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Patients with obstructive sleep apnea (OSA) experience repetitive episodes

of desaturation and resaturation of blood oxygen (known as intermittent

hypoxia or IH), during sleep. We showed previously that IH induced exces-

sive proliferation of rat vascular smooth muscle cells through upregulation

of members of the epidermal growth factor family, especially epiregulin

(EREG), and the erbB2 receptor. In this study, we exposed human coro-

nary artery smooth muscle cells to IH and found that IH significantly

increased the expression of EREG. IH increased the production of inter-

leukin-6 (IL-6) in smooth muscle cells, and the addition of IL-6 induced

EREG expression. Small interfering RNA for IL-6 or IL-6 receptor attenu-

ated the IH-induced increase in EREG. IL-6 may play a pivotal role in

EREG upregulation by IH and consequently OSA-related atherosclerosis.

We previously reported that intermittent hypoxia (IH)

induced the proliferation of cultured rat aorta smooth

muscle cells (RASMCs) through upregulation of mem-

bers of the epidermal growth factor (EGF) family,

including epiregulin (EREG), amphiregulin (AREG),

and neuregulin-1, and the erbB2 receptor [1]. The role

of IH in obstructive sleep apnea (OSA), which is an

independent risk factor for cardiovascular and other

diseases, is well known [2–6]. In the progression of

atherosclerosis, which is a major cause of cardiovascu-

lar events, inflammation, foam-cell formation, and

excessive proliferation of vascular smooth muscle cell

(VSMC) are most important properties. Thus, macro-

phages recruited to vessel wall by inflammation take in

the oxidized aggregated low-density lipoprotein via

scavenger receptors resulting in foam-cell formation

and express cytokines to influence VSMC growth and

matrix accumulation, which give rise to a fibrous cap

[7]. For prophylaxis against OSA-related diseases, con-

tinuous positive airway pressure (CPAP) is applied in

a clinical setting. Various studies have demonstrated

dramatic effects of prophylactic CPAP on atheroscle-

rosis and cardiovascular mortality [8–11]. However, its

compliance with treatment for OSA such as CPAP is

often unsatisfactory [12–14]. Studies of cellular

responses to IH could establish another prophylactic

approach to combat OSA-related diseases.

Interleukin-6 (IL-6) is a proinflammatory cytokine,

which plays an important role in acute and chronic

inflammation. We previously reported that IH stimu-

lated pancreatic b cells to induce IL-6 gene expression

[15]. Several studies reported that serum inflammatory

markers, including IL-6, were increased in OSA

patients [16–18]. In addition, IL-6 induced an increase
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in EREG mRNA expression in mouse endothelial cells

[19]. On the basis of the aforementioned findings, we

speculated that IL-6 may be a key molecule in OSA-

related diseases such as atherosclerosis. In this study,

using human coronary artery smooth muscle cells

(hCASMCs), we investigated the influence of IH on

IL-6 production and the association of IL-6 with IH-

induced increases in EREG mRNA expression.

Materials and methods

Cell culture

SV40-immortalized hCASMCs were purchased from

Applied Biological Materials Inc. (Richmond, BC, Canada)

and grown in medium (Prigrow II/III) containing 5% (v/v)

fetal bovine serum, as specified by the supplier. The cells

were maintained at atmospheric oxygen concentrations

(21% O2, 5% CO2; 37 °C; normoxia). To produce sus-

tained hypoxia (SH), the cells were maintained in a hypoxia

chamber (1% O2, 5% CO2; balance N2 and water vapor).

To induce IH, the cells were exposed to cycles of hypoxic

(5 min) and normoxic (10 min) conditions as described pre-

viously [1,15,20–22]. The cells exposed to normoxia, SH, or

IH were cultured under the conditions described above.

Real-time RT-PCR assay

Total RNA was extracted from hCASMCs using an

RNeasy Protect Cell Mini Kit (Qiagen, Hilden, Germany),

according to the manufacturer’s protocol, as described pre-

viously [1,20–24]. After quantifying the isolated RNA using

a spectrophotometer, 0.5-lg aliquots were reverse-tran-

scribed using a High-Capacity cDNA Reverse Transcrip-

tion Kit (Applied Biosystems, Foster City, CA, USA).

PCR primers were obtained from Nihon Gene Research

Laboratories (Sendai, Japan). The primer sequences used to

amplify IL-6, EREG, and AREG mRNA are shown in

Table 1. The real-time PCR assay was carried out using a

SYBR� qPCR kit (KAPA Biosystems, Woburn, MA,

USA) in a Thermal Cycler Dice (TaKaRa, Kusatsu,

Japan). The mRNA expression level was normalized to that

of b-actin.

Promoter assay

A promoter construct was prepared by inserting a fragment of

human EREG gene (�1345 to +118: NC_018915) upstream of

a firefly luciferase reporter gene pGL4.17[luc/Neo] vector (Pro-

mega, Madison, WI, USA). The cells were grown in 24-well

plates to 70–80% confluency and transfected with a reporter

plasmid by lipofection using Lipofectamine� 3000 (Life Tech-

nologies, Carlsbad, CA, USA), as described previously [22–
24]. After IH, SH, or normoxia treatment for 24 h, the cells

were harvested, and cell extracts were prepared in extraction

buffer [0.1 M potassium phosphate (pH 7.8)/0.2% Triton X-

100; Life Technologies]. To monitor the transfection efficiency,

a pCMV-SPORT-bgal plasmid (Life Technologies) was

cotransfected in all experiments at a 1 : 10 dilution. Luciferase

activity was measured using the PicaGene luciferase assay sys-

tem (Toyo Ink, Tokyo, Japan) and normalized by b-galactosi-
dase activity, as previously described [20–25].

Measurement of IL-6 and EREG expressions in

IH-exposed hCASMC cultured medium

Conditioned media and cells were collected to examine the

expression of human IL-6 and EREG after exposure to IH

for the indicated times (Fig. 1B,C, 2C, and 4B). IL-6 and

EREG were detected by a human IL-6 immunoassay

(R&D Systems, Minneapolis, MN, USA) and human

EREG immunoassay (LifeSpan BioSciences, Inc., Seattle,

WA, USA), respectively, according to the manufacturer’s

instructions. Briefly, cell lysates were prepared by repeats

of freeze and thaw, and the protein assay was performed

using coomassie brilliant blue solution. Conditioned media

or cell lysates (10 lg of total protein) were added into a

96-well plate, which was precoated with a monoclonal anti-

body specific for human IL-6 or EREG. After washing

away any unbound materials, an enzyme-linked antibody

specific for human IL-6 or EREG was added to the wells.

Following washing to remove any unbound antibody/en-

zyme reagent, a substrate solution was added to the wells.

The intensity of the light emitted was measured by a micro-

plate luminometer (POWERSCAN� HT; BioTek Instru-

ments, Inc., Winooski, VT, USA).

RNA interference (RNAi)

RNA interference (RNAi) was performed using small inter-

fering RNA (siRNA) directed against human IL-6 and IL-

6 receptor genes. The sequences of siRNA for IL-6 and the

IL-6 receptor were 50-GGACAUGACAACUCAUCUCtt-30

and 50-CGACUCUGGAAACUAUUCAtt-30, respectively

[26]. Silencer� Select Negative Control No. 1 siRNA

(Thermo Fisher Scientific, Waltham, MA, USA) was used

Table 1. Primers used for RT-PCR.

Target

gene Primer sequence (position)

IL-6 50- GGTACATCCTCGACGGCATC-30 (NM_000600: 289–308)

50- GCCTCTTTGCTGCTTTCACAC-30 (NM_000600: 347–367)

EREG 50- CAAAGTGTAGCTCTGACATG-30 (NM_001432: 363–382)

50- CTGTACCATCTGCAGAAATA-30 (NM_001432: 581–600)

AREG 50- TGCTGGATTGGACCTCAATG-30 (NM_001657: 320–339)

50- TCCCGAGGACGGTTCACTAC-30 (NM_001657: 463–482)

b-Actin 50-GCGAGAAGATGACCCAGA-30 (NM_001101: 420–437)

50-CAGAGGCGTACAGGGATA-30 (NM_001101: 492–509)
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as a control. Transfection of siRNA to hCASMCs was car-

ried out using LipofectamineTM RNAiMAX transfection

reagent (Thermo Fisher Scientific). The cells were trans-

fected with 10 pmol each of siRNA in a 12-well culture

dish as described previously [15,22–24].

Statistical analysis

All the experiments were performed in triplicate or more. The

values obtained are described as means � SEM. After per-

forming a two-way ANOVA to determine the significance

among groups, a modified t-test was conducted, with

Fisher’s post hoc test performed for intergroup comparisons.

A P value of < 0.05 was considered statistically significant.

Results

IH increased the expression of EREG in hCASMCs

We first investigated whether EREG expression

increased in response to IH stimulation in hCASMCs,

as previously observed in RASMCS [1]. As shown in
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Fig. 1. IH increased the expression of EREG in hCASMCs. hCASMCs were cultured for 24 h with serum-free medium and exposed to

normoxia, IH, or SH for 24 h. (A) Total RNA were extracted, and real-time RT-PCR was performed using specific primers for human

EREG mRNA, as described in the Materials and methods section. Each value was normalized by arbitrarily setting the value of b-actin

of the cells exposed to normoxia to 1.0. The results are representative of four independent experiments. (B) Normoxic-, IH-, and SH-

treated hCASMCs were denatured by repeats of freeze and thaw. Ten micrograms of total protein in each cell lysate was used in an

EREG immunoassay, as described in the Materials and methods section. The results are representative of five independent

experiments. (C) Conditioned media of normoxic-, IH-, and SH-treated hCASMCs were collected and used in an EREG immunoassay,

as described in the Materials and methods section. The results are representative of four to five independent experiments. Each point

represents the mean � SEM.
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Fig. 2. IH has no effect on promoter activity of EREG in

hCASMCs. Reporter plasmids prepared by inserting the promoter

fragments of EREG (�1345 to +118) upstream of a firefly

luciferase reporter gene in the pGL4.17 vector were transfected

into hCASMCs. After cells were exposed to 24 h of either IH,

SH, or normoxia, the cells were lysed, and promoter activities of

EREG were measured, as described in the Materials and

methods section. Each value was normalized by arbitrarily

setting the value of luciferase/b-galactosidase activity of the cells

exposed to normoxia to 1.0. The results are representative of

four independent experiments. Each point represents the

mean � SEM.
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Fig. 1A, EREG mRNA expression increased in

response to IH but not SH in hCASMCs, as previ-

ously reported in RASMCs [1]. The EREG functions

in an autocrine fashion. Thus, transmembrane EREG

proform (pro-EREG) is cleaved and released into

extracellular space as mature form of EREG. In addi-

tional experiments, pro-EREG in cell lysate and

EREG in cell conditioned medium also increased in

response to IH but not SH (Fig. 1B,C). These results

indicate that the IH-induced increase in EREG mRNA

correlates with increases in pro-EREG and EREG and

that upregulation of EREG in response to IH is a

common feature of VSMCs.

IH-induced gene expression of EREG was not

directly regulated by transcription

To determine whether the IH-induced increases in

EREG mRNA were caused by activation of transcrip-

tion, human EREG promoter was fused to the lucifer-

ase gene of pGL4.17 and transfected into hCASMCs.

IH stimulation did not markedly increase the activity

of the EREG promoter (Fig. 2), suggesting that the

gene expression of EREG in response to IH was not

directly regulated by transcription.

IH induced IL-6 expression in a time-dependent

manner

As the involvements of IL-6 in IH-induced cellular

responses [14–17], we investigated IL-6 mRNA expres-

sion using real-time RT-PCR. As shown in Fig. 3A,

the expression of IL-6 mRNA was increased by IH,

but not by SH. In addition, IH significantly increased

IL-6 mRNA expression in a time-dependent manner,

with upregulation observed from 1 h to 24 h (Fig. 3B).

Similar increases in IL-6 were observed in IH-stimu-

lated RASMCs (data not shown). Additional analyses

revealed that mature IL-6 increased in IH-exposed cell

conditioned medium in a similar time-dependent man-

ner as seen in mRNA (Fig. 3C). These results are con-

sistent with the rise in blood IL-6 levels observed in

patients with moderate/severe OSA [16–18].

IL-6 stimulus increased EREG mRNA expression

Previous studies reported that IL-6 increased EREG

mRNA expression in mouse endothelial cells [19].

Thus, we tested whether IL-6 increased the expression

of EREG mRNA in hCASMCs. As shown in Fig. 4,

following the addition of 100 ng�mL�1 of IL-6 to the

hCASMC cultured medium, EREG mRNA was

upregulated from 0.5 to 24 h after stimulation with

IL-6, suggesting that IH-induced EREG expression

was induced by IL-6 increases in hCASMCs.

siRNA directed against IL-6 and the IL-6 receptor

suppressed the IH-induced increase in EREG

expression

Taking into account the IH-induced increase in IL-6

(Fig. 3) and IL-6-induced upregulation of EREG

mRNA (Fig. 4) in hCASMCs, we hypothesized that

elevated IL-6 production due to IH was responsible

for the IH-induced increase in EREG mRNA (Fig. 1).

To determine the direct role of IL-6 in IH-induced

increases in EREG mRNA expression, we applied the

RNAi method using siRNA for IL-6 and the IL-6

receptor. As shown in Fig. 5A, both siRNA for IL-6

and the IL-6 receptor significantly suppressed the IH-

induced increase in EREG mRNA expression, whereas

IH increased EREG mRNA in scrambled RNA had

been introduced cells. We additionally investigated the

direct involvement of the IL-6/IL-6 receptor system in

IH-induced increase in EREG production using

ELISA assay. As shown in Fig. 5B, IH induced an

increase in EREG in the conditioned medium of

scrambled siRNA-treated cell, whereas the IH-induced

increase in EREG in the conditioned medium of IL-6

or IL-6 receptor siRNA(s)-treated cell was attenuated.

These results indicated that the IL-6/IL-6 receptor sys-

tem was important in the IH-induced increase in

EREG production in VSMCs.

Discussion

Patients with OSA experience repetitive episodes of IH

during sleep (i.e., transient desaturation and resatura-

tion of blood oxygen) [10]. IH is associated with high

morbidity and mortality due to cardiovascular events

[10]. Atherosclerosis, which is a major cause of cardio-

vascular events, progresses via several steps, including

the disruption of the endothelial barrier, foam-cell for-

mation, and excessive proliferation of VSMCs [7]. In

the previous study using RASMCs, we reported that

IH induced the proliferation of RASMCs through

upregulation of members of the EGF family and

erbB2 receptor [1], suggesting that IH plays a direct

role in the progression of atherosclerosis. However,

the mechanisms underlying how IH increases the

expression of the EGF family remained unclear. In

this study, we used hCASMCs instead of RASMCs to

investigate the mechanisms underlying IH-induced

upregulation of EREG mRNA. We aimed to elucidate

the general mechanisms of atherosclerosis progression

facilitated or induced by OSA, as well as species
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differences in cellular responses that are frequently

observed in various tissues and cells [27–29]. In our

previous study, among members of the EGF gene fam-

ily, EREG mRNA expression showed the most

increase in response to IH, and an increase in EREG

in the IH-exposed RASMC conditioned medium was

also observed [1]. Thus, to determine whether the cel-

lular responses of RASMCs to IH were similar to

those observed in hCASMCs, we evaluated EREG

expression in hCASMCs. We found that IH but not

SH induced upregulation of EREG mRNA, pro-

EREG, and EREG in hCASMCs (Fig. 1). In addition,

AREG mRNA, a significant increase of which was

observed in RASMCs in response to IH, also increased

in hCASMCs exposed to IH (data not shown). These

results were similar to the findings of our previous

study using RASMCs [1]. They suggested that IH-

induced increases in EREG and AREG mRNA

expression are a general feature of VSMCs. Thus,

increases in EREG and AREG productions could be

an important response of VSMCs to IH. On the other

hand, the EREG promoter was not activated by IH

stimulation (Fig. 2), suggesting that IH-induced gene

expression of EREG was not directly regulated by

transcription.

Recent studies revealed that serum IL-6 levels were

elevated in patients with moderate and severe OSA

after sleep [16–18]. IL-6 is a well-known inflammatory

cytokine, which has been linked to atherosclerosis [30–
33]. Significantly higher levels of IL-6 were detected in

human arterial atherosclerotic wall plaques and carotid

artery plaques [34,35]. In the present study, mRNA

levels of IL-6 in hCASMCs significantly increased in

response to IH. As previous reports suggested that the

IL-6 promoter was activated by nuclear factor-kappa

B (NFjB) [36,37] and that NFjB activation was

induced by IH [15,38,39], it is reasonable to speculate

that IH elicited IL-6 mRNA. As shown in Fig. 3A,B,
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Fig. 3. IH induced IL-6 production in a time-dependent manner. (A) After exposure of hCASMCs to normoxia, IH, or SH for 24 h, total RNA

were extracted, and real-time RT-PCR was performed using specific primers for human IL-6 mRNA, as described in the Materials and

methods section. Each value was normalized by arbitrarily setting the value of b-actin of the cells exposed to normoxia to 1.0. The results

are representative of five independent experiments. (B) After exposure of hCASMCs to normoxia, IH, or SH for the indicated times (h) in

the body of the figure, total RNA were extracted, and real-time RT-PCR was performed using specific primers for human IL-6 mRNA, as

described in the Materials and methods section. Each value was normalized by arbitrarily setting the value of b-actin of the cells exposed to

normoxia (0 h) to 1.0. The results are representative of four independent experiments. IL-6 mRNA after IH stimulation (1, 12, 18, and 24 h,

except 6 h) was significantly increased. ‘n.s.’, not significantly different from 0 h. (C) After exposure of hCASMCs to normoxia, IH, or SH for

the indicated times (h) in the body of the figure, conditioned media of normoxic-, IH-, and SH-treated hCASMCs were collected and used in

a human IL-6 immunoassay, as described in the Materials and methods section. The results are representative of four independent

experiments. Each point represents the mean � SEM.
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IL-6 mRNA was significantly increased by IH. In

addition, IL-6 mRNA was elevated in RASMCs (data

not shown). Furthermore, mature IL-6, as well as IL-6

mRNA, increased in a time-dependent manner in IH-

exposed hCASMC conditioned media (Fig. 3C). These

results suggest that IH-induced increases in IL-6 pro-

duction are a general phenomenon of VSMCs in

response to IH, regardless of species. IH-induced

increases in IL-6 levels point to a potential role for

IL-6 in IH-induced progression of atherosclerosis. IL-6

makes a complex with soluble IL-6 receptor a and

recruits monocytes to areas of inflammation via the

production of chemokine (C–C motif) ligand 2 in

endothelial cells, which is histologically observed in

chronic inflammation [40]. In addition, IL-6 elicits two

major scavenger receptors, scavenger receptor-A and

CD36, in mouse macrophages, which mediate the

uptake of cholesterol and make foam cells [41]. In a

meta-analysis of 29 population-based prospective stud-

ies, IL-6 was associated with an increase in the

adjusted relative risk for nonfatal myocardial infarc-

tion or coronary heart disease death [42]. The present

study is the first to report that IH enhanced IL-6 pro-

duction in an in vitro IH model, which is consistent

with clinical reports [16–18]. In this study, both siRNA

for IL-6 and IL-6 receptor suppressed EREG mRNA

expression much lower than that in normoxia, as

shown in Fig. 5A. However, IL-6 and IL-6 receptor

siRNA-derived excessive suppression of IH-induced

EREG production was not observed (Fig. 5B). We do

not know why IL-6 or IL-6 receptor siRNA-induced

excessive suppression of EREG mRNA occurred, but

thought that IH may influence directly on IL-6-related

transcriptional and/or translational activities for

EREG. This matter needs further investigation.

Epiregulin is well known to possess a range of func-

tions in normal physiological states, as well as in patho-

logical conditions [43]. It contributes to various

processes, such as inflammation, tissue repair, and

wound healing, by regulating angiogenesis and stimulat-

ing cell proliferation [43]. A number of studies reported
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that the IL-6 amplifier, which acts as a chemokine indu-

cer in nonimmune cells, simultaneously activated NFjB
and signal transducer and activator of transcription 3 to

induce cytokines, such as IL-6, and locally attracted var-

ious immune cells [44–46]. Recently, the involvement of

EREG in the potentiation of the IL-6 amplifier was

reported [19]. These reports suggest that IL-6 and

EREG cooperatively induce dysregulation of local

homeostasis via inflammatory progression. As shown in

Figs 4 and 5, our results suggested that IL-6 mediated

the IH-induced increase in EREG mRNA expression

and EREG production in hCASMCs. Taken together,

our results and those of previous studies suggest that

dysregulation of local homeostasis via an inflammatory

reaction, which is induced by IL-6 and EREG, might

also occur in patients with OSA and cause consequent

OSA-related diseases.
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