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Abstract
As cells grow and divide under a given environment, they become crowded and resources

are limited, as seen in bacterial biofilms and multicellular aggregates. These cells often

show strong interactions through exchanging chemicals, as evident in quorum sensing, to

achieve mutualism and division of labor. Here, to achieve stable division of labor, three

characteristics are required. First, isogenous cells differentiate into several types. Second,

this aggregate of distinct cell types shows better growth than that of isolated cells without

interaction and differentiation, by achieving division of labor. Third, this cell aggregate is

robust with respect to the number distribution of differentiated cell types. Indeed, theoretical

studies have thus far considered how such cooperation is achieved when the ability of cell

differentiation is presumed. Here, we address how cells acquire the ability of cell differentia-

tion and division of labor simultaneously, which is also connected with the robustness of a

cell society. For this purpose, we developed a dynamical-systems model of cells consisting

of chemical components with intracellular catalytic reaction dynamics. The reactions con-

vert external nutrients into internal components for cellular growth, and the divided cells

interact through chemical diffusion. We found that cells sharing an identical catalytic net-

work spontaneously differentiate via induction from cell-cell interactions, and then achieve

division of labor, enabling a higher growth rate than that in the unicellular case. This symbi-

otic differentiation emerged for a class of reaction networks under the condition of nutrient

limitation and strong cell-cell interactions. Then, robustness in the cell type distribution was

achieved, while instability of collective growth could emerge even among the cooperative

cells when the internal reserves of products were dominant. The present mechanism is

simple and general as a natural consequence of interacting cells with limited resources,

and is consistent with the observed behaviors and forms of several aggregates of unicellu-

lar organisms.
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Author Summary

Unicellular organisms, when aggregated under limited resources, often exhibit behaviors
akin to multicellular organisms, possibly without advanced regulation mechanisms, as
observed in biofilms and bacterial colonies. Cells in an aggregate have to differentiate into
several types that are specialized for different tasks, so that the growth rate should be
enhanced by the division of labor among these cell types. To consider how a cell aggregate
can acquire these properties, most theoretical studies have thus far assumed the fitness of
an aggregate of cells and the ability of cell differentiation a priori. In contrast, we devel-
oped a dynamical-systems model consisting of cells without assuming predefined fitness.
The model consists of catalytic-reaction networks for cellular growth. By extensive simula-
tions and theoretical analysis of the model, we showed that cells growing under the condi-
tion of nutrient limitation and strong cell-cell interactions can differentiate with distinct
chemical compositions. They achieve cooperative division of labor by exchanging the
produced chemicals to attain a higher growth rate. The conditions for spontaneous cell
differentiation and collective growth of cells are presented. The uncovered symbiotic dif-
ferentiation and collective growth are akin to economic theory on division of labor and
comparative advantage.

Introduction

As unicellular organisms grow and divide, they often form a crowded aggregate. As exemplified
by bacterial biofilms [1–3] and slime molds [4, 5], these aggregates are not merely crowded pas-
sively, but sometimes form a functional cell aggregate, in which cells strongly interact with
each other by exchanging chemicals, as demonstrated with quorum sensing [6]. Such a “multi-
cellular aggregate” is often observed to form under a limited resource condition, which may
indicate that formation of an aggregate is a universal strategy for a unicellular organism to sur-
vive in a severe environment and for cells to grow collectively and cooperatively. Interestingly,
mutualistic behaviors, cell differentiation, and division of labor are ubiquitously observed in
such aggregates with isoclonal cells [1–3, 7–9] as well as with heterogeneous cells (e.g., bacterial
ecosystem) [1–3, 10–12]. This raises the questions of how aggregates of identical cells achieve
division of labor for cooperative growth, and what are the necessary conditions? These ques-
tions are important to be addressed in order to understand the formation of multicellular
aggregates, including the formation of biofilms, which has attracted much attention recently
[1–3].

From this point of view, there are at least three characteristics required to achieve stably
growing aggregates with division of labor.

(i) Cell differentiation: starting from a single cell, cell states become differentiated as their
numbers increase and they coexist and grow.

(ii) Cooperative growth: these different cell types mutually cooperate for their growth, possi-
bly by division of labor, to avoid being driven to extinction by competition with the iso-
lated, undifferentiated cells.

(iii) Robustness in the distribution of the number of differentiated cells: balance in the popu-
lation distribution of cell types is maintained so that cells of different types can coexist
stably and grow together.
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To achieve stable task differentiation, (i) cell differentiation through cell-cell interaction
would be necessary, whereas (ii) cooperative growth is also required, since otherwise commu-
nity formation through cell-cell communication would not be advantageous (or might even be
deleterious) compared with the case of isolated cells without any interaction. However, simply
achieving this cooperative growth does not necessarily imply that this state is robust, since if
one cell type reproduces faster than any other type, the fastest type would dominate the popula-
tion and the appropriate cell type ratio for division of labor would be easily lost. Therefore, (iii)
coexistence of diverse cell types is also an important issue to be addressed for the stability and
survival of a cell colony.

Indeed, such characteristics have also been studied as a primitive form of multicellularity. In
experimental evolution, aggregation of unicellular organisms with division of labor has been
recently investigated with the use of yeast [13] and algae [14]. With respect to theoretical
approaches, a related issue of the survival of an aggregate of cells has been conventionally dis-
cussed in multi-level evolution theory, by introducing a fitness parameter at the cellular and
multi-cellular levels, and investigating how these two fitness values are aligned [15–21]. In
most of the previous studies based on the prescribed fitness, however, the existence of differen-
tiated cell types is presumed, and thus the capacity of cell differentiation and the fitness align-
ment are separated [15–23]. Related criticisms of these previous approaches are discussed in
[24, 25]. Specifically in [24], intracellular dynamics is introduced as the optimization of
resource allocation to different tasks under a given artificial fitness function, and it is shown
that division of labor emerges when it increases the fitness. However, in nature, in general, cell
differentiation does not result from optimization of a given fitness but rather results from
intra-cellular metabolic reaction dynamics, and thus the division of labor is not guaranteed
even when it increases fitness. The fitness, i.e., the rate of cellular growth, is also obtained
through the reaction dynamics. Therefore, it will be important to take cell differentiation and
growth rate into account simultaneously, as a result of intra-cellular reaction dynamics, where
the growth rate of each cell type is not predetermined, but rather changes according to the cel-
lular states. Furthermore, this growth state also depends on the states of surrounding cells,
which may alter the abundances of available resources and the strength of cell-cell interactions.
To consider these issues that have not been addressed in the previous studies, we here present a
dynamical-systems model of cells with intracellular reactions, cell-cell interactions, and uptake
of resources, by which the fitness is determined as the cellular growth rate, rather than being
prescribed in advance.

In fact, such models of interacting and growing cells with intracellular reaction dynamics
have been introduced previously, where the concept of isologous diversification [26] has been
proposed, to address differentiation from a single cell type (property (i)). A previous mathe-
matical model [27] demonstrated that an ensemble of cells sharing a common genotype could
achieve niche differentiation through cell differentiation, and thereby relax the strength of
resource competition. Although this indirect cooperation through niche differentiation would
be beneficial for cell aggregates, we here address cooperative growth in a stronger sense, where
differentiated cells help each other so that interacting cells in an aggregate grow faster than the
isolated undifferentiated cells (unicellular organisms) under the condition of limited resources
(property (ii)). For this purpose, we here consider an environment in which only a single
resource exists, and in such situation, property (ii) is considered as the property of the cell
ensemble to help each other achieve a higher growth than the isolated cells, rather than special-
izing to each resource.

In the present paper, by using a simple model of cells that contain diverse components and
interact with each other through the exchange of chemicals, we address the question of whether
the above three characteristic behaviors are a necessary outcome of an ensemble of interacting
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cells. Specifically, we show that a cell ensemble under strong cell-cell interactions with limited
resources fulfills cell differentiation, cooperative growth, and robustness in the cell type
distribution.

Models

We consider a mathematical model proposed in [26–29], which describes a simple, primitive
cell that consists of k chemical components {X0, . . ., Xk−1}. As illustrated in Fig 1, we assume
that n cells globally interact with each other in a well-mixed medium, and each of them
grows by uptake of the nutrient chemical X0, which is supplied into the medium from the
external environment. The internal state of each cell is characterized by a set of variables
ðxðmÞ0 ; . . . ; xðmÞk� 1; vðmÞÞ, where xðmÞi is the concentration of the i-th chemical Xi, and v(m) is the
volume of them-th cell (m = 1, . . ., n). As a simple model, we consider a situation with only
catalysts and resources, where these k components are mutually catalyzed for their synthesis,
thus forming a catalytic reaction network. A catalytic reaction from a substrate Xi to a prod-
uct Xj by a catalyst Xl, as Xi + αXl! Xj + αXl, occurs at a rate �xðmÞi xðmÞal , where α refers to the
order of the catalytic reaction and is mostly set as α = 2. Here, � is the rate constant for this
reaction, and, for simplicity, all the rate constants are equally fixed at � = 1. The parameters
and variables in this model are listed in Table 1.

Cell states change through intracellular biochemical reaction dynamics and the in- and out-
flow of chemicals, leading to cell-cell interactions via the medium. The medium’s state is char-
acterized by concentrations ðxðmedÞ0 ; . . . ; xðmedÞk� 1 Þ, and a constant volume Vmed. Then, the
dynamics of the concentration of Xi in them-th cell are represented as:

dxðmÞi

dt
¼
Xk� 1

j;l¼0

�Pðj; i; lÞxðmÞj xðmÞal �
Xk� 1

j;l¼0

�Pði; j; lÞxðmÞi xðmÞal þ Dsiðx
ðmedÞ
i � xðmÞi Þ � xðmÞi mðmÞ; ð1Þ

where P(i, j, l) takes the value 1 if there is a reactionXi + αXl! Xj + αXl, and is 0 otherwise. In
Eq (1), the third term describes the influx of Xi from the medium, and the fourth term gives the
dilution owing to the volume growth of the cell, and μ(m) denotes the cellular growth rate. Here,
only a subset of chemical species is diffusible across the cell membranes with the rate of diffu-
sionD. Xi is transported from the medium into them-th cell at a rate Dsiðx

ðmedÞ
i � xðmÞi Þ, where

σi is 1 if Xi is diffusible, and is 0 otherwise.Therefore, them-th cell grows in volume according

Fig 1. Schematic illustration of the N-cell model. Each cell has a common catalytic network, while the

nutrient X0 transported from the medium is transformed to catalytic components for cellular growth. The

nutrient X0 is supplied to the medium from the exterior. The reaction from Xi to Xj is catalyzed by another

component, Xl. Some components (orange circles) are diffusible and exchanged via the medium, while

others (green squares) are not. In the medium, n cells coexist and interact with each other (1�n�N).

doi:10.1371/journal.pcbi.1005042.g001
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to the rate mðmÞ �
Pk� 1

i¼0
Dsiðx

ðmedÞ
i � xðmÞi Þ by assuming that the cellular volume is in proportion

to the total amount of chemicals. The volume dynamics are given by dv(m)/dt = μ(m)v(m). As the
abundances of chemicals are conservedby the intracellular reactions, with this form of volume
growth,

Pk� 1

i¼0
xðmÞi ¼ 1 is time-invariant [28]. The nutrient chemicalX0, which is necessary for

cellular growth, is supplied into the medium from the external environment according to the
rate DmedðC � xðmedÞ0 Þ, whereDmed denotes the diffusion coefficient of the nutrient across the
medium’s boundary, whereasC is the constant external concentration of the nutrient X0 (for
simplicity, the flow of the other diffusible chemicals to the outside of the medium is not
included, although its inclusion does not alter the result below as long as theirDmed values are
not large).

Therefore, the temporal change of xðmedÞi is given by

dxðmedÞi

dt
¼ Dmeds

0

0
ðC � xðmedÞi Þ �

Xn

m¼1

Dsiðx
ðmedÞ
i � xðmÞi ÞvðmÞ

Vmed
; ð2Þ

where s0
0
takes unity only if i = 0, i.e., if Xi is the nutrient. For simplicity, Dmed was set asDmed =D,

though the results reported here do not greatly depend on the value ofDmed.
According to these processes, each cell grows by converting nutrient chemicals into non-dif-

fusible chemicals and storing them within the cell until its volume doubles, and then divides
into two cells with almost the same chemical compositions. Here, the catalytic network in
daughter cells is identical to that in their mother cell. As the initial condition, only a single cell
exists with a randomly determined chemical composition. In addition, we set the carrying
capacity of a mediumN, which is an upper limit to the number of cells that can coexist in the
medium. When the cell number exceeds its upper limit N due to cell division, the surplus cells
are randomly eliminated. Hereafter, this model is referred to as theN-cell model.

Results

Cell differentiation in the N-cell model: Brief summary

We simulated theN-cell model over hundreds of randomly generated reaction networks. Each
catalytic network is generated in the following manner. Each chemical is set to be diffusible

Table 1. The parameters and variables of the N-cell model.

Symbol Value Interpretation

N 100, 1 The maximum number of cells coexisting in a medium

k 20 The number of chemicals

α 2 The order of catalytic reactions

� 1 The rate constant for catalytic reactions

C 0.05, 0.15 The concentration of the nutrient X0 in the medium’s exterior

Vmed 100 The volume of the medium

D 0.1, 1 The diffusion coefficient between cells and the medium

Dmed 0.1, 1 The diffusion coefficient between the medium and its exterior

P(i, j, l ) 0, 1 Whether or not the reaction Xi + αXl! Xj + αXl exists

xðmÞi
variable The concentration of the i-th chemical Xi in the m-th cell

xðmedÞi
variable The concentration of the i-th chemical Xi in the medium

v(m) variable The volume of the m-th cell

μ(m) variable The growth rate of the m-th cell

doi:10.1371/journal.pcbi.1005042.t001
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with probability q = 0.15 and has ρ = 4 outward reaction paths to other chemicals; i.e., each
chemical works as a substrate in ρ reactions. Each reactionXi + αXl! Xj + αXl (i 6¼ j, and Xj
and Xl are not nutrients) is randomly determined so that j 6¼ l is fulfilled.We did not allow for
autocatalytic reactions (j = l) as they are rare in nature. However, the described results were
also obtained without these restrictions.

We are particularly interested in if and how the cells differentiate, and whether the growth
rate would increase as a result of differentiation. For this purpose, cell differentiation is defined
as the emergence of cells with different chemical compositions within the population that
share an identical catalytic network. For the case where the concentrations asynchronously
oscillate in time, we evaluated whether cells have different compositions even after taking the
temporal average over a sufficiently longer time scale than the oscillation period. To evaluate
the growth enhancement, we compared two different situations, “interacting” (N = 100) and
“isolated” (N = 1) cases, and then we computed Rμ, the ratio of the growth rate of interacting
cells to that of isolated cells. Then the growth enhancement is defined as Rμ> 1.

The behavior of theN-cell model is classified into four categories. In category (a), interact-
ing cells differentiate into two or more types and grow faster than isolated cells, i.e., Rμ> 1 (Fig
2; see also Figure A in S1 Text) In category (b), interacting cells differentiate but their growth is
slower than that of isolated cells (Rμ< 1); in this category, as far as we have examined, cells of a
certain type gain chemicals diffused from another type, which are used as catalysts for conver-
sion to non-diffusible chemicals. The latter cell type has a composition similar to that of the
isolated cell, and its growth is decreased by this cell-cell interaction (see Figure B in S1 Text).
Hence, the former cell type is considered to exploit the latter as it receives the unidirectional
chemical inflow. In category (c), cells do not differentiate with respect to the average composi-
tion, but chemical concentrations asynchronously oscillate in time. In category (d), the behav-
ior of each cell is identical, regardless of the presence or absence of cell-cell interactions, and
therefore Rμ = 1.

Here, we are mainly concernedwith category (a), as this case enables both cell differentia-
tion and cooperative growth. We found four common properties in this category. (1) A state
with homogeneity among cells becomes unstable as the cell number increases, and is replaced
by two (or more) distinct cellular states. (2) In differentiated cells, the compositions are con-
centrated for only a few chemicals, whereas the concentrations of the other chemicals are
nearly zero; i.e., each cell type uses only a sub-network of the total reaction network. (3) Differ-
ent cell types share only a few common components, and each of the other components mostly
exists in one cell type. (4) The components that predominate in one cell type diffuse to the
other cell type, where they function as catalysts, and vice versa. Thus, the two cell types help
each other to achieve higher cooperative growth.

Reduction of the N-cell model

After examining a number of networks in category (a), we extracted a common core structure
in the reaction network topology, designated as networks 1-3 (Fig 3A and 3B; see also Figure C
in S1 Text). In these networks, cells in theN-cell model differentiate into two types, type-1 and
type-2, as exemplified in Fig 3C. In type-1, x1 is high while x2 is close to zero, and in type-2, x2

is high and x1 is close to zero. Accordingly, X3 (X4) can be produced only in the former (latter)
type, and the two types of cells complement each other by exchanging X3 and X4. Conse-
quently, the differentiated cells grow faster than the isolated cells (Fig 3D).

To analyze the mechanism of this cooperative differentiation, we reduced theN-cell dynam-
ics to two effective groups of cells represented by ðxðiÞ0 ; . . . ; xðiÞk� 1; vðiÞÞ, where v(i) denotes the
total volume of each cell group (i = 1, 2). Considering that the total cell number is sustained at
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its maximumN, the total cellular volume is also bounded. Therefore, v = v(1) + v(2) is regarded
as a constant in the reduced version of interacting cells, termed the reduced-2cell (r2cell)
model. This model obeys Eqs (1) and (2) with mðmÞ �

Pk� 1

i¼0
Dsiðx

ðmedÞ
i � xðmÞi Þ, and the effect of

random cell elimination associated with cell division is implicitly incorporated into dilution
due to volume growth. Besides, by considering the symmetry in networks 1-3, we can assume
v(1) = v(2) = v/2 for symmetric differentiation with the same number of cells of the two types,
while the case with v(1)6¼v(2) will be discussed later.

Likewise, we also consider the reduced-1cell (r1cell) model corresponding to the “isolated”
case of theN-cell model, by ignoring cell division and assuming that the cellular volume is con-
stant at v(iso) = v.

Cell differentiation

The behavior of the r1cell and r2cell models (i.e., isolated and interacting cells) can be classified
into several phases, depending on parameters (C, V,D), whereV�Vmed/v is the volume ratio
between the cells and the medium.

The phase diagram with network 1 for D = 1 is shown in Fig 4A, and Figure E in S1 Text
shows phase diagrams of networks 1-3 for variousD values. The blue area in Fig 4A represents
phase (I), in which the cells cannot differentiate, and always reach a single fixed point attractor
in both the r1cell and r2cell models. In phase (II), differentiation into two fixed points occurs
in the r2cell model from a stable fixed point in the r1cell model, as shown in Fig 4B. In phase
(III), the r1cell model exhibits oscillation, while two cells in the r2cell model reach two distinct
fixed points (Fig 4C). In terms of dynamical systems theory, this loss of oscillation is referred
to as oscillation death [30, 31]. In phase (IV), both “oscillation-death” differentiation and syn-
chronous oscillation (i.e., non-differentiation) can occur depending on the initial condition,
whereas the r1cell model always exhibits oscillation.

Fig 2. Typical behavior of the N-cell model in category (a). (A) Chemical compositions of N cells

surviving at time t = 5×105. The concentration xðmÞi is plotted with a color code, with the vertical axis indicating

the cell index m, and the horizontal axis indicating the chemical index i, while the top band designates the

composition of an “isolated” cell. Cells differentiate into two types with distinct compositions. (B) The time

series of xðmÞ1 in interacting N cells surviving at time t = 4×104, overlaid for all cells shown as different colors.

Each line represents the concentration of the chemical X1 in a different cell, plotted with different colors over

100 cells. (C) The time series of the number of cell divisions per cell for interacting (red) and isolated (blue)

cells. Interacting cells grow faster than isolated cells; i.e., Rμ > 1.

doi:10.1371/journal.pcbi.1005042.g002
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Thus, differentiation occurs in phases (II)-(IV) (i.e., at the left of the green line in Fig 4A),
while stable differentiation without falling into synchronized oscillation is achieved only in
phases (II)-(III), i.e., with small C and V values, representing a limited resource and strong
cell-cell interaction condition. In Fig 4A, phases (II)-(III) are divided by the red line, and
the red and green lines are determined according to linear stability analysis (see S1 Text for
details).

With respect to the network structure, the catalytic reactionsX1 + αX2! X5 + αX2 and X2 +
αX1! X5 + αX1 function as two mutually repressive reactions, i.e., forming a double-negative
feedback loop. Further, the product X5 consumes X1 and X2, and is maintained within the cell,
which enhances the dilution of X1 and X2. Thus, each of these reactions works as a composite
negative feedback loop, leading to instability of the homogeneous cell state. Since nonlinearity is
a necessary condition for multi-stability, a high order of catalytic reactions α tends to facilitate
cell differentiation.

Fig 3. Behavior of simplified networks. (A) Network 1. (B) Network 2. In (A) and (B), each number

represents the chemical index, with orange-circle and green-square nodes representing diffusible and non-

diffusible chemicals, respectively. The difference between networks 1 and 2 lies only in the diffusibility of X5.

The dashed arrows denote the diffusive fluxes of chemicals, and the thick arrows indicate catalytic reactions.

The chemical at the arrowtail is transformed to the chemical at the arrowhead, catalyzed by the chemical

labeled on the edge; e.g., the left arrow from X0 in (A) denotes the catalytic reaction X0 + αX1! X3 + αX1.

When the cells differentiate, type-1 (type-2) cells mainly produce the chemicals X1 and X3 (X2 and X4), and

receive X4 (X3) from type-2 (type-1) cells, which are illustrated in the lower panel with color. (C) and (D) are

examples of the behavior of network 1 for (C, Vmed, D) = (0.15, 100, 1). (C) Chemical concentrations xðmÞi in N

cells surviving at time t = 105 are plotted according to the color code shown in the sidebar, with the vertical

axis as the cell index m and the horizontal axis as the chemical index i. The top band designates an “isolated”

cell. (D) The time series of the number of cell divisions per cell for interacting (red) and isolated (blue) cells.

doi:10.1371/journal.pcbi.1005042.g003
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Cooperative growth by differentiation

Fig 5A shows the dependence of Rμ on parameters in network 1, exemplifying that differentia-
tion increases the growth rate. Surprisingly, this differentiation-induced growth enhancement
was always observed for any set of parameters in networks 1-3 (network 3 is shown in Figure C
in S1 Text).

We next sought to determine the mechanism contributing to the faster growth of differenti-
ated cells. An intuitive explanation is as follows. On one hand, an isolated cell must contain all
chemical components required for self-reproduction (e.g.,X0-X5 in the upper panel of Fig 3A),
leading to lower concentrations of each chemical on average. On the other hand, differentiated
cells can achieve division of labor; each type of differentiated cell exclusively produces a portion
of the required chemical species, and cells exchange these chemicals with each other. Since

Fig 4. The behavior of the r1cell and r2cell models withnetwork 1. (A) A phase diagram (D = 1). The blue

area designates phase (I) in which cells cannot exhibit differentiation, and reach a single fixed point in both

the r1cell and r2cell models. In phases (II) and (III), cells always differentiate. In phase (II), shown in cream

color, cells exhibit pitch-fork bifurcation from a homogeneous state. In phase (III), “oscillation-death” occurs

in the dynamics of the chemical compositions of the two cells. In phase (IV), depicted by orange, if the initial

difference between the compositions of the two cells is large enough, “oscillation-death” occurs; otherwise,

the r2cell model exhibits non-differentiated, synchronized oscillation. (B) The time series of concentrations of

X1 in phase (II) for (C, V, D) = (0.27, 0.1, 1). (C) The time series in phase (III) for (C, V, D) = (0.1, 0.8, 0.1). For

both (B) and (C), the time series for the r1cell (r2cell) model is displayed on the upper (lower) column.

doi:10.1371/journal.pcbi.1005042.g004

Fig 5. Growth enhancement with network 1 (D = 1). (A) Dependence of Rμ on parameters C and V. Cells

can differentiate given the parameters to the left of the green line. (B) Dependence of Rμ on V (C = 0.1). Rμ is

the ratio of the growth rate of differentiated cells to that of isolated cells. (C) Dependence of Rp on V (C = 0.1).

Rp is the degree of increase in the production of X3-X4 conferred by differentiation.

doi:10.1371/journal.pcbi.1005042.g005
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catalytic reactions occur only in a sub-network of the original network (e.g., a network in the
lower panel of Fig 3A), the chemicals are concentrated on fewer components, which increases
the efficiencyof chemical reactions and promotes cellular growth.

This suggests that stronger cell-cell interactions support higher growth. Indeed, Fig 5B shows
that a smallerV, i.e., stronger cell-cell interaction, causes larger Rμ. A smallerV also increasesRp,
the ratio of the total production of X3-X4 in the r2cell model to that in the r1cell model (Fig 5C);
that is, the production of exchanged chemicals is enhanced. To conclude, stronger cell-cell inter-
actions reinforce the division of labor, whereby differentiated cells can grow more efficiently.

The rate of growth enhancement through cell differentiation Rμ can be roughly estimated by
recalling that the growth rate of a cell is given by the average influx of the nutrient chemical it
receives. We compared the growth rate of an isolated cell μ(iso) to that of a differentiated cell
μ(dif) by assuming that the concentration of each chemical species is equally distributed, except
for the nutrient chemical. Considering that an isolated cell has a catalytic network with k chemi-
cal components and q reaction paths from the nutrient X0, each concentration of X1-Xk−1 is cal-
culated as xðisoÞ ¼ ð1 � xðisoÞ0 Þ=ðk � 1Þ. Hence, for the steady state, the growth rate is estimated
by mðisoÞ ¼ qxðisoÞ0 xðisoÞa=ð1þ xðisoÞ0 Þ. On the other hand, the sub-network in a differentiated cell is
considered to have k0 chemicals and q0 reaction paths from the nutrient (k0 < k, q0 < q). Then,
each chemical concentration and the growth rate are given by xðdif Þ ¼ ð1 � xðdif Þ0 Þ=ðk0 � 1Þ and
mðdif Þ ¼ q0xðdif Þ0 xðdif Þa=ð1þ xðdif Þ0 Þ, respectively.

Here, we also assume that xðisoÞ0 ’x
ðdif Þ
0 , because these concentrations mostly depend on the

supplied nutrient concentration C rather than on the internal dynamics of individual cells. From
these assumptions, the growth ratio Rμ�μ(dif)/μ(iso) is calculated as Rμ = (q0/q)[(k − 1)/(k0 − 1)]α.
For example, with network 1 or 2 (Fig 3A and 3B), k = 6, q = 4, k0 = 4, q0 = 2, and thus Rμ = (1/2)
(5/3)α, which is greater than unity, at least when α�2. Although this estimate is not strictly accu-
rate, it nevertheless demonstrates how cell differentiation can enhance cellular growth, which is
facilitated by greater α. Even when the chemical concentrations were non-uniform, division of
labor could accelerate growth when α was sufficiently large.

Robustness in the number distribution of differentiated cells

The cells in our models achieved (i) cell differentiation and (ii) cooperative growth. However, if
one cell type grows faster than the other type, the cooperation between the differentiated cells
collapses. Thus, the third condition is necessary: the growth rate of each cell type needs to be in
conformity, through mutual regulation by cell-cell interactions.

Thus far, we have considered the case with equal populations of the two cell types by impos-
ing the condition v(1) = v(2). Here, we examine the case with v(1)6¼v(2) for fixed v(1) and v(2), to
evaluate whether the increases in cell volume (or number) are identical between the two types
to meet the requirement (iii). Therefore, Fig 6A and 6B show plots of the growth rate versus
r(1), where r(i)�v(i)/(v(1) + v(2)) is the volume proportion between type-1 and type-2 cells. Now,
let us denote the dependence of μ(1) on r(1) by a function F(r(1)). Then, the growth rate of the
type-2 cell μ(2) is given by G(r(2)) = G(1−r(1)), which is equal to F(1−r(1)) due to symmetry in
the catalytic network.

Since differentiated cells help each other, balanced growth would be expected; if the volume
or relative number of one cell type is larger than the other, a larger (smaller) amount of chemi-
cals would be supplied from the majority (minority) type to the minority (majority) type, so
that the growth rate of the minority type is enhanced compared to that of the other type. This
is the case for network 2, where F(r(1))< F(1−r(1)) for r(1)> 1/2, and the difference in volume
(or number) decreases over time, leading to a balanced cell distribution (Fig 6B).
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Nonetheless, this is not always the case. Fig 6A shows that the growth rate of the majority
type is larger than that of the minority type in network 1; that is, F(r(1))> F(1−r(1)) for r(1)> 1/2.
Accordingly, the difference in volume increases over time, and thus the two different cell types
cannot stably coexist. This instability of collective growth differs from a scenario of parasitic
behavior, because μ(tot)�r(1)μ(1) + r(2)μ(2) is higher than μ(iso) for almost the entire range of r(1).

The condition for the stability is analytically expressed as follows. First, the temporal change
of r(1) is represented by dr(1)/dt = r(1)(1−r(1))[F(r(1)) − F(1−r(1))], which has a trivial fixed point
solution r(1) = 1/2. This fixed point, where the two cell types coexist, is unstable if F0(1/2)> 0,
and is stable if F0(1/2)< 0. To estimate F0(1/2), recall that dxðmÞi =dt ¼ 0 is fulfilled in a cell with
steady growth, and Dmed V� D. Then, from the definition of the growth rate μ, we get

F0ð1=2Þ

D
’ �

@xð1Þ0

@rð1Þ
�

1

2

Xk� 1

i¼1

si
@ðxð1Þi � xð2Þi Þ

@rð1Þ

�
�
�
�
�
rð1Þ¼1

2

: ð3Þ

Since the first term is always negative as described in S1 Text, Eq (3) shows that if the differ-
ence in exchanged chemicals between the majority and minority cells [

Pk� 1

i¼1
siðx

ð1Þ

i � xð2Þi Þ]
increases in proportion to the increase in volume ratio of the majority type, then F0(1/2) is neg-
ative and thus the collective growth is balanced.

Fig 6. The stability of collective growth. (A) Network 1 in the r2cell model for (C, V, D) = (0.1, 1, 0.1),

representing unstable collective growth. (B) Network 2 in the r2cell model for (C, V, D) = (0.15, 3, 1),

representing balanced collective growth. In (A) and (B), the horizontal axis denotes the volume ratio of the

two cells, r(1)�v(1)/(v(1) + v(2)), and each black line displays the growth rate in the r1cell model μ(iso). Blue

circles and orange triangles denote the growth rate of type-1 μ(1) and type-2 μ(2), respectively. Green

rectangles indicate the total growth rate of the cell aggregate μ(tot)�r(1)μ(1) + r(2)μ(2). (C) and (D) show the cell

number distribution in the N-cell model (N = 100). Blue, red, and gray bars designate the numbers of type-1,

type-2, and non-differentiated cells, respectively. (C) Case for network 1 with (C, Vmed, D) = (0.01, 100, 0.1).

(D) Case for network 2 with (C, Vmed, D) = (0.3, 50, 0.1).

doi:10.1371/journal.pcbi.1005042.g006
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Now, let us consider how the difference in volume alters the states of two interacting cells in
networks 1 and 2. When r(1)> 1/2, the population ratio of type-1 cells is increased, and the
amount of X4 supplied from the minority type-2 cells is not sufficient for the majority type-1
cells to maintain their differentiated chemical composition. In contrast, the minority type-2 cells
receive sufficient amounts of X3 from the majority type-1 cells, and maintain their differentiated
composition. Consequently, the chemical composition of the type-1 cells approaches that of the
isolated case, which contains X1 and X2 equally. This indicates that the majority of type-1 cell
produces more X5 than the minority of type-2 cell does, and thus @ðxð1Þ5 � xð2Þ5 Þ=@rð1Þ > 0 holds
around r(1) = 1/2. Therefore, the diffusibility of X5 contributes to the stability of network 2, and
the non-diffusibility of X5 contributes to the instability of network 1. Intuitively, this mechanism
can also be explained as follows: with network 1, the majority cell type can produce a greater frac-
tion of a non-diffusible chemicalX5 for itself and a smaller fraction of a diffusible chemicalX3 or
X4 for the other cell type, and thus the majority cell type grows faster than the minority cell type.

The stability and instability of collective growth are also observed in the originalN-cell
model. With an “unstable” network 1, theN-cell model repeats the following dynamic behav-
ior, as shown in Fig 6C: the medium is dominated by cells of one type, and cells of the minority
type become extinct. Then, their differentiated compositions cannot be maintained with a sin-
gle cell type, leading to de-differentiation. Thus, the coexistence of differentiated cells is tempo-
rally regained.

In contrast, in a “stable” network 2, the two differentiated cell types stably coexist and their
growth is balanced (Fig 6D), in which a perturbation to increase the population of one cell type
leads to a decrease in the growth rate of that type.

Discussion

In this paper, we have shown that an aggregate of identical cells achieves metabolic division of
labor, with strong cell-cell interactions under limited resources. We have revealed how (i) cell
differentiation, (ii) growth enhancement, and (iii) robustness in a cell population can be simul-
taneously self-organizedwithout assuming the ability of differentiation a priori, in a simple sys-
tem consisting only of intracellular reaction dynamics and cell-cell interactions through
chemical diffusion.

First, cells sharing a common genotype (i.e., an identical reaction network and identical
parameters for reaction and diffusion) differentiate into several types with different chemical
compositions as a result of the instability of a homogeneous cell state induced by cell-cell inter-
actions. This differentiation is facilitated under a condition of limited resources and strong
cell-cell interactions, given a high order of catalytic reactions. This dynamical-systems mecha-
nism has also been proposed in previous studies using models of metabolic networks [27] and
gene regulation networks [32].

Second, the differentiated cells can achieve cooperative division of labor. The explanation of
the division of labor given in the Results section can be simply sketched as follows. Let us con-
sider two reactions in the r2cell model,X0 + αX1! X3 + αX1 and X0 + αX2! X4 + αX2, with
x1 + x2 = c. If x1 = x2 = c/2, the total production rate of X3 and X4 is 2x0(c/2)α. In contrast, if the
concentrations are biased either to X1 or X2 due to differentiation, x1 * c (or x2 * c), the total
production rate of X3 and X4 per cell is x0cα, which is 2α−1 times greater than that of the previ-
ous isolated, generalist cell. Thus the higher the order of the reaction α, the greater the advan-
tage of division of labor. A more precise argument is given in the Results (ii). This growth
enhancement due to division of labor is clearly distinguishable from a scenario of relaxation of
the competition for resources through niche differentiation reported previously [27], in which
the growth rate is not increased relative to that of an isolated cell. In our model, the growth rate
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can be enhanced by concentrating chemicals on one of the modules in the network, while the
other module is necessary for catalyzing the reaction. A related mechanism for division of
labor was proposed by Michod and colleagues (see also [21, 24, 33, 34] for discussion on the
trade-off for division of labor). In the framework of Michod et al., the convexity of the trade-off
function is important for division of labor, and the condition of (q0/q)[(k − 1)/(k0 − 1)]α> 1 in
our model may be related to the convexity of the trade-off function.

Although the proposed model describes the division of chemical production among a cell
aggregate, the above mechanism can be seen as analogous to the theory for division of labor in
economics: the theory of comparative advantage proposed by Ricardo [35] states that the
mutual use of surplus from a different country is more advantageous than producing all neces-
sary resources in a single country, unless the transport cost is too high. In this sense, Ricardo’s
theory parallels the present mechanism, because two cell types help each other by exchanging
the products that are necessary to the other cell type. Indeed, our mechanism works best when
cell density is high, so that chemicals are easily exchanged without much loss within the
medium. Note, however, that in Ricardo’s theory, trade is assumed to occur between countries
that differ in their relative ability of producing multiple goods, in contrast to the current model
in which cells share an identical chemical network. With regard to this point, a better compari-
son would be with Taylorism [36], which refers to increases in a group’s productivity by each
member specializing to each task without assuming individuals with different abilities [26].

Remarkably, this cooperative differentiation is not sufficient to satisfy condition (iii), robust-
ness in the number distribution of differentiated cells. If one cell type begins to dominate the pop-
ulation, production of the chemicals needed by the minority type will increase. Thus, a feedback
mechanism to reduce the majority population is expected.However, if the fraction of non-diffus-
ible chemicals is increased for the majority cell type, this storage of chemicals within a cell would
suppress the supply of chemicals for the other cell types. Consequently, the majority cell type
would further increase its population. This suggests that to achieve a balanced population state,
the mutual transport of necessary chemicals must work efficiently beyond any possible increase
in internal reserves. From this perspective, it may be interesting to consider a possible economic
analogy: reducing internal reserves and sharing a higher degree of wealth will be relevant to the
stabilization of groups with division of labor. We here stress that this instability of cooperation
can emerge only when cells simultaneously achieve differentiation and division of labor.

In theoretical studies for multi-level evolution, a game theory approach has been sometimes
adopted to address the evolution and dynamics of conflict between individuals and society.
Although our approach differs from game theory, it might be worth discussing our result in
light of this perspective. From a game theory perspective, the cellular growth rate is regarded as
a measure of fitness or score. Hence, when two cell types stably coexist in network 2, stable
Nash equilibrium is achieved at r(1) = 1/2. In contrast, in network 1, no stable equilibrium exists
for 0< r(1)< 1, and only unstable Nash equilibrium exists at r(1) = 1/2, and thus one type dom-
inates the population. Interestingly, after extinction of one type, re-differentiation of the
remaining cells into two types increases the fitness (i.e., growth rate) for both types, as shown
in Fig 6A. This dominance of one cell type and re-differentiation are repeated as a result of
symbiotic growth and differentiation due to the instability of a homogeneous cell society. We
expect that such dynamic behavior will be observed in an artificial symbiosis experiment with
Escherichia coli and diffusible amino acids [37, 38].

Considering the difference between networks 1 and 2, the stability and instability of the sys-
tem can be switched by even a slight change in the diffusibility of a single chemical species.
This implies that slight epigenetic changes and transcriptional errors occurringduring the life-
time of an organism can lead to instability in the cell distribution, which may relate to the phe-
nomena of metamorphosis during development and carcinogenesis.
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Our results demonstrate that an aggregate of simple cells consisting only of catalytic reac-
tions and the diffusive transport of chemicals can fulfill differentiation with division of labor,
collective growth with symbiotic relationship, and stability. Note that these basic characteristics
in our model emerge without a fine-tunedmechanism, and are facilitated by the conditions of
strong cell-cell interactions, limited resources, and a high order of catalytic reactions.

From this point of view, it is interesting to compare the present results to some characteris-
tics of multicellular aggregates. First, filaments of the cyanobacteriumAnabaena are known to
differentiate, with each cell metabolically specializing in photosynthesis or nitrogen fixation,
enabling more efficient growth [39]. Second, such cell differentiation with metabolic division
of labor in some cyanobacteris occurs in response to combined nitrogen limitation [40, 41].
Third, the biofilm of Bacillus subtilis exhibits metabolic co-dependencebetween interior and
peripheral cells by chemical oscillation [9], suggesting the relevance of nonlinear dynamics and
cell-cell interactions for differentiation.

In contrast to the present model of symbiotic growth, however, it has been pointed out that
most multicellular aggregates and organisms have achieved division of labor between reproduc-
tive and non-reproductive cells throughout evolution [42]. Nevertheless, at some developmental
stage of multicellular aggregates, symbiotic growth of different cell types may be expected to
exist, by achieving differentiation and functional division of labor for biofilm formation [43, 44].
Furthermore, in our model, whether or not both types of differentiated cells reproduce strongly
depends on the conditions. For example, in network 1, the growth rate is different between the
major and minor cell types. Depending on the parameters, there are also cases in which one cell
type would cease growing. In addition, we considered the symmetric differentiation case for
clarity, but if the reaction rates are different by different chemicals (which are natural), the
growth rates of differentiated cell types could generally be different. Further, if we assume that
cellular growth is determined by a certain chemical (e.g.,X1 in networks 1-3) rather than by the
total amount of chemicals, after differentiation, one cell type will be reproductive, and the other
non-reproductive, while maintaining functional division of labor.

Interestingly, characteristics (i)-(iii) can be part of the requirements for multicellularity.
Thus, such characteristics may provide a primitive step to the evolution of multicellular organ-
isms, which has been a topic of much attention from both theorists and experimentalists over
the last few decades [15, 27, 45–50]. In this context, our results are also related to the experi-
mental emergence of multicellularity from unicellular organisms [13, 14]. However, the three
characteristics may not be sufficient for the emergence of multicellular organisms. For exam-
ple, besides the metabolic division of labor, multicellular organisms ubiquitously show germ-
soma differentiation and apoptosis. Therefore, determining how the cell aggregates with meta-
bolic division of labor considered here might achieve this universal property of multicellularity
remains an important issue to be addressed.
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21. Vásárhelyi Z, Meszéna G, Scheuring I. Evolution of heritable behavioural differences in a model of

social division of labour. PeerJ. 2015; 3:e977. doi: 10.7717/peerj.977 PMID: 26038732

22. Traulsen A, Nowak MA. Evolution of cooperation by multilevel selection. Proc Natl Acad Sci USA.

2006; 103(29): 10952–10955. doi: 10.1073/pnas.0602530103 PMID: 16829575

23. Vural DC, Isakov A, Mahadevan L. The organization and control of an evolving interdependent popula-

tion. J R Soc Interface. 2015; 12: 20150044. doi: 10.1098/rsif.2015.0044 PMID: 26040593

24. Ispolatov I, Ackermann M, Doebeli M. Division of labour and the evolution of multicellularity. Proc R

Soc B. 2011; 279: 1768–1776. doi: 10.1098/rspb.2011.1999 PMID: 22158952
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