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Abstract

Background: Changes in the microbial populations on the skin of animals have traditionally been evaluated using
conventional microbiology techniques. The sequencing of bacterial 16S rRNA genes has revealed that the human skin is
inhabited by a highly diverse and variable microbiome that had previously not been demonstrated by culture-based
methods. The goals of this study were to describe the microbiome inhabiting different areas of the canine skin, and to
compare the skin microbiome of healthy and allergic dogs.

Methodology/Principal Findings: DNA extracted from superficial skin swabs from healthy (n = 12) and allergic dogs (n = 6)
from different regions of haired skin and mucosal surfaces were used for 454-pyrosequencing of the 16S rRNA gene.
Principal coordinates analysis revealed clustering for the different skin sites across all dogs, with some mucosal sites and the
perianal regions clustering separately from the haired skin sites. The rarefaction analysis revealed high individual variability
between samples collected from healthy dogs and between the different skin sites. Higher species richness and microbial
diversity were observed in the samples from haired skin when compared to mucosal surfaces or mucocutaneous junctions.
In all examined regions, the most abundant phylum and family identified in the different regions of skin and mucosal
surfaces were Proteobacteria and Oxalobacteriaceae. The skin of allergic dogs had lower species richness when compared to
the healthy dogs. The allergic dogs had lower proportions of the Betaproteobacteria Ralstonia spp. when compared to the
healthy dogs.

Conclusions/Significance: The study demonstrates that the skin of dogs is inhabited by much more rich and diverse
microbial communities than previously thought using culture-based methods. Our sequence data reveal high individual
variability between samples collected from different patients. Differences in species richness was also seen between healthy
and allergic dogs, with allergic dogs having lower species richness when compared to healthy dogs.
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Introduction

The human body is colonized by a wide variety of microor-

ganisms, including bacteria, fungi, and viruses [1]. These resident

microorganisms live in a symbiotic relationship with their host [2].

However, an imbalance of this microbiome may result in damage

to its host. Most of the microorganisms that make up the human

skin microbiome have not been cultured or isolated to date.

Recent molecular-based methods, most commonly targeting the

16S rRNA gene, have now enabled to characterize these highly

complex microbial communities at different sites of the human

body. In veterinary medicine, most knowledge on small animal

microbiome that is based on 16S rRNA is on the microbial

communities present in the gastrointestinal tract [3]. Changes in

the microbial populations in the skin of animals have traditionally

been evaluated using conventional microbiology techniques such

as culture and biochemical methods [4]. The sequencing of

bacterial 16S rRNA genes has revealed that the skin surface of

humans is inhabited by a highly diverse and variable microbiota

that has previously not been demonstrated by culture-based

methods [5,6]. These studies have described the microbial

composition in different skin regions, with Propionibacterium spp.

predominating in sebaceous areas, Staphylococcus and Corynebacterium

spp. predominating in moist areas, and gram-negative organisms

(e.g., Betaproteobacteria) colonizing the dry skin areas such as

forearm or leg [7]. Furthermore, age was shown to influence the
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skin microbiome, with infants having a different skin flora than

adults. Similar studies in dogs and other animal species are needed

to better investigate the role of the skin microbiome in health and

disease. There are rare reports on the skin microbiome in dogs.

These studies, however, only investigated a few skin sites in a small

number of dogs [8], or they were mainly focused on human and

dog relationships [9].

The normal skin microbiota is necessary for optimal skin

function, modulating the innate immune response and preventing

colonization with potentially pathogenic microorganisms [10]. In

many skin conditions, it remains unclear if some skin conditions

are caused by alterations in the cutaneous microbiome or whether

these alterations are a result of the skin disease itself [11]. In

humans with atopic dermatitis (AD) and psoriasis, the changes in

the cutaneous microbiota have been proposed to be due to

different mechanisms, such as an altered epidermal barrier

function, Toll-like receptor 2 mutations, reduced levels of

antimicrobial peptides, and/or an increased expression of

extracellular matrix proteins [12]. These proposed mechanisms

are thought to be responsible for an increased prevalence of

Staphylococcus spp. and susceptibility to staphylococcal infections in

human patients with AD [13]. It has also been shown that in

humans with AD, infection with Staphylococcus aureus correlates with

clinical severity of the disease [14]. Furthermore, metagenomics

studies have shown that S. aureus dominates skin lesions in human

patients with AD, although no changes in relative abundance of S.

aureus are identified in nasal samples [15].

Similar to humans, dogs develop AD with hypersensitivity to

environmental allergens such as house dust mites and/or food

allergens [16,17]. AD is considered one of the most common

chronic skin diseases in dogs [18], affecting approximately 10% of

dogs [19]. In most dogs with AD, primary skin lesions are

characterized by intensely pruritic erythematous macules and

patches and the most common sites of lesions are the front and

hind paws, axilla, and abdomen (inguinal region) [20]. Dogs with

AD often suffer from secondary bacterial and/or fungal infections,

most commonly due to Staphylococcus pseudintermedius [21]; these

infections result in an exacerbation of skin lesions with develop-

ment of papules, pustules, crusts, and alopecia [16].

The primary goal of this study was to evaluate and describe the

diversity of the microbiome inhabiting different areas of the canine

skin, including mucosal surfaces, mucocutaneous junctions, and

haired skin sites. A secondary goal of this study was to compare the

skin microbiome of healthy dogs with that of dogs with AD.

Similar to studies described in people, we demonstrate that the

skin microbiome in dogs is highly variable in the different skin sites

evaluated, and that the diversity of the skin microbiome in atopic

dogs is reduced when compared to healthy dogs.

Materials and Methods

Ethics statement
This study had been approved by the Texas A&M University

University (TAMU) Institutional Animal Care and Use Commit-

tee. Informed consent to enroll clinical cases into the study was

obtained from each client.

Study subjects (Table 1)
Healthy dogs. Twelve healthy dogs were enrolled into this

study; their age ranged from 8 months to 13 years old (average 7.5

years old) (Table 1). There were 6 male dogs (1 intact and 5

castrated; 3 Labrador, 1 Boston Terrier, 1 Pug and 1 Blue Heeler)

and 6 female dogs (5 spayed and 1 intact; 3 Labrador, 1 Mixed

breed, 1 Pitbull and 1 Terrier). Nine dogs were primarily kept

indoors, two dogs were kept both indoors and outdoors, and one

dog was kept solely outdoors. All dogs co-inhabited with other

animals (dogs and/or cats). The healthy study animals had no

historical or clinical findings suggestive of allergic skin disease, nor

were they treated with antibiotics, anti-inflammatory, or immu-

nosuppressive drugs for at least 6 months prior to sample

collection.

Allergic dogs. Six dogs ranging from 2 to 14 years (average

6.5 years old) with allergic skin diseases were also enrolled into this

study (Table 1). They were all purebred (1 Boston Terrier, 1

Poodle, 1 Shetland Sheepdog, 1 Pitbull, 1 Australian Shepherd

and 1 Golden Retriever), 4 were castrated males and 2 were

spayed females. Five dogs were diagnosed with AD using standard

diagnostic and therapeutic methods including fulfillment of at least

five of Favrot’s criteria and exclusion of other pruritic dermatoses

(e.g., sarcoptic acariasis, flea allergy dermatitis, and cutaneous

adverse food reactions) [22]. One dog was diagnosed with atopic-

like dermatitis, it exhibited signs of AD but IgE-mediated

hypersensitivity to environmental allergens could not be demon-

strated by either allergen-specific intradermal or serological

testing. Allergic dogs were primarily kept indoors, but did receive

monthly adulticidal flea prevention. All dogs co-inhabited with

other animals (dogs and/or cats). To be included, dogs could not

display overt clinical signs of bacterial skin infection or Malassezia

dermatitis, nor could they have received systemic antibiotics for at

least 30 days or have a bath for at least 7 days prior to sample

collection. Three dogs were receiving anti-inflammatory doses of

glucocorticoids (alternate day administration) or the immunomod-

ulatory drug cyclosporine (modified), and three were being treated

with allergen-specific immunotherapy (ASIT). Two of the allergic

dogs (dogs 13 and 18) had not received glucocorticoids within 6

months prior to sample collection, cyclosporine (dog 13 received

cyclosporine 4 years prior to the study), or ASIT. Although dogs

had no skin lesions, most exhibited mild to moderate pruritus at

the time of the study.

Sample collection
Samples were collected from 12 skin sites from 12 healthy dogs,

for a total of 144 samples. The skin sites included the right nasal

mucosa, right dorsal nose, right lip commissure, right conjunctiva,

right periocular area, right ear canal, right concave pinna, dorsal

lumbar area, right axilla, right groin, right dorsal interdigital skin

between digits 4 and 5 from the right front paw, and dorsal

perianal area. Samples were collected from 4 skin sites from 6

allergic dogs for a total of 24 samples. Sites included the right

axilla, right groin, right nasal mucosa, and right dorsal interdigital

skin between digits 4 and 5 from the right front paw.

For each skin site, two sterile culture swab applicators (BD

Biosciences, NJ) were used. Each swab applicator was rubbed on

the skin 40 times, while rotating each swab by one quarter for

every 10 strokes. The two swabs were stored in the same properly

labeled tube and refrigerated at 4uC until further analysis.

DNA extraction and pyrosequencing
Genomic DNA was extracted from each set of sterile swabs

collected from each skin site using the Mobio Power soil DNA

isolation Kit (MoBio Laboratories), as recommended by the

manufacturer. Bacterial tag-encoded FLX-titanium amplicon

pyrosequencing (bTEFAP) based upon the V1–V3 region (E. coli

position 27–519) of the 16S rRNA gene was performed at the MR

DNA Laboratory, Shallowater, TX, USA, as described previously,

with primers forward 28F: GAGTTTGATCNTGGCTCAG and

reverse 519R: GTNTTACNGCGGCKGCTG [23]. Raw se-

quence data were screened, trimmed, filtered, denoised, and
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chimera depleted with default settings using the softwares QIIME

pipeline version 1.6 (http://qiime.sourceforge.net) [24], and

UCHIME (http://www.drive5.com/uchime/) [25]. Operational

taxonomic units were defined as bacterial sequences with at least

97% similarity using QIIME. The sequences obtained in this study

have been deposited in the NCBI Short Read Archive accession

number SRP028524.

Data analysis
A total of 779,812 sequences were amplified from all skin

samples from the healthy and allergic dogs. A mean of 4,754

sequences (median 3,450 sequences) were obtained per sample

from each skin site, with a minimum of 195 sequences and a

maximum of 55,956 sequences per site. Due to unequal

sequencing depth between the different sites and samples, and to

standardize sequence counts across samples, data analysis was

performed on a randomly selected subset of 1,000 sequences per

sample. One hundred and thirty samples from the healthy dogs

and 17 samples from the allergic dogs had more than 1,000

sequences, and were considered for data analysis. All samples with

less than 1,000 sequences per sample were removed from further

analysis. Alpha diversity [i.e., rarefaction; the number of different

species (species richness) per sample], and beta diversity (i.e.

microbial communities similarity) measures were calculated and

plotted using the software QIIME v1.6. On samples from the

healthy dogs that had higher numbers of sequences, rarefaction

was also performed on a randomly selected subset of 3,000

sequences, to evaluate species richness at higher sequencing depth

(number of times a specific genomic site is sequenced in a

sequencing run), and a total of 89 samples were evaluated. The

phylogeny-based UniFrac distance metric analysis was used to

investigate differences in microbial communities between skin

sites, as well as between groups (healthy vs. allergic) [26]. Both the

weighted, which accounts for relative abundance of sequences in

different environments, and unweighted, which does not account

for relative abundance, UniFrac analysis were performed.

The analysis of similarities (ANOSIM) function in the statistical

software package PRIMER 6 (PRIMER-E Ltd., Luton, UK) was

used on the weighted and unweighted UniFrac distance matrix to

determine if any groups of samples contained significantly different

bacterial communities. Because of adjustment for multiple

comparisons, p-values equal or above 0.001 were considered for

significance. The R values of the statistical test ANOSIM provide

an estimate of the effect size and range from 1 to 21. R values

closer to 0 indicate that no differences exist between the different

skin sites, whereas values closer to 1 indicate that differences

between skin sites exist. Differences in the proportions of bacterial

taxa (percentage of total sequences) between the different sites, and

between healthy and allergic dogs were tested for normality, and

since data was not normally distributed, a non-parametric

Kruskal-Wallis test was performed, using the statistical package

JMP10 (SAS, Marlow, Buckinghamshire). Resulting p-values were

corrected for multiple comparisons using the Benjamini &

Hochberg’s False Discovery Rate [27]. An adjusted p,0.05 was

considered for statistical significance.

Results

Skin microbiome of healthy dogs
Skin microbial composition of healthy dogs. Similarities

in microbial community composition between samples were

evaluated using the unweighted and weighted UniFrac distance

Table 1. Physical and environmental characteristics of healthy and allergic dogs enrolled in this study.

Dog
Health
status Breed Age Sex

Allergy
Pruritus*

Ear
problems* Fleas

Time
indoors

Outdoor
environment

Indoor
environment

Allergy
treatments

Dog1 Healthy Lab NA M N N N .90% G CTL NA

Dog2 Healthy Lab 6Y CM N N N 0% GW NA NA

Dog3 Healthy Lab 8mo CM N N N 70% TGW CTFB NA

Dog4 Healthy Lab 8Y F N N N .90% TGW NA NA

Dog5 Healthy Lab 4Y SF N N N .90% TG TFB NA

Dog6 Healthy Lab 13Y SF N Y Y .90% TGW NA NA

Dog7 Healthy Bos 5Y CM N N N 80% TGW T NA

Dog8 Healthy Pug 5Y CM N N N .90% TGW CF NA

Dog9 Healthy Hee 13Y CM N N N 40% TGW CFB NA

Dog10 Healthy Mix 11Y SF Y N Y 85% TGW CTFB NA

Dog11 Healthy Pit 7Y SF Y N NA .90% TGW NA NA

Dog12 Healthy Ter 9Y SF N N Y .90% TG CB NA

Dog13 Allergic Bos 6Y CM Y N N .90% TG CTBF N

Dog14 Allergic Poo 14Y SF Y Y N 80% G CTFB ASIT

Dog15 Allergic She 4Y CM N N N .90% GW CTFB CsA, ASIT

Dog16 Allergic Pit 8Y CM Y Y N .90% G CTFB GL

Dog17 Allergic Aus 2Y CM Y N N .90% TGW C GL, ASIT

Dog18 Allergic GR 5Y SF Y Y Y .90% NA CF N

*Pruritus associated with allergy, ear problems and presence of fleas were part of the clinical history of these canine patients, and not necessarily the clinical
presentation at the time of sample collection. Lab: Labrador Retriver, Bos: Boston Terrier, Hee: Blue Heeler, Mix: Mixed breed, Pit: Pitbull, Ter: Terrier, Poo: Poodle, She:
Shetland Sheepdog, Aus: Australian Shepherd, GR: Golden Retriever, NA: Not available, M: male, CM: castrated male, F: female, SF: spayed female, N: no, Y: yes, T: trees,
G: grass, W: weeds, C: carpet, T: tile, L: leather, B: bedding, F: furniture, G: glucocorticoid, CsA: cyclosporine, ASIT: allergen-specific immunotherapy.
doi:10.1371/journal.pone.0083197.t001
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metrics. The unweighted UniFrac metric was significantly

different using ANOSIM analysis, when mucosal surfaces and

mucocutaneous zones where compared to haired skin sites

(Table 2). However, when the weighted UniFrac metric was

considered, which gives emphasis to abundance of operational

taxonomic units (bacterial species), fewer sites were considered to

be significantly different.

Principal coordinates analysis plots were constructed using the

unweighted UniFrac metric to evaluate similarities of microbial

communities when considering individual (signalment, pruritus

associated with allergic skin disease, ear problems, and presence of

fleas) and environmental (time spent indoors and type of

immediate environment) characteristics in the healthy dogs. A

clustering, based on similarities of bacterial molecular phylogenetic

trees, was not observed between healthy dogs when breed, age,

sex, presence of fleas, housing habits, indoor and outdoor

environments were compared between the different samples

(Figures 1A and 1B). A large degree of variability was seen across

all samples from the different skin sites from each dog, and from

samples from the same site across all dogs. Clustering was only

seen for the different skin sites across all dogs, with some mucosal

sites and the perianal regions, clustering separately from the haired

skin sites (Figure 1C; Table 2; ANOSIM p = 0.001).
Species richness and diversity within skin samples of

healthy dogs. The rarefaction analysis, which evaluates species

richness in the samples, revealed high individual variability between

samples collected from healthy dogs and between the different skin

sites. Higher species richness, evaluated using the number of

observed species, was observed in the samples from haired skin (i.e.,

axilla, concave pinna, dorsal nose, and groin) when compared to

mucosal surfaces or mucocutaneous junctions (i.e., nostril and

conjunctiva; Figure 2; Table 3). The samples from the nostril and

conjunctiva had the lowest species richness; whereas the samples

collected from the axilla and the haired skin from the dorsal aspect

of the nose had higher species abundance. When 1,000 and 3,000

sequences per sample were analyzed, the number of observed

species ranged from 25 and 41 in the nostril, to 486 and 833 in the

dorsal nose, respectively (Figure 3). One sample from the ear had

866 observed species, and was the sample with the largest number of

observed species in the analysis performed on 3,000 sequences per

sample. The Chao 1 index, which is an estimator for species richness

at higher sequencing depth, gave similar results for the different skin

sites evaluated, with most mucosal surfaces having lower Chao 1

index and the haired skin sites having higher Chao 1 index (Figures 2

and 3; Table 3).

The Shannon diversity index (Figures 2 and 3; Table 3), which

takes into account abundance and evenness of species, showed

similar results to those observed with the Chao 1 index and the

number of observed species. Similarly, mucosal sites, including the

nostril and conjunctiva, were less diverse, with lower Shannon

index, when compared to haired skin sites, e.g., axilla, concave

pinna, and dorsal nose, which presented with higher Shannon

index.
Most common taxa colonizing the skin of healthy

dogs. A total of seventeen phyla were identified in the samples

from skin and mucosal surfaces (Table S1). In all examined

regions, the most abundant phylum identified in the different

regions of skin and mucosal surfaces was Proteobacteria (Figure 4).

This was followed by Firmicutes, Actinobacteria, Bacteroidetes,

and Cyanobacteria. However, in the samples collected from axilla,

concave pinna, dorsal nose, and interdigital skin, Proteobacteria

were followed by Bacteroidetes and Actinobacteria. The samples

from the perianal skin were slightly different, with Proteobacteria

being followed by Firmicutes, Bacteroidetes, Fusobacteria, and

Actinobacteria.

At the class level, more variability was observed between the

different sites, with Betaproteobacteria being the most common

class identified in the concave pinna, conjunctiva, dorsal lumbar,

ear, and groin; whereas Actinobacteria were most common in the

axilla and interdigital skin; Gammaproteobacteria in the lip

commissure and nostril; Alphaproteobacteria in the dorsal nose,

and Bacilli in the periocular region. The Clostridia and

Bacteroidia were the most common classes in the perianal region,

as would be expected due to the close proximity to the rectum.

The family Oxalobacteriaceae (phylum Proteobacteria; class

Betaproteobacteria; Order Burkholderiales) was the most abun-

dant group in most samples. The genus Ralstonia spp. was the most

abundant genus identified in most samples, ranging from an

Table 2. ANOSIM analysis of unweighted and weighted Unifrac distances.

Skin sites Conjunctiva Dorsal perianal Lip commissure Nostril

R (unwtd) R (wtd) R (unwtd) R (wtd) R (unwtd) R (wtd) R (unwtd) R (wtd)

Axilla 0.364* 0.302* 0.672 0.389* 0.618* 0.367 0.63* 0.503*

Conjunctiva - - 0.465* 0.305* 0.491* 0.302 0.146 0.071

Concave Pinna 0.283 0.227 0.684* 0.284 0.49* 0.252 0.524 0.383

Dorsal Lumbar 20.003 20.047 0.353 0.272 0.471* 0.306 0.256 0.126

Dorsal nose 0.391* 0.269 0.69* 0.333* 0.507* 0.288* 0.592* 0.43*

Dorsal perianal 0.465* 0.305* - - 0.564* 0.097 0.48* 0.285

Ear 0.118 0.069 0.518* 0.355* 0.526* 0.384* 0.418* 0.301

Groin 0.187 0.073 0.332 0.135 0.248* 0.098 0.332 0.183

Interdigital 0.136 0.091 0.564* 0.259 0.549* 0.309 0.419 0.217

Lip commissure 0.491* 0.302 0.564* 0.097 - - 0.366* 0.224

Nostril 0.146 0.071 0.48* 0.285 0.366* 0.224 - -

Periocular 20.002 0.14 0.503* 0.217 0.376 0.262 0.233 0.234

R-values are shown for the healthy skin sites that showed significant differences. R- values closer zero to represent no difference between different sites, whereas values
closer to 1 indicate that the most similar samples are within the same group.
*Significance level p = 0.001.
doi:10.1371/journal.pone.0083197.t002
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average of 5% of the total taxa identified in the lip commissure to

35% of the taxa identified in the conjunctiva. The family

Moraxellaceae was significantly more abundant in the nostril

compared to other sites (median 33.1%; p-value,0.0001; q-

value = 0.0001). The lip commissure was predominantly colonized

by the family Porphyromonadaceae and genus Porphyromonas spp.

(median 7.95%; p-value = 0.0006; q-value,0.001). Other genera

that were commonly present in most samples of skin and

mucocutanous junctions included Bacillus spp., Corynebacterium

spp., Macrococcus spp., and Pseudomonas spp.

Skin microbiome of healthy versus allergic dogs
Microbial community composition in allergic versus

healthy dogs. To compare microbial communities between

samples from allergic versus healthy dogs, the statistical analysis

ANOSIM was performed on the unweighted and weighted

UniFrac distances. Significant differences were not noted in

microbial community composition between allergic and healthy

dogs.

Principal coordinate analysis plots from unweighted UniFrac

metric were constructed to evaluate similarities between individual

(breed, age, sex, pruritus associated with allergic skin disease, ear

problems, and presence of fleas) and environmental (time spent

indoors and type of immediate environment) factors. Principal

coordinate analysis plots were also constructed to evaluate

similarities between the different samples from allergic and healthy

dogs. No significant clustering was noted in the PCoA plots

between allergic and healthy dogs (Figure 5).

Figure 1. Principal coordinates analysis for healthy dogs. Principal coordinates analysis of unweighted Unifrac distances of 16S rRNA genes
clusters samples based on similarities of bacterial molecular phylogenetic trees. (A) No clustering differences are observed in 3 healthy dogs with fleas
compared to 9 healthy dogs without fleas, demonstrating that the presence of fleas does not appear to influence the microbial diversity. (B) Similarly,
there were no clustering differences between male and female dogs. (C) Clustering differences were seen in the samples collected from mucosal
surfaces or mucocutaneous junctions.
doi:10.1371/journal.pone.0083197.g001
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Species richness and diversity in allergic versus healthy

dogs. Diversity analysis performed in a randomly selected 1,000

sequences per sample showed that the samples from the haired

skin of dogs with allergic skin disease (median 125) showed a lower

number of observed bacterial species when compared to the same

skin sites (axilla, groin, and interdigital skin) of healthy dogs

(median 239; p,0.016; Table 4). Significant differences in the

haired skin and nostril mucosa of healthy versus allergic dogs were

also identified for the Chao1 metric (species richness estimator at

higher sequencing depth; p,0.005; Table 4, Figure 6). Although

the median for the Shannon diversity index, which considers

abundance and evenness of species, was lower for the allergic dogs

when compared to the healthy dogs, the difference was not

significant (p = 0.24).

Most common taxa colonizing the skin of allergic versus

healthy dogs. Similar abundances of the most common

bacterial taxa observed in the healthy dogs were also identified

in the samples from allergic dogs (Figure 7). However, taxa that

were minimally represented in the healthy dogs (,1%) were often

absent in allergic dogs (Table S2). Significant differences between

allergic and healthy dogs were identified for a few taxa. One major

difference between allergic and healthy dogs was the proportions

of the Beta Proteobacteria Ralstonia spp., which were significantly

lower in the samples from the allergic dogs (p-value = 0.0001; q-

value = 0.0001). In fact, Ralstonia spp. accounted for less than

0.02% of the total taxa identified in the samples from the allergic

dogs, with the exception of one sample from the axilla, where it

accounted for 45% of the total taxa identified.

In the samples from the axilla from the allergic dogs, some of

the most predominant genera were Bacillus spp. (median 3.8%),

Sphingomonas spp. (median 3.1%), Mycoplasma spp. (median 2.4%),

Rubellimicrobium spp. (median 1.4%) and Propionibacterium spp.

(median 1.3%). The samples from the groin were predominantly

colonized by Staphylococcus spp. (median 2.6%), Sphingomonas spp.

(median 2.4%), Bacillus spp. (median 1.8%), and Roseomonas spp.

(mediam 1.4%). The interdigital skin was predominantly colonized

by Alicyclobacillus spp. (median 1.6%), Staphylococcus spp. (median

1%), Pseudomonas spp. (median 1%) and Corynebacterium spp.

(median 0.7%). The samples from the nostril were predominantly

colonized by Streptococcus spp. (median 0.5%), Diaphrobacter spp.

Figure 2. Alpha diversity in different skin sites for healthy dogs. Alpha diversity measures at 1000 sequences per sample in the different sites
of canine skin (x axis). The y axis represent the data points for the Chao1 index (species predictor estimator) (A), number of observed species (B) and
Shannon diversity index (diversity index that accounts for species abundance and evenness) (C) data points (y axis) for each skin site. Error bars
represent the standard deviations. A: Axilla; C: Conjunctiva; CP: Concave pinna, DL: Dorsal lumbar; DN: Dorsal Nose; DP: Dorsal Perianal; E: Ear; G:
Groin; I: Interdigital 4&5; LP: Lip commissure; N: Nostril; PO: Periocular.
doi:10.1371/journal.pone.0083197.g002

Table 3. Alpha diversity measures at 1000 sequences per sample in the different sites of healthy skin.

Skin site Chao 1 Observed species Shannon

Median (Min-Max) Median (Min-Max) Median (Min-Max)

Axilla 530 (163–859) 277 (97–440) 6 (3–8)

Conjunctiva 151A,N (51–457) 104A,N (38–302) 4A,N (1–7)

Concave pinna 412 (272–620) 260 (153–364) 6 (4–8)

Dorsal lumbar 225 (33–836) 156 (12–423) 4 (1–8)

Dorsal nose 525 (249–945) 291 (115–486) 7 (4–8)

Dorsal perianal 218 (64–359) 109 (45–196) 4 (2–6)

Ear 409 (41–961) 196 (32–476) 5 (1–8)

Groin 433 (21–851) 219 (16–380) 6 (1–8)

Interdigital 364 (85–839) 234 (66–425) 6 (2–8)

Lip comissure 205 (140–371) 126 (57–223) 5 (2–6)

Nostril 101A,CP,DN,G(39–296) 47A,CP,DN (25–154) 3A,CP,DN (1–5)

Periocular 258 (60–492) 172 (45–287) 6 (2–7)

Significant differences between skin sites were mainly observed when comparing mucosal surfaces with haired skin sites, e.g. conjunctiva versus axilla. The Chao 1 index
estimates species richness at higher sequencing depth; the observed species represents the number of observed species in 1,000 sequences; the Shannon is a diversity
index that takes into account abundance and evenness of species.
Superscripts represent sites that were significantly different when compared to the skin sites in the first column. A: Axilla; N: Nostril; CP: Concave pinna; DN: Dorsal nose;
G: Groin.
doi:10.1371/journal.pone.0083197.t003
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(median 0.25%) and Sphingomonas spp. (median 0.1%). At the

family level, similar to the samples from the healthy dogs, the

nostril was predominantly colonized by Moraxellaceae (median 8%)

(Table S2).

Discussion

In this study, we demonstrate that the skin microbiome in dogs

is much more diverse than has been previously reported based on

culture-based methods. Our sequence data reveal a high

individual variability between samples collected from different

patients. High variability was also observed between different skin

regions within the same dogs, with a higher number of bacterial

species being observed on the haired skin (i.e., axilla, groin,

periocular, pinna, dorsal nose, interdigital, lumbar) when com-

pared to poorly haired skin, mucocutaneous junctions, or mucosal

surfaces (i.e., lips, nose, and conjunctiva). Although this is still a

preliminary study and additional samples from dogs are needed in

order to make any further conclusions, the results suggest that the

composition of the bacterial community in the dogs evaluated

were not influenced by the individual factors tested (e.g., age, sex,

breed, pruritus, ear problems) or by environmental factors (e.g.,

Figure 3. Rarefaction curves from different skin sites from healthy dogs. Rarefaction curves of 16S rRNA gene sequences obtained from
different skin sites from healthy dogs. The analysis was performed on a randomly selected subset of 1000 and 3000 sequences per sample. Haired
skin shows higher Chao1 metric, more observed species, and higher Shannon index compared to the samples from mucosal surfaces, e.g. nostril and
conjunctiva. Lines represent average of each skin site, whereas the error bars represent the standard deviations.
doi:10.1371/journal.pone.0083197.g003
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fleas, indoor/outdoor environment, time spent outdoors) in the

skin samples of healthy and allergic dogs. However, we did not

evaluate if antipruritic pharmacotherapy or allergen specific

immunotherapy could have had an effect on the composition of

the microbiota because of the small number of test subjects.

In previous studies using culture-based methods, some of the

most common commensal bacteria in the skin of healthy dogs

were shown to include Micrococcus spp., coagulase-negative

staphylococci – mainly Staphylococcus epidermidis and S. xylosus–, a-

hemolytic streptococci, Clostridium spp., Propionibacterium acnes,

Acinetobacter spp., and various Gram-negative aerobes [28–30].

Escherichia coli, Proteus mirabilis, Corynebacterium spp., Bacillus spp., and

Pseudomonas spp. were considered to be transient microbes in the

skin of dogs [30]. In contrast, Micrococcus spp., Gram-negative

aerobes, Bacillus spp., and Staphylococcus pseudintermedius (formerly

known as Staphylococcus intermedius) [31] were reported to be the

most common microbes isolated from canine hair and hair follicles

by other authors [28]. S. pseudintermedius is frequently cultured from

the nostril, oropharynx, and perianal region, and is being

considered part of the resident flora in these regions, representing

the main source of coagulase-positive Staphylococcus in the mucous

membranes [32,33]. In this study, we identified microbes similar to

those described with prior culture-based methods. In addition to

these microbes, a large number of previously uncultured or rarely

isolated bacteria were identified in this study, thereby demon-

strating that the skin of dogs is colonized by much richer and

diverse microbial communities than was previously thought.

Members of the genus Ralstonia are Gram-negative bacteria

considered to be primarily environmental organisms found in

water, soil, and plants, with only a few members being considered

pathogenic [34]. Different species of Ralstonia have been

occasionally isolated from the airways of human patients with

cystic fibrosis, although the significance of this observation remains

unclear [35]. The significance of the abundance of Ralstonia spp. in

the samples from healthy dogs and its absence in the samples from

the dogs with allergic skin disease is unknown at this point. It is

very likely that the Ralstonia spp. identified in these samples were

obtained from the environment, given a dog’s frequent interac-

tions with its outdoor’s environment. Previous reports have found

Ralstonia spp., along with other bacterial genera, to be water

contaminants in reagents used for qPCR [36]. Although we

cannot completely exclude this possibility, Ralstonia spp. were not

isolated from negative controls run along the tested samples.

Moreover, the DNA from all samples from healthy and allergic

dogs were extracted using the same reagents, and it would be

unlikely that a significantly lower abundance of this genus would

be found only in the samples from allergic dogs.

The family Moraxellaceae was frequently identified in the samples

from the nostril from the healthy dogs in this study. Using the

QIIME database, most sequences in this family were not assigned

to any specific genus, however when these were compared to

Figure 4. Bacterial phyla and families in healthy dogs. Average of most common bacterial phyla and families identified in different sites in the
skin of healthy dogs.
doi:10.1371/journal.pone.0083197.g004
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sequences in the NCBI Basic Local Alignment Search Tool

database [37], they usually exhibited a 97–100% identity to

sequences of Moraxella catarrhalis. The genus Moraxella has been

previously isolated from oral swabs from healthy dogs [38] and

from bronchial samples from dogs with tracheal collapse [39]. A

recent metagenomics study evaluating the oral cavity of healthy

dogs also frequently identified the genus Moraxella in evaluated

samples [40]. In cattle, Moraxella bovis, the cause of bovine

keratoconjunctivitis, is frequently isolated from nasal and ocular

secretions [41].

A previous study using samples from children with AD reported

a lower microbial diversity during flares of AD compared to

baseline and post-flare samples.[15] In our study, the skin samples

from allergic dogs in this study similarly showed a lower diversity

when compared to the samples from healthy dogs. Since the

samples collected from the allergic dogs were ‘‘baseline’’ samples

Figure 5. Principal coordinates analysis for allergic versus healthy dogs. Principal coordinates analysis plot of unweighted Unifrac distances
of 16S rRNA genes. No clustering differences are observed between allergic versus healthy dogs in the samples from the nostril, axilla, groin and
interdigital skin.
doi:10.1371/journal.pone.0083197.g005

Table 4. Alpha diversity analysis of the nostril mucosa and haired skin including axilla, groin and interdigital area of healthy vs
allergic dogs.

Skin site Healthy status Chao 1 Observed species Shannon

Median (Min–Max) Median (Min–Max) Median (Min–Max)

Nostril mucosa Healthy 100 (39–296) 47 (25–154) 2.85 (1.14–5.44)

Allergic 40* (26–45) 31 (21–39) 1.54 (1.04–3.89)

Haired skin Healthy 432 (21–858) 239 (16–440) 6.01 (0.88–8.09)

Allergic 168* (27–585) 125* (23–371) 5.40 (1.14–7.82)

*Significant differences between healthy versus allergic (p,0.05).
doi:10.1371/journal.pone.0083197.t004
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(non flares), we speculate that the lower diversity in the skin of

allergic dogs is possibly a result of frequent antimicrobial

treatments, although none of the allergic dogs in this study had

been treated with antimicrobials for at least one month. Previous

studies have also shown that the visibly normal (i.e. nonlesional)

skin of dogs with AD is not normal (i.e. it is more inflamed than

normal skin), and this inflammation could lead to skin surface

changes leading to lower bacterial diversity [42,43].

Using culture-based methods, the skin and nasal mucous

membranes of atopic human patients [15,44] and dogs [21,45]

are more often colonized with S. aureus and S. pseudintermedius,

respectively, than healthy patients. Based on 16S rRNA pyrose-

quencing data, S. aureus markedly dominated affected skin regions,

more commonly the antecubital and popliteal creases, in children

with AD. Likewise, baseline and post flare samples from children

with AD also had more abundance of S. aureus compared to the

Figure 7. Bacterial phyla and families in allergic versus healthy dogs Average of most common bacterial phyla and families
identified in axilla, groin, interdigital skin and nostril in allergic and healthy dogs.
doi:10.1371/journal.pone.0083197.g007

Figure 6. Rarefaction curves of 16S rRNA gene from allergic versus healthy dogs. Rarefaction curve of 16S rRNA gene sequences obtained
from axilla, groin, interdigital skin and nostril mucosa from allergic and healthy dogs. Lines represent average of each group, whereas the error bars
represent the standard deviations. The analysis was performed on a randomly selected subset of 1000 sequences per sample.
doi:10.1371/journal.pone.0083197.g006
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skin of healthy children [15]. Staphylococcus spp. was also frequently

identified in the skin of allergic dogs in this study. Although not

significantly different, the proportions of Staphylococcus spp. were

higher in the skin of (post-flare) allergic than in healthy dogs.

Conclusions

A large number of previously uncultured or rarely isolated

microbes were identified in the skin of dogs evaluated in this study,

demonstrating that the skin of dogs is inhabited by much more

rich and diverse microbial communities than was previously

thought, using culture-based methods. The study also shows that

each skin site from each dog evaluated here was inhabited by a

variable and unique microbiome, with significant individual

variability between samples from different dogs and between

different skin sites within the same dog. Differences in species

richness were also seen between healthy and allergic dogs, with

allergic dogs having significantly lower species richness when

compared to healthy dogs. Since the number of allergic dogs

enrolled into this study was small, and significant variability was

observed between individuals and between different skin sites, a

larger cohort of healthy and allergic dogs would have to be

evaluated before drawing any further conclusions on the most

important microbes inhabiting the skin of dogs, and the roles that

these microbes play in health or disease states. A study of the skin

microbiome of allergic dogs during acute flares and chronic skin

lesions might also confirm a lowering of this bacterial diversity.

It is imperative for us to better understand the microbial

populations inhabiting the skin of animals. Being able to describe

the skin microbiome in healthy animals, and identify the changes

that occur in the skin microbiome in disease states, could reveal

the role of the microbiome in the pathogenesis of skin diseases, and

possibly identify better measures to treat skin conditions,

ultimately reducing usage and resistance to systemic antimicrobial

treatment.
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