trans isomers of retinaldehyde, and retinol, the enzymes were active with retinaldehyde,
but with kcat values (0.02–0.52 min−1) much lower than that of AKR1B10 (27 min−1) [12].
None of the enzymes showed oxidizing activity with retinol. Since these enzymes (except
AKR1B3) have Lys125, other residues may account for retinaldehyde specificity. By using
site-directed mutagenesis and molecular modeling to delineate contribution of residues
301 and 304, it was revealed that besides Lys125, Ser304 is a major structural determinant
for all-trans-retinaldehyde specificity of AKR1B10 [131].

Renal-specific oxido-reductase (RSOR) has certain structural, and functional similari-
ties to AKR1B, and seems to be relevant to renal complications of diabetes mellitus (DM).
Like other AKRs, it has the NADPH binding motif (Figure 1); however, it is located at
the N-terminus, and probably undergoes N-linked glycosylation to achieve functional
substrate specificity. Besides the AKR3 motif, it has little nucleotide or protein sequence
homology with other members of the AKR family. Nevertheless, gene regulation of RSOR,
like AKR1B, is modulated by carbonyl, oxidative, and osmotic stress, and thus it is antici-
pated that it can lead to the development of new inhibitors as well as gene therapy targets
to alleviate complications of DM in future [132].

1.2. Functional Aspects of Aldose Reductase

Although the focus of research on AR has been its involvement in the develop-
ment of diabetes, many studies have shown that besides reducing glucose, AR efficiently
reduces oxidative stress-generated lipid aldehydes with Km in the micromolar range
(10–30 µM). In comparison the Km of the enzyme for glucose is in the millimolar range
(50–100 mM) [133,134] (Table 1). There are conflicting reports regarding the actual role(s)
played by AR in mammals under physiological and pathophysiological conditions. Past
studies suggested a beneficial role for AR in the detoxification of toxic lipid aldehydes
generated upon oxidative stress; however, accelerated flux of sorbitol by AR through the
polyol pathway (Figure 2) and the subsequent increase in oxidative stress has been strongly
implicated in the development of the secondary diabetic complications [135–141]. Find-
ings that AR inhibitors decrease sorbitol levels and ameliorate complications of diabetes,
e.g., cataract in experimental animals strongly support this viewpoint [142]. However,
none of the AR inhibitors have passed the phase III clinical trials for the prevention of
diabetic complications except epalrestat (sold under the brand name Kinedak® by Ono
Pharmaceutical Co., Ltd., Osaka, Japan, now to be manufactured and marketed by Alfresa
Pharma Corporation, Osaka, Japan), which has been approved as a pathogenesis-based
medicine in patients with diabetic peripheral neuropathy for the improvement of subjective
symptoms (numbness and pain), abnormality of vibration sense, and abnormal changes
in heartbeat associated with diabetic peripheral neuropathy (in cases of high levels of
glycosylated hemoglobin) in Japan [143–145]. Recent observations suggest that in addition
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to increasing sorbitol levels, increased polyol pathway (Figure 3) could potentially alter the
NADPH/NADP+ ratios and attenuate the glutathione reductase (GR) and glutathione per-
oxidase (GPx) systems, thereby decreasing the reduced glutathione/oxidized glutathione
(GSH/GSSG) ratios, which in turn could cause oxidative stress (Figure 3), one of the major
causes of diabetic complications [23,26,27]. This view is supported by studies showing
that sugar-induced lens opacification can be significantly prevented by antioxidants such
as butylated hydroxytoluene (BHT) and Trolox without further decreasing the elevated
levels of sorbitol in the lens [146,147]. Therefore, it seems likely that the effects of inhibiting
AR may relate to changes in redox signaling and oxidative stress, rather than sorbitol
accumulation per se.

Our previous studies have shown that lipid peroxidation products such as HNE stim-
ulate rat aortic vascular smooth muscle cell (VSMCs) proliferation that is attenuated by
AR inhibitors [148]. We have further demonstrated the mechanistic relationship between
oxidant generation, lipid peroxidation, HNE formation, vascular cell cytotoxicity, and
vascular complications such as atherosclerosis [141]. The elevated levels of ROS during
hyperglycemia, peroxidative stress and cytokine responses are known to trigger inflam-
mation by upregulating redox-sensitive transcription factors such as nuclear factor-kappa
B (NF-κB), and activator protein (AP)-1. Modulation of NF-κB has great significance in
the mitogenic process mediated by ROS. We also reported that hyperglycemia and TNF-α
activate NF-κB and cause proliferation of VSMCs and apoptosis of vascular endothelial
cells (VECs) [149,150]. Since hyperglycemia activates NF-κB and cytokines such as TNF-α,
which besides activating NF-κB is known to stimulate AR gene expression, it is necessary
to further understand the relationship and molecular mechanism underlying these signals.
Further, these investigations are important in elucidating the molecular mechanism of
inflammatory diseases [13].

Currently, AR is widely considered to be an aldehyde-metabolizing enzyme, although
reduction of glucose by AR has also been linked to the development of secondary diabetic
complications. However, glucose may be an incidental substrate of AR, and the enzyme
may be more adept in catalyzing the reduction of a wide range of aldehydes generated
from lipid peroxidation (Table 1). In this respect, inhibition of the enzyme has been
shown to increase inflammation-induced vascular oxidative stress, and prevent myocardial
protection associated with the late phase of ischemic preconditioning [141]. Based on
these studies, several investigators have ascribed an important antioxidant role to the
enzyme [141,151–153]. Ongoing work also indicates that AR is a critical component of
intracellular signaling [11,36,37], and inhibition of the enzyme prevents high glucose,
cytokine, or growth factor-induced activation of PKC and NF-κB. Thus, treatment with AR
inhibitors prevents VSMC growth and endothelial cell apoptosis in culture, inflammation,
and restenosis in vivo [141,154–156]. Furthermore, studies indicate that the antioxidant,
and signaling roles of AR are interlinked, and that AR regulates PKC and NF-κB via a redox-
sensitive mechanism. Thus, the available data underscores the need to re-evaluate anti-AR
interventions for the treatment of diabetic complications. Potentially, the development
of newer drugs that selectively inhibit AR mediated glucose metabolism and signaling
without affecting aldehyde detoxification might be useful in preventing inflammation
associated with the development of diabetic complications, particularly its micro- and
macrovascular implications [141].

1.3. Role of Aldose Reductase in Human Diseases
1.3.1. Diabetes

Under euglycemic conditions, AR (Figure 2) catalyzes NADP-dependent reduction
of glucose to sorbitol, leading to excessive accumulation of intracellular ROS in various
tissues of diabetics including heart, vasculature, neuron, eye, and kidney tissues. In vitro
cultured cells under high glucose have demonstrated AR dependent increase in ROS
production, confirming AR as an important factor for the pathogenesis of diabetic compli-
cations [138,152,157–160]. Based upon extensive experimental evidence showing that the
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inhibition of AR prevents or delays hyperglycemic injury in several experimental models
of diabetes, it has been suggested that AR is one of the main mediators of secondary
diabetic complications [135–141]. Under hyperglycemic conditions, it has been proposed
that increased flux of glucose via AR causes osmotic and oxidative stress (Figure 3), which
in turn triggers a sequence of metabolic alterations resulting in gross dysfunction in tissues
and sub-cellular organelles such as mitochondria, altered intracellular signaling, and ex-
tensive cell death [150,161]. The polyol hypothesis centered on the role of AR provided
a simple testable paradigm of hyperglycemic injury; however, several key observations
regarding diabetic complications are not compatible with the accumulation of sorbitol
alone as the major cause of hyperglycemic injury. For instance, in several tissues the intra-
cellular accumulation of sorbitol is not high enough to cause significant osmotic stress [162].
Moreover, the high efficacy of antioxidants in preventing cataractogenesis without pre-
venting sorbitol accumulation suggests that oxidative stress may be an important feature
representing hyperglycemic injury [146,147]. In addition to polyol accumulation, other
metabolic changes have also been suggested to account for hyperglycemic injury, such as
non-enzymatic glycation leading to the accumulation of AGEs and alterations in PKC and
myoinositol level [163]. In support of these observations, it was shown that inhibition of
PKC or non-enzymic glycation, as well as supplementation with myo-inositol, delayed or
prevented hyperglycemic injury. Evidence also suggests that these changes may be interre-
lated, and that AR might represent a critical link between alterations in PKC, myo-inositol,
and non-enzymic glycation [141].

Because sorbitol and myo-inositol are structurally similar, depletion of myo-inositol
appears to be due in part to the inhibition of its uptake in cells accumulating sorbitol [164].
Furthermore, it was recently demonstrated that stimulation of PKC by phorbol esters
up-regulates AR, indicating that some of the effects of PKC activation may be mediated
by AR [165]. This finding also suggests that the effects of non-enzymatic glycosylation
and AR are inter-related [166,167]. In the past, it was reported that sorbitol-3-phosphate
generated by AR is converted to fructose 3-phosphate, which is a better glycosylating
agent than glucose, and that AR-mediated catalysis can generate potent glycosylating
agents [168]. This view was supported by the observation that in the galactosemic lens
(here it is worth mentioning that galactose is a more preferred substrate for AR than
glucose since there is a greater accumulation of polyol by the reduction of galactose
than glucose, owing to the higher affinity of AR for galactose than for glucose and the
fact that there is no subsequent metabolism of galactitol), AR inhibitors suppress the
accumulation of advanced Maillard reaction products such as pentosidine, stimulate the
actions of aminoguanidine (an inhibitor of non-enzymic glycosylation), and inhibit the
accumulation of AGEs [169,170]. Therefore, AR was believed to represent a common
mediator of several pathological changes associated with long-term diabetic complications.
Further support for a critical role of AR in mediating toxic effects of glucose is provided
by acceleration of diabetic cataract by overexpression of AR in the lens of transgenic
mice [142]. Previously, we have reported that high glucose in diabetes led to the up-
regulation of AR in tissues both in vitro and in vivo, and that treatment with AR inhibitors
prevented hyperglycemia-induced hyperplasia, hyperproliferation of VSMCs, and diabetic
cardiomyopathy [141,169,171–173]. Transgenic overexpression of AR in mice has been
shown to exacerbate diabetic cardiomyopathy [174]. These observations indicate that AR
inhibitors may be useful in preventing pro-vasculoproliferative effects of diabetes.

1.3.2. Cardiovascular Diseases

Abnormal proliferation of cells of the vascular system is an important feature of
atherosclerosis, restenosis, and hypertension. Although several mediators of VSMC growth
have been identified, only a few effective pharmacological tools have been developed
to limit growth. Evidence indicating an important role for oxidative stress in cellular
growth hints at the potential role of AR in the proliferation of VSMCs. Because AR
catalyzes the reduction of mitogenic aldehydes derived from lipid peroxidation, it may
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be a critical regulator of redox changes that accompanies VSMCs growth. Stimulation of
human aortic SMCs in culture with mitogenic concentrations of serum, thrombin, basic
fibroblast growth factor (bFGF), and HNE led to a 2- to 4-fold increase in the steady state
levels of AR mRNA, a 4- to 7-fold increase in AR protein, and a 2- to 3-fold increase in
its catalytic activity. Inhibition of AR by sorbinil or tolrestat diminished mitogen-induced
DNA synthesis and cellular proliferation. In parallel experiments, the extent of reduction
of glutathione conjugate of HNE to glutathionyl-1,4-dihydroxynonene in HNE-exposed
VSMCs was decreased by serum starvation or sorbinil. Immunohistochemical staining of
cross sections from balloon-injured rat carotid arteries showed increased expression of AR
protein associated with the neointima formation. Compared with untreated animals, rats
fed with sorbinil displayed 51% and 58% reduction in the ratio of neointima to the media at
10 and 21 days, respectively, after balloon injury [155,173]. Taken together, these findings
suggest that AR is upregulated during growth, and that this upregulation facilitates growth
by enhancing metabolism of secondary products of ROS [30,31,55,56,58].

While it is evident that VSMC proliferation leads to restenosis, mechanisms regulating
the growth of SMCs are not known. In one study, it was shown that inhibition of AR
could lead to downstream inhibition of NF-κB activation during restenosis in a balloon-
injured rat carotid artery, as well as VSMC proliferation due to TNF stimulation. Inhibition
of VSMC growth by AR inhibitors was not accompanied by increase in cell death or
apoptosis. Inhibition of AR led to decrease in the activity of transcription factor NF-κB
in culture, and in the neointima of rat carotid arteries after balloon injury. Inhibition
of AR in VSMCs also prevented activation of NF-κB by bFGF, angiotensin-II (Ang-II),
and platelet-derived growth factor (PDGF-AB). The VSMCs treated with AR inhibitors
showed decreased nuclear translocation of NF-κB and diminished phosphorylation and
proteolytic degradation of IκB-α. Under identical conditions, treatment with AR inhibitors
also prevented the activation of PKC by TNF-α, bFGF, Ang-II, and PDGF-AB, but not
phorbol esters, indicating that AR inhibitors prevent PKC stimulation or availability of
its activator, but not the PKC itself. Treatment with antisense AR, which decreased the
AR activity by >80%, attenuated PKC activation in TNF-α, bFGF, Ang-II, and PDGF-AB-
stimulated VSMCs, and prevented TNF-α induced proliferation. Results from this study
suggest that inhibition of NF-κB may be a significant cause of the anti-mitogenic effects of
AR inhibition, and that this may be related to disruption of PKC associated signaling in the
AR inhibited cells [172].

In atherosclerosis, vascular lesions are commonly associated with the accumulation
of oxidized lipids (products of lipid oxidation), particularly aldehydes (Table 1). These
lipids stimulate cytokine production and enhance monocyte adhesion; however, their con-
tribution to atherosclerotic lesion formation is not yet clear. Examination of atherosclerotic
lesions in apolipoprotein (apo)E-null mice revealed that AR was localized in macrophage-
rich regions, and that its abundance increased with lesion progression. Treatment of
apoE-null mice with AR inhibitor sorbinil or tolrestat increased early lesion formation
but did not affect the formation of advanced lesions. Early lesions in AR (−/−)/apoE
(−/−) mice maintained on high-fat diet were significantly larger when compared with
age-matched AR (+/+)/apoE (−/−) mice. The increase in lesion area attributable to
deletion of the AR gene was seen in both genders of mice. Pharmacological inhibition
or genetic ablation of AR also increased the lesion formation in male mice made diabetic
by streptozotocin (STZ) treatment. Lesions in AR (−/−)/apoE (−/−) mice exhibited
increased collagen and macrophage contents and a decrease in SMCs. AR (−/−)/apoE
(−/−) mice also displayed a greater accumulation of the AR substrate HNE in the plasma
and protein-HNE adducts in arterial lesions than AR (+/+)/apoE (−/−) mice (Figure 4).
These observations indicate that AR is upregulated in atherosclerotic lesions, and that it
protects against early stages of atherogenesis by removing toxic aldehydes generated in
oxidized lipids [175].

When cultured in a high level of glucose but not iso-osmotic mannitol, VSMCs in-
crease membrane-associated PKC activity. This was prevented by tolrestat or sorbinil, or
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by ablation of AR using small interfering RNA (siRNA) [134]. Tolrestat also prevented
phosphorylation of PKC β2 and δ isoforms. Other experiments in VSCMs revealed that
inhibition of AR, independent of SDH, reduced both oxidative stress and hyperglycemic
changes in signaling upstream to the activation of multiple PKC isoforms and PLC-γ1,
suggesting that such therapy might prevent secondary vascular complications of dia-
betes [152,171,176–178]. Both AR inhibitors and vasodilators improved nerve conduction
velocity in STZ diabetic rats, suggesting a metabolic vascular interaction that could be
mediated by restoration of impaired nitric oxide synthesis [179]. Daily administration of
epalrestat, an AR inhibitor, to STZ diabetic rats prevented gastric erosion and ulceration
and normalized gastric mucosal blood flow, an effect also found with a nitric oxide synthase
inhibitor [180]. These results suggest that AR inhibitors may act at least in part by blocking
the action of induced nitric oxide. However, AR inhibitors did not prevent or improve
retinopathy in alloxan-induced diabetic dogs [181]. In one study, in which alloxan-induced
diabetic dogs were treated for five years, there was no evidence of reduced capillary
basement membrane thickening in the retina, renal glomerulus, or leg muscle [182].

Type 2 diabetes is associated with platelet hyperactivity, which leads to increased
morbidity and mortality from cardiovascular diseases. This is coupled with enhanced
levels of thromboxane (TX), an eicosanoid that facilitates platelet aggregation. The mech-
anism underlying the relationship among hyperglycemia, TX generation, and platelet
hyperactivity remains at large. In human platelets, AR synergistically modulates platelet
response to both hyperglycemia and collagen exposure through a pathway involving
ROS/PLCγ2/PKC/p38α MAPK. In patients with platelet activation (i.e., deep vein throm-
bosis, saphenous vein graft occlusion after coronary bypass surgery), and particularly in
those with diabetes, urinary levels of a major enzymatic metabolite of TX (11-dehydro-
TXB2 [TX-M]) have been shown to be substantially increased [183]. Thus, in this setting,
AR pathway-mediated oxidative stress can lead to enhanced platelet TX generation or
thromboxane receptor activation.

1.4. Asthma

It has been reported that ROS and ROS-derived lipid peroxidation products like
HNE and malondialdehyde (MDA) are involved in asthma pathogenesis, and that the
reduced products of GS-lipid aldehydes such as GS-lipid-alcohols are important inducers of
signaling cascades. AR inhibition has been shown to interfere in the formation of GS-lipid
alcohol species as ROS-mediated activation of inflammatory signals that are blocked by AR
inhibition [184]. Also, studies in mice indicate that AR inhibitors could serve as potential
anti-inflammatory interventions. When sensitized mice were challenged with ragweed
pollen extract or the carrier (without ragweed pollen extract), robust airway inflammation
was observed. Mice treated with the AR inhibitor sorbinil revealed significantly less
inflammation as determined by the number of eosinophils in bronchoalveolar lavage
fluid. Similarly, perivascular and peri-bronchial inflammation and cell composition in the
bronchoalveolar lavage fluid induced by ragweed pollen extract challenge was significantly
prevented by sorbinil. Further, AR inhibition also prevented ragweed-induced mucin
production and airway hyperresponsiveness in mice after methacholine challenge [185].
These results indicate that AR inhibition significantly prevented the pathophysiological
effects of a common natural allergen, ragweed pollen extract-induced asthma in a murine
model. Effectiveness of AR inhibition was also examined in acute ovalbumin (OVA)
induced airway inflammation in mice. In fact, studies with OVA-challenged chronic
asthmatic mice showed a decrease in total as well as differential counts with the addition
of an AR inhibitor. In the same study, it was noted that airway hyper-responsiveness
measured by whole body plethysmography was reduced by the addition of fidarestat. The
OVA-induced mice had a significant decrease in Penh times, which is a measure of changes
in breathing established through whole body plethysmography. Further, TGF1β1 released
from damaged or repairing epithelium is a mediator of airway remodeling. AR inhibition
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was shown to prevent the effect of TGF1β1 on epithelial mesenchymal transition through a
non-canonical Smad independent pathway [186].

A detailed examination of OVA sensitization and challenge showed a clear and marked
perivascular and peri-bronchial infiltration of eosinophils into the lungs of the mice. Such
infiltration of inflammatory cells into the airways of OVA-challenged mice was reduced
with an AR inhibitor. More importantly, protective effect of the AR inhibitor against
OVA-induced airway inflammation coincided with a significant reduction in the levels
of Th2 cytokines, including IL-4, IL-5, and IL-6 and chemokines such as keratinocyte-
derived chemokine, as well as granulocyte colony stimulating factor (G-CSF) and MCP-1
in broncho-alveolar lavage fluid [187], indicating a novel role for AR inhibitors in the
prevention of asthma [13].

1.5. Oculopathy

Diabetic retinopathy (DR) is one of the common microvascular disorders, and the
most severe of diabetic ocular complications. DR has been shown to be significantly associ-
ated with impending risk of cerebrovascular accident (CVA), myocardial infarction (MI),
congestive heart failure (CHF), and all-cause mortality in patients with type 2 diabetes
mellitus, suggesting that patients exhibiting higher degrees of retinopathy appear to carry
a heightened risk for each of the above mentioned outcomes; thus retinal information may
provide valuable insights into patients’ risk of future vascular disease including death [188].
In the past, special attention has been paid to the role of AR in its pathogenesis. Several
associations between AR and early diabetic retinopathy have been described in detail,
including the localization of AR in the retina; the role for increased AR activity in retinal
capillary cell loss and formation of acellular capillaries, capillary basement membrane
thickening, increased vascular permeability, and disruption of the blood-retinal barrier;
increased leukocyte adhesion to endothelial cells; neovascularization with advanced pro-
liferative DR (as learnt from animal models of diabetes); and galactose feeding [189–192].
Further, potential mechanisms underlying the interactions between AR and other patho-
genetic factors such as formation of AGEs; oxidative-nitrosative stress; PKC, MAPK, and
poly (ADP-ribose) polymerase activation; inflammation; and growth factor imbalance have
been studied [193]. AR inhibitors have been found to prevent diabetic cataract forma-
tion in almost all animal models tested so far. It is believed that AR inhibition reduces
oxidative stress and retinal neovascularization. In a mouse model of oxygen-induced
retinopathy (OIR), seven-day-old normal and AR-deficient mice were exposed to 75%
oxygen for five days and then returned to normal room air. Parameters such as vascular
obliteration, neovascularization, and blood vessel leakage were analyzed. In comparison to
normal OIR retinae, AR deficient OIR retinae displayed significantly smaller central retinal
vaso-obliterated area, less neovascularization, and reduced blood vessel leakage. There
was also a significant reduction in oxidative stress and glial response in the AR deficient
OIR retinae. Moreover, reduced microglial response in the avascular area with increased
microglial responses in the neovascular area were found with AR deficiency. Interestingly,
expression levels of VEGF, p-Erk, p-Akt, and p-IκB were significantly reduced in AR de-
ficient OIR retinae, indicating that AR deficiency reduced retinal vascular changes in a
mouse model of OIR, and that AR can be a potential therapeutic target in ischemia-induced
retinopathies [194].

In another study, in vivo evaluation of the potency of fidarestat in STZ treated diabetic
rats was conducted for diabetes-associated cataract formation, retinal oxidative nitrosative
stress levels, glial activation, and apoptosis. Fidarestat treatment prevented diabetic cataract
formation and successfully counteracted retinal nitrosative stress and poly (ADP-ribose)
polymerase activation as well as glial activation. It also prevented nitrotyrosine, poly (ADP-
ribose) accumulation, and apoptosis. These findings supported an important role for AR in
diabetes-associated cataract formation, as well as retinal oxidative-nitrosative stress, glial
activation, and apoptosis. These results provide a strong rationale for the development
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of AR inhibitors such as fidarestat for the prevention and treatment of diabetic ocular
complications [195].

Paradoxically, not all patients with diabetes develop ocular complications. Some
diabetics with poor metabolic control appear to be protected against retinopathy, while
others with a history of excellent metabolic control develop severe complications. These
observations indicate that some risk factor(s) may influence the likelihood that an indi-
vidual with diabetes will develop cataract and/or retinopathy. It seems that an elevated
level of AR gene expression could confer higher risk for the development of diabetic eye
disease. A transgenic mouse strain harboring human AR was examined for the onset
and severity of diabetes-induced cataract. AR-TG mice homozygous for the transgene
demonstrated a conditional cataract phenotype whereby they developed lens vacuoles
and cataract-associated structural changes only after induction of experimental diabetes;
no such changes were observed in AR-TG heterozygotes or non-transgenic mice with
or without experimental diabetes induction. The nondiabetic AR-TG mice did not show
structural changes in the lens even though they had lenticular sorbitol levels almost as high
as the diabetic AR-TG lenses that showed early signs of cataract. However, overexpression
of AR led to increase in the ratio of activated to total levels of extracellular signal-regulated
kinase (ERK1/2) and c-Jun N-terminal (JNK1/2), which are known to be involved in cell
growth and apoptosis, respectively [10,38,80]. After diabetes induction, AR-TG, but not
WT controls, had decreased levels of phosphorylated as well as total ERK1/2 and JNK1/2
compared to their nondiabetic counterparts. These results indicate that high AR expression
in the context of hyperglycemia and insulin deficiency may constitute a significant risk
factor that could predispose the lens to disturbance in signaling through the ERK and JNK
pathways, and thereby alter the balance of cell growth and apoptosis that is critical to lens
transparency and homeostasis [196]. However, the general experience with AR inhibitors
in a randomized double-blind study of patients with insulin-dependent diabetes (IDDM),
either with sorbinil or placebo, was found to be disappointing as no significant differences
were noted between the treatment and placebo groups. Unfortunately, hypersensitivity to
sorbinil was noted in about seven percent of subjects during the treatment. Ponalrestat,
tested in small groups of patients, also showed no benefit in DR [197], nor did a trial of
topical corneal administration of an AR inhibitor [198].

More recently, advances in molecular genetics are enabling studies to discern the
influence of individual genes among patients with similar risk factors for the development
and progression of DR because of the substantial variability in the progression of disease
and its severity. Polymorphism in the promoter of the AR gene has been suggested in
changing the expression of its gene in certain ethnic groups. In a limited number of type
2 diabetic patients categorized for the presence or absence of diabetic microangiopathy,
AR genotyping revealed a C-106T polymorphism that turned out to be a risk factor for
the development of retinal complications in those patients [199]. A few of them have
shown statistically significant association in multiple series from various parts of the world;
however, no definite genetic association with DR has been consistently reported. This lack
of association could be due to small sample size, study design limitations, underlying
genetic differences between study populations, or other unknown factors.

Apart from its association with the etiology of DR, AR has also been linked to the
causation of autoimmune-mediated uveitis. Earlier studies suggested that inhibition of
AR prevented cytokine, growth factor, and LPS-induced oxidative stress signals, leading
to production of prostaglandin E (PGE) 2, cytokines, and activation of cycloxygenase-2
(Cox-2) and iNOS; activation of these inflammatory markers is known to be the major
mediator of ocular inflammation. Srivastava and colleagues investigated the effect of AR
inhibition on endotoxin-induced uveitis (EIU) in rats [200]. Inhibition of AR prevented
EIU-induced inflammatory marker levels in the aqueous humor (AQH) of rat eyes and
suppressed the inflammatory cells’ (leukocytes) infiltration and protein concentration in
AQH. Similarly, the rise in TNF-α, nitric oxide (NO), and PGE2 levels in AQH of EIU rats
was significantly attenuated by AR inhibition. Furthermore, the levels of TNF-α in the
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anterior and posterior segments of the eye were also determined. Increased levels of TNF-α
were found in AQH, vitreous humor, choroid, and retina, and were significantly prevented
by AR inhibition. Similarly, the increase in iNOS and Cox-2 proteins in the ciliary body,
corneal epithelium, and retinal wall were prevented by AR inhibition.

Administration of AR inhibitor also prevented the activation of NF-kB in the ciliary
body, corneal epithelium and retinal wall of LPS-treated rat eyes, suggesting that inhibition
of AR prevents EIU in rats [200]. Thus, AR inhibitors could be employed therapeutically to
treat patients with uveitis and associated complications that have the potential of stimulat-
ing the inflammatory signals [13]. The mechanistic details of how AR regulates the redox
signaling are not clear; however, the evidence collected in our laboratory indicates that
oxidative stress (Figure 3) generates large number of lipid-derived aldehydes by peroxi-
dation of membrane lipids, which readily conjugate with glutathione and are reduced to
respective alcohols by AR (Table 1). The reduced GS-lipid alcohols act as signaling interme-
diaries and activate protein kinases via a still uncertain mechanism, eventually activating
redox-sensitive transcription factors, causing inflammation and further enhancement of the
prevailing oxidative stress and continuing cyclic episodes that lead to disease establishment
and progression [141,201]. Interestingly, inhibition of AR blocks the production of GS-lipid
alcohols which could halt this cycle and prevent disease progression [202].

1.6. Nephropathy

Diabetic nephropathy (DN) is the principal cause of end-stage renal disease in Western
society, affecting a substantial proportion (25–40%) of patients [203]. The pathogenesis of
DN involves hemodynamic changes that include elevation of systemic and intraglomerular
pressure and activation of vasoactive hormonal pathway including the RAS, endothelin,
and urotensin. One of the primary factors in the development of DN is the mesangial extra
cellular matrix (ECM) accumulation. Studies show that AR inhibitors (Table 2) decrease
the mesangial matrix in diabetic rats by 80–90% via inhibition of TGF-β [204–206].

In the past, treatment of DN has focused on controlling the hyperglycemia and inter-
rupting RAS with anti-hypertensive agents. Novel targets, some of which are linked to
glucose dependent pathways targeting the AR, appear to be a major focus of new therapies
directed against the development and progression of renal damage. It is likely that resolu-
tion of DN will require synergistic therapies to target multiple mediators [207]. Genetic
association with AR and susceptibility to diabetic microvascular complications have been
described by several groups. Preliminary reports associate a tendency to nephropathy
in diabetics having polymorphism of the gene coding for AR in both type 1 [208] and
type 2 [209] diabetics. Additionally, polymorphism in the promoter region of the gene,
the gene itself, and in other regions have also been shown to be correlated with diabetic
complications including nephropathy [210]. One polymorphism is (AC)n dinucleotide
repeat at the 5′ end of the AR gene. The Z-2 variant is associated with a 2- to 3-fold increase
in the expression of AR in humans with diabetic nephropathy. Expression of this genotype
exhibited a 3.3-fold increase for the risk of classic diabetic glomerulopathy [211].

A meta-analysis of studies on this association concluded that Z-2 allele appeared
to be a genetic risk factor for DN [212]. ARIs may improve some of the manifestations
of DN, since experimental models have shown a decrease in hyperperfusion during DN
with the use of ARIs (Table 2). Diabetic mice treated with sorbinil showed normal single
nephron filtration rate, plasma flow, and blood flow whereas the markers for glomerular
hyperperfusion were all raised in the untreated mice [213]. Further, in a study using three
different ARIs all reduced the glomerular filtration rate and the 24 h urinary albumin
excretion when compared to untreated diabetic mice [214]. In one study, for example, when
tolrestat was given to patients with IDDM after six months of placebo [215] it reversed the
glomerular hyperfiltration, lowering the glomerular filtration rate from 156 to 124 mL/min
and decreasing urinary albumin excretion rate from 197 to 158 mg/day. Similar changes
were observed with ponalrestat treatment [216].
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It has been hypothesized that ARI treatment lowers plasma VEGF in diabetic rats, and
this may contribute to ARIs’ anti-microalbuminuric effects [217]. Despite previous evidence,
some studies suggested that ARs may not be effective over the long term. In one report,
urinary albumin excretion was measured in diabetic subjects who were treated either with
tolrestat or ascorbic acid [218]. Although ascorbic acid decreased urinary albumin excretion
rate after nine months, tolrestat had no effect on proteinuria or other measured variables.
On the other hand, when epalrestat was evaluated in a study that administered the drug to
type 2 diabetics presenting with microalbuminuria and who were then compared with age,
gender, and body mass matched diabetic control subjects [219] blood pressure, HbA1c, and
total cholesterol were unchanged in both groups, and the control group had significantly
increased urinary albumin excretion from 82 mg/g creatinine at the baseline to 301 mg/g
at the end of the study. There was no change in urinary albumin excretion in the epalrestat
treated group (81 mg/g at baseline and 87 mg/g by the end of the study). However, a
further illustration of the benefits of ARIs in DN is that increased AR expression, AGE,
and TGF-β were inhibited by zopolrestat [220]. These results were interpreted by the
investigators as favoring the potential usefulness of ARIs in the incipient stage of DN
in T2D.

1.7. Neuropathy

Diabetic peripheral neuropathy (DPN) is a common yet painful and severely debilitat-
ing complication that currently has no effective treatments other than diabetes control and
management. The recognition of the difficulty in reversing established DPN has focused
efforts primarily on slowing its progression [221]. ARIs have produced inconsistent benefits
in DPN. A double-blind placebo-controlled trial evaluated the effect of tolrestat withdrawal
in patients with IDDM and symptomatic neuropathy who were treated with tolrestat [222].
Patients who were switched to placebo showed progression of motor nerve neuropathy
(decreased conduction velocity) and deterioration of vibration threshold. In comparison,
those who continued tolrestat remained stable. Symptoms of pain and paresthesia were less
prevalent in the tolrestat group. Some benefits of tolrestat in primary prevention [223] and
in the treatment of symptomatic diabetic neuropathy have been shown [66,122,224,225].
However, the improvements were relatively minor, and only seen in a relatively small
number of symptomatic patients [7].

In one study of patients with symptomatic neuropathy, a sustained improvement
in motor nerve conduction velocity and paresthesia was seen in 28 percent of patients
treated with tolrestat, versus five percent in the placebo group. There was no benefit in
neuropathic pain, which improved to an equivalent degree in both groups. A multicenter
double-blind trial involving 549 patients with sensorimotor polyneuropathy who were
assigned to treatment with placebo or ranirestat 10, 20, or 40 mg/day for 52 weeks found no
significant change in nerve conduction studies, or in quantitative sensory tests of bilateral
sural plus proximal median sensory nerve conduction velocity [101]. There was significant
improvement in the summed motor velocity with ranirestat 20 and 40 mg/day at 12, 24,
and 36 weeks, and in peroneal motor velocity with ranirestat 20 mg/day at 36 and 52 weeks.
The authors concluded that treatment with ranirestat benefits motor but not sensory nerve
function in mild to moderate neuropathy [226]. Based on these data, ranirestat was termed
as the ‘most promising’, and ‘safe’ of the newly introduced ARIs (Table 2) [101].

At present, there is decreased enthusiasm for ARIs to prevent or treat diabetic compli-
cations, since the large sorbinil retinopathy trial showed a lack of important benefits [44].
Although nerve conduction velocities were increased by sorbinil in the peroneal nerve
they were not in the median motor or sensory nerves as there was no amelioration of the
early clinical signs or symptoms of diabetic neuropathy [45]. A similar lack of benefit
was observed in a second study, in which an autonomic neuropathy was assessed using
myocardial scintigraphy [227]. Despite setbacks, encouraging studies in rats prompted
clinical trials of fidarestat. By donating a proton to AR, fidarestat changes from a neutral to
a negative charge, a change that is thought to underlie the mechanism for its inhibitory
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action [228]. Control and STZ-induced diabetic rats were treated with or without fidare-
stat for six weeks after induction of diabetes. Sciatic motor nerve conduction velocity,
hind limb digital sensory nerve conduction velocity, and sciatic nerve concentration of
two major non-enzymatic antioxidants, glutathione, and ascorbate, decreased in diabetic
versus control rats, and these changes were prevented by fidarestat. In addition, fidarestat
prevented diabetes-induced increase in nitrotyrosine (a marker of peroxynitrite-induced in-
jury), and poly (ADP-ribose) immuno-reactivities in both the sciatic nerve and retina [229].
In a study of 279 patients with diabetic neuropathy, patients were randomly assigned to
receive placebo or fidarestat for 52 weeks [52]. Significant objective improvement in elec-
trophysiological measures of nerve conduction in motor, and sensory nerves was observed
in the fidarestat group compared with placebo, and all subjective symptoms evaluated
(numbness, spontaneous pain, sensation of rigidity, paresthesia in the soles upon walking,
heaviness in the foot, and hypesthesia) were also significantly improved in the treated
group. However, no other clinical trials involving fidarestat have been reported since 2005.

One positive clinical application has been reported in a Japanese trial of the AR
inhibitor epalrestat [230,231]. In a prospective open-label multicenter study in which epal-
restat and control groups were randomly assigned to either epalrestat daily (289 patients)
or a control group (305 patients) for three years, with median nerve conduction velocity
(MNCV) taken as the key determinant of efficacy, Epalrestat significantly prevented dete-
rioration of median MNCV while preserving vibration perception threshold seen in the
control group. Long-term treatment with epalrestat was well tolerated.

Clinical end points for improvement in diabetic neuropathy are difficult to quantitate,
and caution is appropriate in accepting a positive conclusion from those studies reported
to date [7]. Except for fidarestat, there has generally been no improvement in pain, an
inconsistent effect on paresthesia, and an increase in nerve conduction in some but not
all nerves. To provide more objective data, sural nerve biopsies were examined in a
trial of tolrestat in 600 diabetic subjects in the hope that histologic evidence of nerve
regeneration may be a marker of drug induced improvement [232]. Ranirestat was found
to penetrate the sural nerve and inhibit sorbitol and fructose accumulation in patients with
diabetic sensorimotor polyneuropathy [99]. However, overall clinical trials to demonstrate
prevention or amelioration of diabetic neuropathy by ARIs have proven insufficiently
positive to warrant their clinical use. Current exploration of the benefits of blocking AR in
diabetic patients should include correction of flawed clinical trial design, introduction of
improved drugs, and exploration of how the molecular anatomy of an AR drug relates to
its efficacy [233]. Interestingly, in a diabetic AR knockout mice study a delayed onset of
nerve conduction slowing was observed in comparison to that of diabetic wild-type (WT)
mice. Further, when sciatic nerves from these mice were exposed to 12 weeks of diabetes
followed by a metabolomics analysis, it led to an identification of elevated glucosamine
levels in both diabetic AR knockout as well as diabetic WT mice, identifying a novel
pathway. Thus, exploration of new pathway(s) may offer a potential therapeutic target in
diabetic neuropathy [234].

1.8. Sepsis

Although AR was initially studied for its role in the pathogenesis of diabetic compli-
cations, but it has also gained attention for its role in several inflammatory conditions [233].
One of these conditions is sepsis, a fatal inflammatory response syndrome which develops
when the initial host response to microbes or microbial products is amplified uncontrollably.
Studies suggest that inhibition of AR can attenuate the inflammatory signaling involved in
the production of cytokines and chemokines during sepsis. Furthermore, inhibition of AR
has been shown to decrease cytotoxic effects associated with inflammatory mediators in
tissues, as well as their paracrine and endocrine effects that propagate toxicity [13].

Lipid peroxidation derived carbonyls generated by oxidative stress are catalyzed
to their glutathione adducts by AR [12]. These adducts, including GS-HNE, propagate
the inflammatory signals through the activation of PLC/PKC/NF-κB, and findings show



Metabolites 2021, 11, 655 16 of 29

that the harmful effects of uncontrolled inflammation can be effectively prevented or
significantly ameliorated by inhibiting AR, either with a pharmacological AR inhibitor or
by genetic ablation of AR through small interfering RNA (siRNA) [140]. Previous work
showed that treatment of LPS stimulated macrophages with AR inhibitors prevented the
activation of NF-κB and other pro-inflammatory markers such as NO, PGE2 and COX-
2 [235]. A study looking at LPS-induced murine peritoneal macrophages showed that
treatment with three different ARIs significantly reduced (80–90%) levels of TNF-α, IFN-γ,
IL-1β and MCP-1 (Table 2).

Moreover, it has been shown that inhibition of AR prevents LPS-induced secretion of
cytokines in serum, liver, kidney, spleen, and heart along with a concomitant decrease in
mouse cardiac muscle contractility that leads to cardiomyopathy and lethality in a mouse
model of sepsis [236]. Similarly, AR inhibition also prevents cecum ligation puncture-
induced inflammatory response in mice [237]. All these studies suggest that AR inhibitors
that are thought to prevent some diabetic complications could also be alternatively em-
ployed to downregulate septic cascade, and its associated lethality.

1.9. Cancer

Recent studies suggest that AR is a key regulator of ROS signals induced by cytokines
and growth factors (GF) leading to cell growth and differentiation in vascular cells and
colorectal cancer (CRC) cells [55,127,128]. RNA interference ablation of AR or pharmaco-
logical inhibitors of AR prevent growth factor and cytokine-induced cancer cell growth.
Further, inhibition of AR by sorbinil or by antisense ablation prevented FGF and PDGF
induced upregulation of PGE2 synthesis in Caco-2 cells. Inhibition of AR also prevented GF
induced Cox-2 activity, protein, and mRNA, and significantly decreased the activation of
NF-κB, PKC, and phosphorylation of PKC-β2, as well as progression of Caco-2 cell growth,
but had no effect on Cox-1 activity. Cell cycle analysis suggested that inhibition of AR
prevented GF-induced proliferation of Caco-2 cells in S-phase. Since ROS are major culprits
in the uncontrolled growth of cancer cells, researchers also examined the effect of AR inhi-
bition on ROS production. These results suggest that AR inhibition prevents GF induced
ROS production in cancer cells [238]. Further, it has also been shown that inhibition of AR
prevents cancer cell growth by suppressing the entry of cells in the G1/S phase of the cell
cycle via regulating the transcriptional activation of E2F transcription factors. The efficacy
of ARI or AR siRNA in the prevention of colon cancer growth in nude mice xenografts
was also examined. Inhibition or siRNA ablation of AR completely halted the growth of
human adenocarcinoma cells (SW480) in nude mice xenograft tumors [239]. None of the
treatments interfered with the normal weight gain of animals during the experiments.

AR inhibition prevented the azoxymethane (AOM)-induced aberrant crypt foci (ACF)
formation and premalignant lesions in mice. These studies indicated that AR null mice
are resistant to AOM-induced ACF formation, and expression of inflammatory and car-
cinogenic markers [240,241]. Several studies indicate that AR is overexpressed in human
cancers such as lung, colon, breast, and prostate [242]. Further, AR is overexpressed in
hepatocarcinogenesis [243]. Previous studies also indicate that AR inhibition prevents
colon cancer cachexia [82]. The above studies thus indicate that inhibition of AR may be a
potential therapeutic approach in preventing progression of CRC. Additionally, AR inhibi-
tion suppresses the oncogenic miR-21 expression and prevents proliferation of cancer cells.
PTEN as a putative target of miR-21 was identified, and it was shown that AR inhibition
upregulates PTEN and FOXO3a levels, and downregulates miR-21, thereby facilitating
the inhibition of tumorigenesis. It was demonstrated that AR regulates the expression
of miR-21 and its target PTEN, which are the key regulators of numerous physiological
cellular processes such as proliferation, metabolism, and apoptosis via PI3K/AKT/AP-1
signaling [244].
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2. Concluding Remarks, and Perspectives

AR is an important enzyme that has been the focus of active research for more than
four decades. It is a rate-limiting enzyme in the polyol pathway and has been consistently
implicated in the pathogenesis of diabetic complications. The enzyme catalyzes the reduc-
tion of glucose to sorbitol. So far, outcomes from clinical studies targeting its inhibition
have not led to robust and convincing evidence of significant benefits, except in some
patients with diabetic neuropathy. It is possible that doses employed for various ARIs were
low (in anticipation of possible toxicity at higher doses), or that studies were not done
for long enough (Table 2) [7]. Microvascular complications of diabetes develop slowly,
often taking a decade or longer to become clinically evident. Therefore, an intervention
in the late stages of nephropathy, neuropathy, or retinopathy may not result in significant
differences between treatment groups. The inability of ARIs to reproduce clinical benefits
observed in animal models in diabetic patients by blunting neuropathy and retinopathy
has been disappointing. Thus, although one in four patients with diabetes is afflicted with
distal symmetric polyneuropathy, treatment of the syndrome continues to be an unmet
challenge [137].

As the molecular basis for the pathogenesis of diabetic complications is further unrav-
eled, an increasingly promising therapy would be to administer two or more synergistic
metabolic blockers. As an example, expression of retinal VEGF and development of prolif-
erative retinopathy in galactosemic rats may be prevented by either aminoguanidine or
ARIs. Since both drugs impede immunocytochemical expression of VGEF, their combined
therapy may ultimately prevent diabetic retinopathy [137,245]. The role of AR in mediating
angiogenic signals has been examined in cell culture and in nude mice xenografts [156]. In
one study, the inhibition of AR prevented VEGF-induced proliferation and expression of
oxidative stress signaling, infiltration of blood cells, invasion, migration, and formation of
capillary-like structures, suggesting a possible application in preventing angiogenesis. For
now, clinical application of ARIs remains an unfulfilled promise.

Although AR was initially thought to be involved in secondary diabetic complications
because of its glucose reducing potential, evidence from recent studies indicates that
AR is an excellent catalyst for the reduction of a number of lipid peroxidation-derived
aldehydes as well as their glutathione conjugates, which regulate inflammatory signals
initiated by oxidants such as cytokines, growth factors, and bacterial endotoxins, and
thus revealing the potential use of AR inhibition as an approach to prevent inflammatory
complication (Table 1). Nonetheless, inhibition of AR appears to be a promising strategy
for the treatment of endotoxemia, sepsis, and inflammatory diseases. Current knowledge
provides enough evidence to indicate that AR inhibition is a logical therapeutic strategy
for the treatment of endotoxin related inflammatory diseases. Since ARIs have already
undergone clinical studies for diabetic complications and found to be safe for human
use, their use in endotoxin related inflammatory diseases could be expedited (Table 2).
However, one of the major challenges will be the discovery of AR-regulated clinically
relevant biomarkers to identify susceptible individuals at risk of developing inflammatory
diseases, thereby warranting future research [246].

There are obvious challenges associated with in vivo studies, as AR-like enzymes
such as AKR1B10, AKR1B7, and AKR1B8 are highly related isoforms and share up to 65%
protein identity, and are often co-expressed along with AR, making functional analysis a
difficult task. They can reduce many redundant substrates (aldehydes from lipid peroxida-
tion, steroids and their byproducts, and xenobiotics, in vitro) (Figure 4). Based on these
properties it appears that more holistic approaches may be designed to study the AKR fam-
ily, which are involved not only in detoxification but signal transduction as well. Therefore,
inhibition of these enzymes might have unforeseen physiological consequences [130].

Apart from its role as a detoxifying enzyme of toxic aldehydes (Table 1), AR is also an
osmoregulator in the kidney and a regulator of sperm maturation. Emerging reports now
suggest that under normal glucose concentration AR may be upregulated by factors other
than hyperglycemia and be involved in other pathological processes that have become



Metabolites 2021, 11, 655 18 of 29

major threats to human health. Such pathologies include cardiac disorders, inflamma-
tion, mood disorders, renal insufficiency, and ovarian abnormalities [43,209,247–258]. In
addition, AR is overexpressed in different human cancers such as liver, breast, ovarian,
cervical, and rectal cancers, suggesting that AR may be an attractive target for anti-cancer
interventions [242,247,251,259–266].

Past research indicates that AR is involved in the pathogenesis of secondary diabetic
complications. As a result, several ARIs were developed and tested in the setting of
diabetic complications (Table 2). These inhibitors were found to be safe for human use
but were found to be unsuccessful in clinical studies because of their limited efficacy.
Looking at the trend of the last few years, it appears that the research for new chemical
entities has relatively subsided; however, natural products and plant extracts with AR-
inhibitory activities are gaining more interest, along with the search for proper forms of
known inhibitors that are based on a rational receptor-focused lead optimization endowed
with lower micromolar or sub-micromolar activities as a way to improve their impaired
physicochemical profiles, as well as potential combination therapies with other compounds
of pharmaceutical interest [267,268].

Recently, several groups have suggested that besides reducing glucose, AR also
efficiently reduces oxidative stress-generated lipid peroxidation derived-aldehydes and
their glutathione conjugates. Since lipid aldehydes alter cellular signals [12] by regulating
activation of transcription factors such as NF-κB and AP-1, inhibition of AR could halt such
events. Indeed, a wide array of recent experimental evidence indicates that the inhibition of
AR prevents oxidative stress-induced activation of NF-κB and AP-1 signals that lead to cell
death or growth. Further, ARIs have been shown to prevent inflammatory complications
such as sepsis, asthma, cancers (colon, breast, prostate, and lung), metastasis, and uveitis in
animal models. The new in vitro and in vivo data have provided a basis for investigating
the clinical efficacy of new ARIs with improved profiles as potential therapeutic agents in
preventing inflammatory complications other than diabetes. The discovery of such new
insights for this old enzyme could have considerable importance in envisioning potential
new therapeutic strategies for the prevention and treatment of inflammatory diseases,
thereby igniting a renewed interest in the field of ARIs (Table 2) [269].
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248. Demir, Y.; Taslimi, P.; Koçyiğit, Ü.M.; Akkuş, M.; Özaslan, M.S.; Duran, H.E.; Budak, Y.; Tüzün, B.; Gürdere, M.B.; Ceylan, M.;
et al. Determination of the Inhibition Profiles of Pyrazolyl-Thiazole Derivatives Against Aldose Reductase and α-Glycosidase
and Molecular Docking Studies. Arch. Der Pharm. 2020, 353, e2000118. [CrossRef]

249. Zaher, N.; Nicolaou, I.; Demopoulos, V.J. Pyrrolylbenzothiazole Derivatives as Aldose Reductase Inhibitors. J. Enzym. Inhib. Med.
Chem. 2002, 17, 131–135. [CrossRef] [PubMed]

250. Backonja, M.; Beydoun, A.; Edwards, K.R.; Schwartz, S.L.; Fonseca, V.; Hes, M.; LaMoreaux, L.; Garofalo, E. Gabapentin for the
Symptomatic Treatment of Painful Neuropathy in Patients with Diabetes mellitus: A Randomized Controlled Trial. Jama 1998, 280,
1831–1836. [CrossRef] [PubMed]

251. Berry, G.T. The Role of Polyols in the Pathophysiology of Hypergalactosemia. Eur. J. Pediatrics 1995, 154, 53–64. [CrossRef]
252. Andres-Hernando, A.; Li, N.; Cicerchi, C.; Inaba, S.; Chen, W.; Roncal-Jimenez, C.; Le, M.T.; Wempe, M.F.; Milagres, T.; Ishimoto,

T.; et al. Protective Role of Fructokinase Blockade in the Pathogenesis of Acute Kidney Injury in Mice. Nat. Commun. 2017,
8, 14181. [CrossRef]

253. García-Arroyo, F.E.; Tapia, E.; Blas-Marron, M.G.; Gonzaga, G.; Silverio, O.; Cristóbal, M.; Osorio, H.; Arellano-Buendía, A.S.;
Zazueta, C.; Aparicio-Trejo, O.E.; et al. Vasopressin Mediates the Renal Damage Induced by Limited Fructose Rehydration in
Recurrently Dehydrated Rats. Int. J. Biol. Sci. 2017, 13, 961–975. [CrossRef]

254. Hasuike, Y.; Nakanishi, T.; Otaki, Y.; Nanami, M.; Tanimoto, T.; Taniguchi, N.; Takamitsu, Y. Plasma 3-Deoxyglucosone Elevation
in Chronic Renal Failure Is Associated with Increased Aldose Reductase in Erythrocytes. Am. J. Kidney Dis. 2002, 40, 464–471.
[CrossRef] [PubMed]

255. Prasad, P.; Tiwari, A.K.; Kumar, K.M.; Ammini, A.C.; Gupta, A.; Gupta, R.; Thelma, B.K. Association Analysis of ADPRT1,
AKR1B1, RAGE, GFPT2 and PAI-1 Gene Polymorphisms with Chronic Renal Insufficiency Among Asian Indians with Type-2
Diabetes. BMC Med. Genet. 2010, 11, 52. [CrossRef] [PubMed]

256. Takahashi, K.; Mizukami, H.; Kamata, K.; Inaba, W.; Kato, N.; Hibi, C.; Yagihashi, S. Amelioration of Acute Kidney Injury in
Lipopolysaccharide-Induced Systemic Inflammatory Response Syndrome by an Aldose Reductase Inhibitor, Fidarestat. PLoS
ONE 2012, 7, e30134. [CrossRef] [PubMed]

257. Yagihashi, S.; Mizukami, H.; Ogasawara, S.; Yamagishi, S.; Nukada, H.; Kato, N.; Hibi, C.; Chung, S.; Chung, S. The Role of
the Polyol Pathway in Acute Kidney Injury Caused by Hindlimb Ischaemia in Mice. J. Pathol. 2010, 220, 530–541. [CrossRef]
[PubMed]

http://doi.org/10.1093/braincomms/fcaa168
http://doi.org/10.1021/jm500907a
http://doi.org/10.1161/CIRCULATIONAHA.106.630830
http://www.ncbi.nlm.nih.gov/pubmed/17030682
http://doi.org/10.1016/j.cyto.2009.07.004
http://www.ncbi.nlm.nih.gov/pubmed/19660963
http://doi.org/10.1158/0008-5472.CAN-06-2105
http://www.ncbi.nlm.nih.gov/pubmed/17018629
http://doi.org/10.1158/1535-7163.MCT-09-0795
http://www.ncbi.nlm.nih.gov/pubmed/20354121
http://doi.org/10.1093/carcin/bgn246
http://doi.org/10.1016/j.canlet.2014.09.006
http://doi.org/10.1097/00001813-200102000-00005
http://www.ncbi.nlm.nih.gov/pubmed/11261885
http://doi.org/10.1089/ars.2012.4643
http://doi.org/10.1007/s10456-007-9069-x
http://doi.org/10.1517/13543784.2012.656198
http://doi.org/10.2174/092986709787458362
http://doi.org/10.1002/ardp.202000118
http://doi.org/10.1080/1475636029002658
http://www.ncbi.nlm.nih.gov/pubmed/12420760
http://doi.org/10.1001/jama.280.21.1831
http://www.ncbi.nlm.nih.gov/pubmed/9846777
http://doi.org/10.1007/BF02143805
http://doi.org/10.1038/ncomms14181
http://doi.org/10.7150/ijbs.20074
http://doi.org/10.1053/ajkd.2002.34884
http://www.ncbi.nlm.nih.gov/pubmed/12200796
http://doi.org/10.1186/1471-2350-11-52
http://www.ncbi.nlm.nih.gov/pubmed/20353610
http://doi.org/10.1371/journal.pone.0030134
http://www.ncbi.nlm.nih.gov/pubmed/22253906
http://doi.org/10.1002/path.2671
http://www.ncbi.nlm.nih.gov/pubmed/20112370


Metabolites 2021, 11, 655 29 of 29

258. Zhou, H.L.; Zhang, R.; Anand, P.; Stomberski, C.T.; Qian, Z.; Hausladen, A.; Wang, L.; Rhee, E.P.; Parikh, S.M.; Karumanchi,
S.A.; et al. Metabolic Reprogramming by the S-Nitroso-CoA Reductase System Protects Against Kidney Injury. Nature 2019, 565,
96–100. [CrossRef] [PubMed]

259. Tammali, R.; Reddy, A.B.; Saxena, A.; Rychahou, P.G.; Evers, B.M.; Qiu, S.; Awasthi, S.; Ramana, K.V.; Srivastava, S.K. Inhibition
of Aldose Reductase Prevents Colon Cancer Metastasis. Carcinogenesis 2011, 32, 1259–1267. [CrossRef] [PubMed]

260. Zhao, J.X.; Yuan, Y.W.; Cai, C.F.; Shen, D.Y.; Chen, M.L.; Ye, F.; Mi, Y.J.; Luo, Q.C.; Cai, W.Y.; Zhang, W.; et al. Aldose Reductase
Interacts with AKT1 to Augment Hepatic AKT/mTOR Signaling and Promote Hepatocarcinogenesis. Oncotarget 2017, 8,
66987–67000. [CrossRef]

261. Jamialahmadi, K.; Azghandi, M.; Javadmanesh, A.; Zardadi, M.; Shams Davodly, E.; Kerachian, M.A. A DNA Methylation Panel
for High Performance Detection of Colorectal Cancer. Cancer Genet. 2021, 252, 64–72. [CrossRef]

262. Huang, L.; He, R.; Luo, W.; Zhu, Y.S.; Li, J.; Tan, T.; Zhang, X.; Hu, Z.; Luo, D. Aldo-Keto Reductase Family 1 Member B10
Inhibitors: Potential Drugs for Cancer Treatment. Recent Pat. Anti-Cancer Drug Discov. 2016, 11, 184–196. [CrossRef] [PubMed]

263. Jin, J.; Krishack, P.A.; Cao, D. Role of Aldo-Keto Reductases in Development of Prostate and Breast Cancer. Front. Biosci. 2006, 11,
2767–2773. [CrossRef]

264. Qu, J.; Liu, X.; Li, J.; Gong, K.; Duan, L.; Luo, W.; Luo, D. AKR1B10 Promotes Proliferation of Breast Cancer Cells by Activating
Wnt/β-Catenin Pathway. Chin. J. Cell. Mol. Immunol. 2019, 35, 1094–1100.

265. Sonowal, H.; Pal, P.; Shukla, K.; Saxena, A.; Srivastava, S.K.; Ramana, K.V. Aldose Reductase Inhibitor, Fidarestat Prevents
Doxorubicin-Induced Endothelial Cell Death and Dysfunction. Biochem. Pharmacol. 2018, 150, 181–190. [CrossRef]

266. Van Weverwijk, A.; Koundouros, N.; Iravani, M.; Ashenden, M.; Gao, Q.; Poulogiannis, G.; Jungwirth, U.; Isacke, C.M. Metabolic
Adaptability in Metastatic Breast Cancer by AKR1B10-Dependent Balancing of Glycolysis and Fatty Acid Oxidation. Nat.
Commun. 2019, 10, 2698. [CrossRef]

267. Chatzopoulou, M.; Alexiou, P.; Kotsampasakou, E.; Demopoulos, V.J. Novel Aldose Reductase Inhibitors: A Patent Survey
(2006–Present). Expert Opin. Ther. Pat. 2012, 22, 1303–1323. [CrossRef]

268. Ramunno, A.; Cosconati, S.; Sartini, S.; Maglio, V.; Angiuoli, S.; La Pietra, V.; Di Maro, S.; Giustiniano, M.; La Motta, C.; Da
Settimo, F.; et al. Progresses in the Pursuit of Aldose Reductase Inhibitors: The Structure-Based Lead Optimization Step. Eur. J.
Med. Chem. 2012, 51, 216–226. [CrossRef]

269. Cumbie, B.C.; Hermayer, K.L. Current Concepts in Targeted Therapies for the Pathophysiology of Diabetic Microvascular
Complications. Vasc. Health Risk Manag. 2007, 3, 823–832. [PubMed]

http://doi.org/10.1038/s41586-018-0749-z
http://www.ncbi.nlm.nih.gov/pubmed/30487609
http://doi.org/10.1093/carcin/bgr102
http://www.ncbi.nlm.nih.gov/pubmed/21642355
http://doi.org/10.18632/oncotarget.17791
http://doi.org/10.1016/j.cancergen.2020.12.007
http://doi.org/10.2174/1574892811888160304113346
http://www.ncbi.nlm.nih.gov/pubmed/26844556
http://doi.org/10.2741/2006
http://doi.org/10.1016/j.bcp.2018.02.018
http://doi.org/10.1038/s41467-019-10592-4
http://doi.org/10.1517/13543776.2012.726615
http://doi.org/10.1016/j.ejmech.2012.02.045
http://www.ncbi.nlm.nih.gov/pubmed/18200803

	Introduction 
	Structure of Aldose Reductase 
	Functional Aspects of Aldose Reductase 
	Role of Aldose Reductase in Human Diseases 
	Diabetes 
	Cardiovascular Diseases 

	Asthma 
	Oculopathy 
	Nephropathy 
	Neuropathy 
	Sepsis 
	Cancer 

	Concluding Remarks, and Perspectives 
	References

