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A B S T R A C T   

Background and purpose: A novel cobalt-60 compensator-based intensity-modulated radiation therapy (IMRT) 
system was developed for a resource-limited environment but lacked an efficient dose verification algorithm. The 
aim of this study was to develop a deep-learning-based dose verification algorithm for accurate and rapid dose 
predictions. 
Materials and methods: A deep-learning network was employed to predict the doses from static fields related to 
beam commissioning. Inputs were a cube-shaped phantom, a beam binary mask, and an intersecting volume of 
the phantom and beam binary mask, while output was a 3-dimensional (3D) dose. The same network was 
extended to predict patient-specific doses for head and neck cancers using two different approaches. A field- 
based method predicted doses for each field and combined all calculated doses into a plan, while the plan- 
based method combined all nine fluences into a plan to predict doses. Inputs included patient computed to-
mography (CT) scans, binary beam masks, and fluence maps truncated to the patient’s CT in 3D. 
Results: For static fields, predictions agreed well with ground truths with average deviations of less than 0.5% for 
percent depth doses and profiles. Even though the field-based method showed excellent prediction performance 
for each field, the plan-based method showed better agreement between clinical and predicted dose distributions. 
The distributed dose deviations for all planned target volumes and organs at risk were within 1.3 Gy. The 
calculation speed for each case was within two seconds. 
Conclusions: A deep-learning-based dose verification tool can accurately and rapidly predict doses for a novel 
cobalt-60 compensator-based IMRT system.   

1. Introduction 

A novel compensator-based intensity-modulated radiation therapy 
(IMRT) system using a cobalt-60 machine has been developed to provide 
cost-effective and high-quality radiation treatments to low- and middle- 
income countries (LMICs) [1]. This innovative treatment device utilizes 
a cobalt-60 source and nine compensators. Each compensator is manu-
factured by 3-dimensional (3D) printing of a plastic mold, filling on- 
demand with reusable 2-mm tungsten balls [2]. Currently, the proto-
type for this system is being manufactured by clinical and engineering 
collaborators in India. This technology was commissioned into the 
commercial treatment planning system (TPS) to integrate into the Ra-
diation Planning Assistant (RPA), an automated solution for structure- 

contouring and treatment-planning in low-resource environments [3,4]. 
Quality assurance (QA) in radiation therapy ensures the safe imple-

mentation of the prescription in terms of the dose to the target volume, 
minimal dose to normal cells, minimal personal exposure, and adequate 
patient monitoring [5] and has traditionally focused on verification of 
the dose delivering the prescribed dose to the patient [6]. There are 
commercial QA tools for cobalt-60 machines and linac machines [7]. 
However, in the newly-developed cobalt-60 compensator-based IMRT 
system, these tools are likely not directly applicable due to the different 
geometry of the source and compensators. As such, there is no suitable 
tool to verify the dose calculation in the TPS. 

Modern TPSs have used various dose calculation algorithms, 
including Monte Carlo, pencil beam, convolution/superposition, and 
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collapsed cone methods [8-17]; efforts are being made to improve the 
accuracy and speed of dose calculation using artificial intelligence (AI) 
technology [18-22]. Various studies of dose prediction have appeared, 
some of which employ contoured structures as input for various cancer 
sites such as head and neck [23-25], breast [26], lung [27], prostate [28- 
30], and rectum [31]. 

In this study, we have developed a deep-learning-based dose verifi-
cation method for accurate and efficient dose predictions using our 
novel compensator-based IMRT system. A neural network is used for 3D 
dose predictions for static treatment fields and IMRT plans for head and 
neck cancer (HNC) patients. Our deep-learning engine predicts patient- 
specific dose distributions using CT scans and fluence maps. Similar 
studies have been reported [21,32]; however, compared to these studies, 
converting 2D fluence maps to 3D is simpler and less computationally 
intensive. The approach should be translatable to other anatomical sites 
beyond the one for which it was developed and trained. 

2. Materials and methods 

2.1. Static field dose verification 

Dose verification for static fields is an important first step in verifying 
patient dose as it relates to beam commissioning. Cobalt-60 beam data 
commissioned into the Eclipse TPS (Varian Medical Systems, Palo Alto, 
CA, USA) were collected. As shown in Fig. 1(a), inputs comprised a 
homogeneous binary mask of a cube-shaped water-equivalent phantom, 
a beam binary mask with higher and lower borders that fit the phan-
tom’s height, and an overlapping section of the phantom and beam bi-
nary masks while the output is a 3D dose distribution within the 
phantom. All three input masks are required for the system to function 
properly; relying solely on the overlapped mask is not sufficient. The 
water-equivalent phantom data and dose distribution data were expor-
ted from Eclipse, and beam binary masks were calculated and generated 
according to the field size. No density information for the water- 
equivalent phantom was provided. There were four phantom sizes – 
20 × 20 × 20 cm3, 30 × 30 × 30 cm3, 40 × 40 × 40 cm3, and 50 × 50 ×
50 cm3. There were 15 beam fields ranging from 2 ~ 30 cm wide at 2 cm 
intervals. Source-to-surface distances (SSDs) were affected by both the 

phantom size and source-to-axis distance (SAD). 80 cm SAD was used, 
and there were 10 SSDs at 1 cm intervals ranging from SSD-5 cm to SSD 
+ 4 cm. A total of 600 data sets were generated, then randomly divided 
into 480–60-60 sets for training, validation, and testing. Input and 
output spatial dimensions were (256,256,256,3) and (256,256,256,1), 
respectively. 

2.2. Patient-specific dose verification 

Physician-approved volumetric modulated arc therapy (VMAT) 
plans for 45 head and neck cancer cases [4] were collected, de-identified 
according to a protocol approved by the institutional review board of the 
University of Texas MD Anderson Cancer Center, and then re-planned to 
create cobalt-60 compensator-based 9 fields IMRT plans using the same 
initial contours and dose prescriptions from the original VMAT plans. 
The angles employed in these IMRT plans ranged from 0 to 320 degrees, 
with intervals of 40 degrees. Then, patient-specific dose prediction was 
accomplished using two approaches: 1) Each of the 9 fields within the 
plan was treated as a separate field dose calculation to yield 405 sets. For 
training, validation, and testing, these were separated into 333-36-36 
sets. Patient CT scans, binary beam masks that overlapped with pa-
tient CT scans, and fluence maps that overlapped with patient CT scans 
were employed as inputs, with the patient-specific 3D dose distribution 
for one field as the output (Fig. 1(b)). Patient CT scans and binary beam 
masks that overlapped with patient CT scans were normalized from 0 to 
1. The fluence map was projected in 3D. The resulting predicted dose 
distributions for 9 fields corresponding to a single plan were combined 
to create the total dose for the plan. 2) In addition to the 45 existing 
plans, we expanded the data set to include an additional 92 IMRT plans 
created from physician-approved RPA plans. In this case, 9 beam field 
masks, as well as 9 fluence maps, were combined into one for each plan, 
resulting in a total of 137 sets that were then divided into 111-13-13 
training, validation, and testing sets. The inputs and outputs were 
identical to those of the previous approach (Fig. 1(c)). 

The Eclipse TPS calculated the dose in each voxel of a patient based 
on the energy-dependent fluence [33]. In contrast to linac, a cobalt-60 
beam has a discrete energy spectrum, so fluence is meaningful as a 
direct input to the dose calculation. The fluence intensity exported from 

Fig. 1. Input and output data for (a) static field dose verification, (b) field-based patient-specific dose verification, (c) plan-based patient-specific dose verification, 
and (d) schematic diagram of 3D Dense Dilated U-Net module. 
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the Eclipse had a range from 0 to 1, and it determined the delivered 
doses based on the prescribed target doses [34]. Since the format of the 
fluence map is 2D, it needed to be converted to 3D. A broad beam ray- 
tracing algorithm and a 3D digital differential analyzer algorithm have 
been employed to project the fluence maps onto the dose domain in 
previous studies [21,32]; however, we adopted a simpler method. The 
2D fluence map was extended in line with the beam divergence, utilizing 
the SAD as a reference point. No attenuation was incorporated in order 
to reduce computational complexity. The spatial dimensions of the input 
and output were (256,256,256,3) and (256,256,256,1), respectively. 

2.3. Deep-learning framework for dose prediction 

We investigated multiple deep-learning models for 3D dose predic-
tion in patients with HNC and discovered that the 3D dense dilated U- 
Net (3D DDU-Net) performed the best [24]. 3D DDU-Net (Fig. 1(d)) is a 
more advanced version of the fully dense U-Net, which has been shown 
to outperform the conventional U-Net [35]. Unlike other U-Net archi-
tectures, this model employed two encoding paths and two decoding 
paths, as well as continuous densely-connected dilated convolutions at 
the bottom stage. Each convolution in the densely-connected stage at the 

bottom is linked to all subsequent convolutions. The batch normaliza-
tion is chosen to prevent overfitting during training [36], and ReLU is 
faster to compute than the sigmoid function, making a considerable 
difference in neural network training time [37]. The mean squared error 
(MSE) loss was minimized based on the Adam optimization with an 
initial learning rate of 1.0E-04, and a batch size of 1 and MSE was 
employed to quantify the difference between the ground truth dose and 
the predicted dose for each sample. The epoch was set at 10,000, and the 
early stopping function was activated to terminate the training if the 
model performance for validation sets did not improve after a large 
number of epochs had passed. 

2.4. Quantitative analysis 

Percent depth doses (PDDs) and in-plane dose profiles were extracted 
from the dose distribution of the static fields predicted by the deep- 
learning model. The average percent deviations over multiple phan-
tom sizes, beam field sizes, and SSDs were compared to ground truth 
data from Eclipse TPS for verification. Furthermore, the ground truth 
and predicted dose distributions for each static field were used to 
evaluate gamma passing rates. 

Fig. 2. (a) Dose distributions at the isocenter for ground truth and prediction, (b) corresponding gamma indices with criteria of 2%/2 mm and 3%/3 mm, and (c) 
PDD and profile comparisons for ground truth and predicted dose based on a representative case in the test set. 

K. Oh et al.                                                                                                                                                                                                                                       



Physics and Imaging in Radiation Oncology 26 (2023) 100440

4

Predicted doses were compared to clinical doses based on a 
compensator-based IMRT system commissioned in Eclipse for patient- 
specific dose verification [38]. Gamma analysis was performed on the 
transversal plane at the isocenter to compare the predicted doses to the 
clinical doses for each plan. The deep-learning-based dose verification 
system was tested by comparing dose-volume histograms (DVHs) of 
clinical and predicted dose distributions, followed by statistical assess-
ments for PTVs and OARs. Since the sample size (N = 13) is smaller than 
15, the median and range were used for the statistical analysis. For PTVs, 
D98%, D95%, D5%, Dmax, Dmin, and Dmean were evaluated. Dmax was 
evaluated for the spinal cord, optic nerve, lens, eyes, cochleae, chiasm, 
brain stem, and brain, whereas Dmean was evaluated for parotid glands. 

3. Results 

As shown in Fig. 2(a) and (b), the predicted doses of the static fields 
by the deep-learning-based dose prediction tool had an excellent 
agreement with the ground truths having 99.9 % and 100.0 % average 
gamma passing rates for 2 mm/3% and 3 mm/3% criteria. In a repre-
sentative case, Fig. 2(c) showed a good agreement between the PDDs 
and profiles from the ground truth and prediction. All PDDs and profiles 
had average percent deviations of 0.4 ± 0.4% and 0.3 ± 0.5%, respec-
tively, across different phantom sizes, SSDs, and field sizes. 

Fig. 3 showed the DVHs for each field from a representative HNC 
patient, along with the predicted doses by the deep-learning model. The 
deep-learning model accurately predicted field-based doses. The 
average gamma passing rate for the criteria of 2 mm/2% was nearly 
100.0%, and the mean absolute errors were in the range from 0.2 to 0.3 
Gy. Though this agreement was excellent, small differences were noted. 
When the predicted doses from all nine fields were summed to provide a 
predicted plan dose, these small errors in each field accumulated, and 
the agreement was reduced. Relatively large structures, such as PTVs, 
were less affected, whereas smaller structures and structures near or 
outside of the high-dose regions, such as eyes and lenses, were 

significantly affected. 
Plan-based dose prediction demonstrated better agreement. Fig. 4 

illustrates the dose distributions and DVHs between the clinical plan and 
prediction using a deep-learning model for a representative HNC patient 
from the test sets. It showed that both doses from the clinical plan and 
the prediction by the deep-learning model had appropriate coverage for 
the PTVs and sparing for the OARs. The dose coverage for the PTVs was 
very similar, with D98%, D95%, D5%, Dmin, and Dmean values within 1%, 
except for Dmax (Table 1). Table 2 shows dose differences between 
clinical and predicted doses for field-based dose prediction and plan- 
based dose prediction using OAR metrics. The dose distribution by the 
plan-based dose prediction was much improved over that by field-based 
dose prediction. Across all OAR metrics, the dose differences between 
the predicted and clinical doses were less than 1.0 Gy, except for the 
spinal cord, brain stem and brain. 

Moreover, once the model was trained, it took less than two seconds 
for this deep-learning-based model to predict the 3D dose using a 32 GB 
GPU node. 

4. Discussion 

This study assessed a deep-learning-based secondary dose verifica-
tion system for dose calculation accuracy in both homogeneous and 
inhomogeneous materials. The gamma analysis and the evaluation for 
distributed doses were performed for application to static fields associ-
ated with the commissioned cobalt-60 beams. As part of the patient- 
specific dose verification, we evaluated the gamma indices and 
analyzed the DVHs for PTVs and OARs using compensator-based IMRT 
plans for HNC patients. The dose was predicted accurately for each case, 
and the calculation time of this system was less than two seconds. This 
secondary dose verification system could potentially be used with a 
compensator-based IMRT system. 

Previous studies have used contoured structures combined with pa-
tient CT images to predict 3D dose distributions [23,24,26,28,39]. In 

Fig. 3. Field-based DVH analysis for a representative head and neck cancer patient.  
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Fig. 4. 3D dose distributions by (a) clinical plan and (b) prediction using the deep-learning model and (c) corresponding dose-volume histograms for the clinical plan 
(solid lines) and the deep-learning dose prediction (dotted lines) for a representative HNC case. 
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this work, we used Inputs such as inhomogeneous patient computed 
tomography (CT) scans, binary beam masks, and fluence maps truncated 
to the patient CT in 3D. CT scans had inhomogeneous information, 
which affected the dose distribution, and beam masks provided the 
boundary lines for the dose distributions. The fluence data has a very 
close relationship to the dose calculation. A few studies have been 
conducted using fluence maps with the patient CT scans [21,32], and 
they used a ray-tracing algorithm to transfer 2D fluence maps to 3D 
volume data [40,41]. In this study, we used a simpler method to convert 
a 2D fluence map into 3D data than those studies and confirmed that the 
dose was accurately predicted using this method. 

Another important factor in predicting accurate dose distribution is 
selecting the appropriate deep-learning model. The majority of studies 
have used ResNet [32,42], U-Net [18,26,28,39,43], or models derived 
from U-Net to predict the 3D dose, such as hierarchically densely con-
nected U-Net [21,44]. Nguyen et al. [23] conducted performance tests 
based on 3D dose predictions on the HNC cases using standard U-Net, 
dense convolution network, and hierarchically densely connected U-Net 

(HD U-Net) and showed that the HD U-Net outperformed all other 
models in terms of dose coverage, dose conformity, and homogeneity. In 
addition, HD U-Net could predict patient dose more accurately and 
quickly with fewer parameters than other models. Furthermore, Gron-
berg et al. [24] evaluated various models, including DeepLabv3+, U- 
Net, and V-Net, which have traditionally been used for image segmen-
tation, along with the HD U-Net and 3D DDU-Net, which were previ-
ously used for dose prediction. As a result of this study, 3D DDU-Net 
achieved the best performance for patient dose prediction. Although 
Gronberg et al. [24] used 3D DDU-Net to predict dose based on con-
toured structures, we used the same deep-learning network for building 
a fluence-based dose prediction system and achieved good agreement. 

It may be possible to extend the prediction model to sites such as 
prostate, lung, rectum, and breast cancers other than head-and-neck 
cancer because this deep-learning model predicted the dose for HNC 
patients with high accuracy, although the treatment plans are relatively 
complicated. Also, this model may be more flexible than dose prediction 
models based on contoured structures, where it is necessary to adjust the 
contoured structures when the cancer site changes. This model simply 
predicts with the fluence maps, so it is not affected by any changes be-
tween cancer sites. 

Our results indicate that the deep-learning-based model predicts 
dose distribution with high accuracy and efficiency. A small error was 
observed when the field-based dose prediction method was used to 
predict the 3D dose for each field. However, combining the doses of all 9 
fields into one plan resulted in error propagation. A plan-based dose 
prediction method can resolve this issue because it does not have a 
combination process, increasing error. There is another model limitation 
associated with the boundary effect. Like other studies [32,45], the 
predicted dose in the beam field boundary area appears inconsistent. 
However, the dose in the beam boundary area is relatively small 
compared to the dose delivered to the treatment area and lies outside the 
fluence map boundary; it was determined that boundary effects do not 
significantly affect the dose prediction. In addition, this research showed 
that the dose differences were relatively little higher for the spinal cord, 
brain stem and brain compared to other OARs, although these differ-
ences were not statistically significant. This could be attributed to the 
fact that the volumes of both the spinal cord, brain stem and brain were 
relatively larger than those of the other OARs. 

The deep-learning-based model proposed in this study can be used as 
a QA tool for secondary dose verification, resulting in significant bene-
fits to cobalt-60 compensator-based IMRT systems in LMICs due to its 
relatively high efficiency, dose calculation speed, and reliability in 
predicting doses. Although this study was conducted only focusing on 
the cobalt-60 compensator-based IMRT system, it should be applicable 
to other commercially used linac systems that use the IMRT technique, 
and this will be the subject of further investigations in the future. 
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