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We explore the use of deep convolutional neural networks (CNNs) trained on overhead

imagery of biomass sorghum to ascertain the relationship between single nucleotide

polymorphisms (SNPs), or groups of related SNPs, and the phenotypes they control.

We consider both CNNs trained explicitly on the classification task of predicting whether

an image shows a plant with a reference or alternate version of various SNPs as well as

CNNs trained to create data-driven features based on learning features so that images

from the same plot are more similar than images from different plots, and then using

the features this network learns for genetic marker classification. We characterize how

efficient both approaches are at predicting the presence or absence of a genetic markers,

and visualize what parts of the images are most important for those predictions. We

find that the data-driven approaches give somewhat higher prediction performance, but

have visualizations that are harder to interpret; and we give suggestions of potential future

machine learning research and discuss the possibilities of using this approach to uncover

unknown genotype × phenotype relationships.

Keywords: deep learning, convolutional neural networks, explainable AI, visualization, single nucleotide

polymorphism, phenotyping, sorghum, TERRA-REF

1. INTRODUCTION

Sorghum is a cereal crop, used worldwide for a variety of purposes including for use as grain and as a
source of biomass for bio-energy production. For biofuel production, the goal of both plant growers
and breeders is to produce sorghum crops that grow as big as possible, as quickly as possible, with
as few resources as possible. Plant breeders produce new lines of sorghum by crossing together
candidate lines that have desirable traits, or known genes that correspond to desirable traits.

Understanding the relationship between genetics and traits is key to improving the breeding
process, and to understanding of plant biology in general. High throughput phenotyping (Araus
and Cairns, 2014) takes advantage of progress in sensor platforms able to measure data about plant
growth and traits at large scale to better understand these relationships.
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FIGURE 1 | We train deep convolutional neural network classifiers to predict

whether an image of a sorghum crop contains a reference or alternate version

of particular genetic marker, and then visualize why the network makes that

prediction. In this figure, we show the visualization for why the neural network

predicted an image showed a plant with an alternate version of a SNP that

controls, among other phenotypes, panicle shape (Hilley et al., 2017)—the

visualization highlights (in red) the panicle as an important feature in the

networks prediction.

In this paper, we propose using deep convolutional neural
networks (CNNs) as a computational platform to understand
and identify interesting genetic markers that control visually
observable traits. The pipelines we present can be leveraged by
plant geneticists and breeders to understand the relationship
between single nucleotide polymorpishms (SNPs, locations in
the organism’s DNA that vary between different members of
the population), or groups of related SNPs, and the phenotypes
that they impact. We explore these genotype × phenotype
relationships by training CNNs to predict whether images
of biomass sorghum show plants that have reference or
alternate versions of different genetic markers, and then making
visualizations that highlight the image features that lead to
the predictions. For models that can perform this classification
task with high accuracy, the visualizations highlight phenotypes
that correlate with the genetic marker. Figure 1 shows such a
visualization for a genetic marker that controls panicle shape—
the visualization shows that the machine learning model learned
to focus on the panicles, while not focusing on other plant parts.

We consider two approaches to performing this classification
and visualization task. The first approach directly trains a CNN to
classify images by their genetic variations. The second approach
involves first learning an embedding that can distinguish between
different varieties of sorghum, and then training different
classifiers on top of that embedding. In both cases, we can
quantitatively evaluate how well the models can be used
to predict genetic variations and qualitatively assess whether
the visualizations provide meaningful and biologically relevant
information about the genotype× phenotype relationship.

We demonstrate the feasibility and utility of these pipelines
on a number of SNPs identified in the sorghum Bioenergy
Association Panel (Brenton et al., 2016) (BAP), a set of 390
sorghum cultivars whose genomes have been fully sequenced and
which show promise for bio-energy usage. We focus on SNPs
and groups of SNPs with known phenotypic expression in order

to validate our approach. We highlight both quantitative results,
demonstrating that classification and embedding networks can
successfully be trained to predict genetic variation in biomass
sorghum, and present example visualizations which highlight
that the relevant features learned by these networks correspond
to features documented in existing literature about the different
genetic markers. The success of this approach on genetic markers
with known genotype × phenotype relationships indicates that
the same approach could be extended to genetic markers whose
phenotypic expression is less well understood, which could help
to accelerate crop breeding programs.

2. BACKGROUND

2.1. Sorghum and Polymorphisms
Sorghum is a diploid species, meaning that it has two copies
of each of its 10 chromosomes. Each chromosome consists of
DNA, the genetic instructions for the plant. The DNA itself
is made up of individual nucleotides, sequences of which tell
the plant precisely which proteins to make. Variations in these
sequences, called single nucleotide polymorphisms, can result in
changes to the proteins the plant is instructed to make, which
in turn can have varying degrees of impact on the structure
and performance of the plant. Understanding the impact that
specific genes have on plants and how they interact with their
environment is a fundamental problem and area of study in plant
biology (Bochner, 2003; Schweitzer et al., 2008; Cobb et al., 2013;
Boyles et al., 2019; Mural et al., 2021).

Single nucleotide polymorphisms (SNPs) are specific
variations that exist between different members of a population
at a single location on the chromosome, where one adenine,
thymine, cytosine or guanine nucleotide in one plant may be
have one or more different nucleotides in a different plant. This
variation can exist on one or both copies of the chromosome. A
cultivar that has the “original” version of the SNP on both copies
of the chromosome is referred to as being homozygous reference;
a cultivar that has variant on both copies of the chromosome is
referred to as being homozygous alternate; and a cultivar that
has one normal and one variant version of the SNP is called
heterozygous. In this paper we consider only the homozygous
cases, and how deep convolutional neural networks can be used
to predict whether imagery of sorghum plants shows a plant with
a reference or alternate version of a particular SNP or family of
related SNPs.

2.2. TERRA-REF
We work with data collected by the Transportation Energy
Resources from Renewable Agriculture Phenotyping Reference
Platform, or TERRA-REF, project which was funded by
the Advanced Research Project Agency–Energy (ARPA-E) in
2016 (Burnette et al., 2018; LeBauer et al., 2020). The TERRA-
REF platform is a state-of-the-art gantry based system for
monitoring the full growth cycle of over an acre of crops with
a cutting-edge suite of imaging sensors, including stereo-RGB,
thermal, short- and long-wave hyperspectral cameras, and laser
3D-scanner sensors. The goal of the TERRA-REF gantry was to
perform in-field automated high throughput plant phenotyping,
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FIGURE 2 | The TERRA-REF Field and Gantry-based Field Scanner in

Maricopa, Arizona, with sorghum being grown in the field.

the process of making phenotypic measurements of the physical
properties of plants at large scale and with high temporal
resolution, for the purpose of better understanding the difference
between crops and facilitating rapid plant breeding programs.
The TERRA-REF field and gantry system are shown in Figure 2.

Since 2016, the TERRA-REF platform has collected petabytes
of sensor data capturing the full growing cycle of sorghum plants
from the sorghum Bioenergy Association Panel (Brenton et al.,
2016), a set of 390 sorghum cultivars whose genomes have been
fully sequenced and which show promise for bio-energy usage.
The full, original TERRA-REF dataset is a massive public domain
agricultural dataset, with high spatial and temporal resolution
across numerous sensors and seasons, and includes a variety of
environmental data and extracted phenotypes in addition to the
sensor data. More information about the dataset and access to it
can be found in LeBauer et al. (2020).

2.3. Deep Learning for Agriculture
To our knowledge, ours is the first work that trains classifiers on
visual sensor data to predict whether an image shows organisms
with a reference or alternate version of a genetic marker in order
to better understand the genotype × phenotype relationship.
There is related work in genomic selection that attempts to
predict end-of-season traits like leaf or grain length and crop
yield (Sandhu et al., 2021) from genetic information, and in using
3D reconstructions of plants to identify leaf-angle related loci in
the sorghum genome (Tross et al., 2021). In Liu et al. (2019), the
most related work to ours, the authors train CNNs to predict
quantitative traits from SNPs, and use a visualization approach
called saliency maps to highlight the SNPs that most contributed
to predicting a particular trait (as opposed to predicting whether
a SNP is reference or alternate, and what visual components led
to that classification). There is additionally work that attempts to
use deep learning to predict the relative functional importance
of specific genetic markers and mutations in plants (Wang et al.,
2020), without focusing on visualizing their specific impact on
the expressed phenotypes.

There is generally significantly more work in applying deep
learning for a wide variety of plant phenotyping and agriculture

tasks that do not incorporate the underlying genetics—for
example, deep CNNs have successfully been used for fruit
detection (Sa et al., 2016; Bargoti and Underwood, 2017; Lim
and Chuah, 2018; Koirala et al., 2019; Wan and Goudos,
2020), cultivar and species identification (Barré et al., 2017;
Lim and Chuah, 2018; Van Horn et al., 2018; Ashqar et al.,
2019; Osako et al., 2020; Heidary-Sharifabad et al., 2021; Ren
et al., 2021), plant disease classification (Mohanty et al., 2016;
Wang et al., 2017; Ferentinos, 2018; Too et al., 2019), leaf
counting (Aich and Stavness, 2017; Dobrescu et al., 2017;
Giuffrida et al., 2018; Ubbens et al., 2018; Miao et al., 2021), yield
prediction (Wang et al., 2018; Chen et al., 2019; Nevavuori et al.,
2019; Maimaitijiang et al., 2020), and stress detection (Anami
et al., 2020; Butte et al., 2021; Chandel et al., 2021), among other
phenotyping tasks. These deep learning approaches are sensitive
to the amount of labeled data available, and the previous works
take advantage of a combination of fine-tuning CNN networks
trained for other tasks, heroic efforts to hand-label sufficient data
to support the learning tasks, or working with existing high-
throughput phenotyping data to bootstrap the learning process.

2.4. Latent Space Learning and Embedding
Networks
When there are too few labels for standard deep learning
approaches to work, there are sometimes widely available labels
that are still somehow related. These can support alternative ways
to train a CNN. One approach is called Deep Metric Learning,
and this takes advantages of circumstances when there are sets
of images whose labels are unknown, but known to be the same
as each other. For example, if you have sets of images that
are known to be from the same sorghum cultivar, then you
know that those images have the same (but unknown) genetic
markers as each other. For such data, deep metric learning trains
convolutional neural networks to extract output features from
images so that input data from the same class produce similar
output features, and input data from different classes produce
different output features.

Many approaches to solve this problem have been proposed
in recent years, both varying specific loss functions to define the
embedding (Hadsell et al., 2006; Sohn, 2016; Ge, 2018; Kim et al.,
2018; Xuan et al., 2018), and proposing interesting datasets along
with loss functions (Schroff et al., 2015; Song et al., 2016). In this
work we use a variation called the Proxy Loss approach described
in (Movshovitz-Attias et al. (2017) and Boudiaf et al. (2020),
which was recently used for plant-recognition based on flower
images (Zhang et al., 2021). This trains an embedding network
so that images taken from the same field plot are mapped closer
together than images taken from different field plots; this source
of weak labeling would apply to any situation where field plots
consist of unique cultivars.

The idea of embedding images into a feature space that
captures fundamental variations in crop varieties was proposed
as “Latent Space Phenotyping” (Ubbens et al., 2020), where
the authors used a similar approach to automatically find
image features that highlight differentiated response to treatment
effects. In their case, the embedding network is trained to learn
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FIGURE 3 | We use a standard ResNet-50 architecture, which like many deep convolutional neural networks consists of alternating convolutional and pooling layers

(with interspersed activation functions). The network ends with a final convolutional layer (conv−1), a global average pooling (GAP) operation, and then a fully

connected layer, the output of which is used to make our prediction of whether an image shows a plant with a reference or alternate version of a particular genetic

marker. We use the class activation mapping approach described in Zhou et al. (2016), in which the filters in the last convolutional layer are multiplied by the

corresponding weights between the respective layer and the predicted output node. These weighted filters are then added up to produce a heatmap that has its

highest values in important regions.

image features that best capture how the plants in the dataset
respond to the experimental treatment (such as drought stress
or nitrogen deficiency), to discover image features that might not
correlate to standard phenotypes. In our case, we build a network
that embeds images into a latent space that helps differentiate
many different cultivars, and show that this latent space supports
classification of cultivars based on several genetic markers.

2.5. Visualization Approaches
A common strategy for making deep convolutional neural
networks and their decisions more interpretable is to produce
automatically generated visualizations that highlight the most
important regions in images for a particular output. There are a
variety of different approaches for making these visualizations,
including output-agnostic approaches that generate a binary
relevancy map by thresholding the values of a feature map from a
given layer in the network (Zhou et al., 2015; Bau et al., 2017)
or incorporate deconvolutional neural networks to transform
activation maps into the original pixel space (Zeiler and Fergus,
2014).

One of the most common styles of visualizations that is
output-specific is the Class Activation Map (CAM) (Zhou
et al., 2016), which were shown to produce discriminative
visualizations. CAMs are generated by taking a weighted sum
of the feature maps produced by the last convolutional layer
in the network, using the weights of the global pooled feature
with respect to the target class as a multiplier (as shown in
Figure 3. An extension of CAM, GradCAM (Selvaraju et al.,
2017) generalizes this framework for different network layers and
architectures, weighting the feature maps by the gradients with
respect to the target class.

For embedding networks there are fewer visualization
approaches. In Chen et al. (2020), the authors extend the
GradCAM approach to embedding networks by averaging

the gradients from sampled training triplets. To produce the
visualization of a test image, the gradients of the most similar
training image are used for the weighted sum of the feature
maps. In Stylianou et al. (2019), the authors introduce a method
for generating heatmaps from a pair of images which highlight
the regions that contribute the most to their pairwise similarity
by decomposing the similarity calculation across each spatial
location in the final feature maps of both images.

In this paper, we focus on the Class Activation Map style
visualization to understand the predictions of deep convolutional
neural networks relative to particular families of genetic markers
in biomass sorghum.

3. DATASET DETAILS

To support our study on the usage of deep convolutional neural
networks to understand the genotype × phenotype relationship
in biomass sorghum, we leverage RGB imagery from the TERRA-
REF gantry described in Section 2.2. We specifically focus on
images from the 2017 growing season, when cultivars from
the sorghum Biomass Association Panel (BAP) (Brenton et al.,
2016) were grown. Each cultivar was grown in two spatially
separated plots.

The original TERRA-REF dataset provides raw RGB images
that are 3296 × 2016 pixels. There are approximately 11 images
that mostly or completely image each plot for a given day. In pre-
processing the raw imagery for our task, images that cross the
plot boundary are cropped intomultiple images that each contain
pixels of plants from only one plot. This data is then organized
into various datasets for our specific task of understanding the
genotype× phenotype relationship.

Our study focuses on two different strategies for training
CNNs for this task—the first approach directly trains CNNs to
classify images as having the “reference” or “alternate” version of
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TABLE 1 | Details about the genetic marker families of interest.

Genetic marker family SNP details

Chromosome Gene Position Known controlled phenotype

Leaf wax 1 001G269200 51,588,525 Wax composition (Uttam et al., 2017)

1 001G269200 51,588,838

1 001G269200 51,589,143

1 001G269200 51,589,435

dw 6 006G067700 42,805,319 Plant height and structure, stem length and

internode length (Yamaguchi et al., 2016; Hilley

et al., 2017)

6 006G067700 42,804,037

Dry Stalk (d) locus 6 006G147400 50,898,459 Plant height and structure, and sugar

composition (Xia et al., 2018)

6 006G147400 50,898,536

6 006G147400 50,898,315

6 006G147400 50,898,231

6 006G147400 50,898,523

6 006G147400 50,898,525

ma 6 006G057866 40,312,463 Flowering time and maturity (Murphy et al.,

2014; Wang et al., 2015; Cuevas et al., 2016)

6 006G004400 2,697,734

tan 9 009G229800 57,040,680 Pigmentation and tannin production (Wu et al.,

2012)

Single nucleotide polymorphisms are grouped by the phenotypes they control, and classification is performed by genetic marker family. Cultivars are defined as reference if they have

the reference version of all SNPs on both copies of the chromosomes, and as alternate if they have the alternate version of all SNPs on both copies of the chromosomes (we do not

consider heterozygous cultivars).

a particular genetic marker or family of related SNPs; the second
approach first trains a genetic-marker agnostic embedding, where
images from the same plot are encouraged to have features
that are similar and images from different plots are encouraged
to have features that are dissimilar. A genetic-marker specific
classifier is then trained on top of the genetic-marker agnostic
embedding model. Below we describe the specific datasets used
for the classification and embedding tasks.

3.1. Classification Dataset
In the classification setting, we train a neural network directly
on the task of predicting whether an image fed into the network
shows a plant that is homozygous reference or homozygous
alternate for a particular genetic markers.

In this paper, we focus on the five genetic markers listed in
Table 1. Each genetic marker is defined by one or more related
SNPs, which have been identified in prior work as having a
particular phenotype that is impacted depending on whether
the cultivar being grown has the reference or alternate version
of the marker.

For a cultivar to be labeled reference for a particular genetic
marker, it must have the reference version of all SNPs in the
family; cultivars are labeled alternate if they have the alternate
version of any of the SNPs in the family—this is because even
one polymorphism can significantly impact the phenotype being
controlled. (We do not consider heterozygous cultivars.)

For each genetic marker, we then count the total number
of reference and the total number of alternate cultivars; the

minimum count determines the number of cultivars that are put
into the genetic marker family specific training and testing sets—
the testing set includes half of the cultivars from whichever class
has fewer cultivars, and an equal number cultivars from the more
represented class.

We additionally balance our testing set such that there are
an equal number of reference and alternate images from an
equal number of reference and alternate cultivars (both images
and cultivars are randomly selected from the initial test set to
guarantee this balance). This guarantees that the performance of
a random classifier would be at 50% if predicting either per-image
or per-cultivar classification accuracy.

All remaining cultivars are put into the training set, without
limiting the number of images per cultivar—this allows us to
use a large number of training examples, even if there may
be imbalance in the number of images per class (reference vs.
alternate) or per cultivar. This imbalance is dealt with at training
time by an imbalanced sampler per batch, which selects roughly
equal numbers of images from the population of reference and
alternate examples.

There is no overlap between the training and testing cultivars.

3.2. Embedding Dataset
For the embedding approach, we first train a deep CNN to learn
a genetic-marker agnostic representation. To do this, we use all
available plot-cropped RGB images from the June 2017 TERRA-
REF dataset. These images are labeled by plot. This Embedding
Pre-training Dataset contains images from both the classification
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TABLE 2 | Dataset statistics.

Genetic marker family
# Train cultivars # Test cultivars # Train images # Test images

Ref Alt Ref Alt Ref Alt Ref Alt

Leaf wax 67 114 34 34 6,700 11,400 3,400 3,400

dw 80 105 40 40 8,000 10,500 4,000 4,000

Dry Stalk (d) locus 43 127 21 21 4,300 12,700 2,100 2,100

ma 21 167 10 10 2,100 16,700 1,000 1,000

tan 133 53 27 27 13,300 5,300 2,700 2,700

The number of cultivars and images used in the training and testing sets for each of the genetic marker families.

training and testing set, but no knowledge of the data’s genetic
marker labels is used to learn the representation.

After the pre-training stage, we are able to then train genetic
marker family specific classifiers on top of the embedding model.
Details of these classifiers and how they are trained are discussed
in more detail in Section 4.2. The test datasets used to evaluate
these classifiers are the same as in the classification pipeline. This
is acceptable despite the existence of these testing images in the
Embedding Pre-Training Dataset as we only use the plot labels
to pre-train the network; the genetic marker labels are unseen
during this stage. Genetic marker dataset splitting that is based
on cultivars also assures the plot label pre-training does not force
the model to map train and test images together.

Table 2 shows the exact number of cultivars and images used
in the classification training and testing sets for each genetic
marker family (the Embedding Pre-training Dataset consists of
all available plot-cropped images). We only consider images from
June of 2017, mid-way through the growing season when plants
are not too small, exhibiting many of the phenotypes of interest,
and not yet lodging (falling over) on top of each other.

4. METHODS

Our approach to gaining understanding about the
genotype × phenotype relationship in biomass sorghum is
to train deep convolutional neural networks to predict whether
an image shows a sorghum cultivar with the reference or
alternate version of a specific SNP or group of related SNPs, and
to then visualize the specific features the network focuses on
when making that determination. If the classifier can perform
well above chance performance on this classification task, then
it is learning something that is significantly correlated with the
genetics being considered, and the visualizations can help us
glean insights into precisely what those correlations are.

4.1. Training Pipeline 1: Classification
We train a ResNet-50 model (He et al., 2016), pre-trained on the
ImageNet dataset (Deng et al., 2009), with a single fully connected
layer on the reference vs. alternate classification task. A general
overview of this type of network architecture is shown at the top
of Figure 3.

For all families of genetic markers, the network is trained on
512× 512 plot-cropped RGB images from the datasets described
in Section 3. The weights of the entire network are trained using

the adam optimizer (Kingma and Ba, 2015) with a learning rate
of 0.0001 for 20 epochs. For data augmentation, we subtract by
dataset channel means and divide by dataset channel standard
deviations, and during training we perform random horizontal
flips. The 512 × 512 pixel images are extracted by resizing the
image on its largest side to 512 and extracting a random crop
at training time, and a center crop at testing time. We use
imbalanced batch sampling during training to fill 100 image
batches with a roughly equal number of reference and alternate
images per batch, even if there is an imbalance in the number of
reference and alternate images in the training set.

4.2. Training Pipeline 2: Embedding
4.2.1. Pre-training
As in the classification pipeline, we start from a ResNet-50 model
pre-trained on ImageNet. Instead of having a two-dimensional
output (as we have in the classification pipeline), the output is
700-dimensional, and the network’s task is to correctly classify
which of the 700 field plots an image came from.

During the pre-training, we use 25 images per batch, with each
image labeled by plot number.

Our embedding network loss function uses a cross-entropy
variant of Proxy Loss (Movshovitz-Attias et al., 2017; Boudiaf
et al., 2020), optimize the network using SGD (Sutskever
et al., 2013) with an initial learning rate of 0.01, learning
rate decay of 0.1 every 10 epochs, and a momentum term of
0.9. We train for 40 epochs, stopping based on training loss
convergence. We use the same data augmentation strategies as
in the classification pipeline.

4.2.2. Genetic Marker Prediction Using Embedding

Model
Once this pre-training is complete, we freeze the weights of the
network and the plot-level classification layer is chopped off,
yielding a network that ends with the 2,048-dimensional output
of the ResNet-50’s Global Average Pooling (GAP) layer, which
we use as our feature embedding. This output of the GAP layer
is established to be an excellent representation across datasets
and problem domains in Vo and Hays (2019). This embedding
feature can then either be used directly in inferring genetic
marker labels (for example, using k-Nearest Neighbors) or fed
into a classifier (for example, a support vector machine or a
new classification head on the pre-trained neural network). We
discuss these approaches below.
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k-Nearest Neighbors: In order to predict a genetic marker
label using k-Nearest Neighbors, we first extract the 2,048-
dimensional embedding feature for each of the images in both
the classification training and the testing sets. For every feature
in the test set, we look up its k-nearest neighbors in the training
set and infer whether the test image is reference or alternate from
the mode of the nearest neighbors. We use the value k = 11 in all
experiments based on empirical testing.

Support Vector Machine: To predict a genetic marker label
with a support vector machine, we first extract the 2,048-
dimensional embedding feature for each of the images in the
classification training and testing sets. We use PCA to reduce
the dimensionality of these features from 2,048 to 60, and then
use the classification training images and labels to train a support
vector machine with a radial basis function kernel, and evaluate
performance on the classification test set.

Classification Head on Embedding Network: For each
genetic marker, we take the pre-trained embedding network and
add a fully connected layer with a 2-dimensional output.We fine-
tune this fully connected layer using the images and labels from
the classification training set (the preceding network weights
remain frozen). Performance is evaluated on the classification
test set. We use SGD with a learning rate of 0.1 learning rate
and 0.1 learning rate decay every 5 epochs during training (with
no momentum). We stop training based on training accuracy
convergence.

4.2.3. Evaluation Settings
When computing the accuracy of each approach on the
classification test set, we can consider accuracy per image, per
cultivar and per plot-day. Accuracy per image is computed
by simply measuring the average accuracy of predicting the
correct label over all images in a test set. Accuracy per cultivar
is computed by making per-image predictions for all images
from a cultivar in a test set, and selecting the mode from
those predictions as the cultivar label. This setting does require
knowledge of the test set cultivar labels.

Accuracy per plot-day is computed by taking all of the
2,048-dimensional embedding features from a specific plot on
a specific day and averaging them together to produce a plot-
day embedding feature. This feature can then be used in place
of the original embedding features as the input to the k-Nearest
Neighbor or SVM classification (this setting is not applicable
for the approach where a fully connected layer is added to the
embedding model and trained for each genetic marker).

We discuss the relative classification accuracy of each of the
genetic marker prediction approaches and each of the evaluation
settings on the genetic marker classification task in Section 5.1.

4.3. Visualization Pipeline
It is not our ultimate goal to merely show which of the
above strategies yields the highest quantitative performance at
predicting whether an image shows a plant that has the reference
or alternate version of a particular genetic marker. Instead,
we hope to clarify the genotype × phenotype relationship that
each of these genetic markers. In order to do this, we propose
to automatically highlight the visual features that the neural

networks learn are most important in accurately predicting
reference vs. alternate. Those visual features are correlated with
the genetic markers, and reviewing them can provide insights
about what phenotypes the genetic markers are controlling.

In order to make such visualizations, we use the Class
Activation Mapping approach described in Zhou et al. (2016),
which highlights the image regions that most contributed to a
classification of the neural network. This approach is detailed in
the bottom of Figure 3, where the filters in the last convolutional
layer are multiplied by the corresponding weights between the
respective layer and the predicted output node. These weighted
filters are then added up to produce a heatmap that has its highest
values in important regions (e.g., the red regions in Figure 1).We
use this approach to compare the predictions among different
methods on a particular genetic marker family to understand
the different visual traits correlated with being either reference
or alternate.

We are able to use this visualization strategy both for the
classification pipeline, as well as the version of the embedding
pipeline where we train a genetic marker specific fully connected
layer at the end of the embedding network. We compare the
visualizations from these different approaches and discuss the
biological relevance of them in Section 5.2.

5. RESULTS

5.1. Genetic Marker Prediction Accuracy
In Table 3 we show the test set classification accuracy for all
five genetic markers using both the classification and embedding
pipelines. We compute the accuracy per image as well as the
accuracy achieved by taking the mode of the predictions from
all images of a cultivar, as described in Section 4.2.3. Taking the
mode per cultivar outperforms the per image accuracy for all but
the ma genetic marker. This is possibly due to the large imbalance
in the number of images per class in the ma training set (the ratio
between reference and alternate images of ma is 1:8, as seen in
Table 2). This significant imbalance may lead the classifiers that
utilize the training set (the k-NN and SVM approaches) to be
biased toward predicting the alternate class, resulting in roughly
chance performance.

Overall the best classification performance is achieved by the
approach where we train a fully connected layer on top of the pre-
trained embeddingmodel for each geneticmarker. This indicates,
for single genetic marker prediction task, the embedding network
extracts richer features than the direct classification approach.

5.1.1. Per Plot-Day Results
As discussed in Section 3, there are multiple images per plot
on any given day in the dataset due to the configuration of
the TERRA-REF field and imaging protocols. Any one of these
pictures shows only a subset of the plants in a specific plot,
and it may be the case that one picture contains relevant visual
features for the plot that are not present in a different picture (e.g.,
one picture might show a particularly indicative panicle while
others do not). This suggests that an approach that aggregates
features across all of the images from a plot could achieve
superior performance.
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TABLE 3 | Classification accuracy by image and by cultivar.

Genetic marker
Classification Embedding + k-NN Embedding + SVM Embedding + fc

Image Cultivar Image Cultivar Image Cultivar Image Cultivar

Leaf Wax 0.611 0.706 0.641 0.632 0.656 0.647 0.668 0.721

dw 0.600 0.650 0.660 0.750 0.676 0.738 0.655 0.713

d locus 0.642 0.762 0.669 0.667 0.665 0.667 0.734 0.833

ma 0.629 0.600 0.556 0.500 0.570 0.500 0.630 0.650

tan 0.646 0.796 0.682 0.741 0.682 0.704 0.667 0.704

For each genetic marker, we compare the accuracy of the direct classification approach with each of the approaches that use the embedding pre-training [k-NN, SVM and adding a fully

connected (fc) layer]. Accuracy per image is computed on each image in the test set separately. Accuracy per cultivar is computed by taking the mode of the image predictions from

each cultivar. The test set for each genetic marker family is balanced such that the classification accuracy by both image and by cultivar are 0.5. For each genetic marker, the highest

accuracy per image is shown in bold text, while the highest accuracy per cultivar is shown in italicized bold text.

TABLE 4 | Comparison with per plot-day features.

Genetic marker Per image Per plot-day

Leaf wax 0.656 0.699

dw 0.676 0.685

Dry Stalk (d) locus 0.665 0.741

ma 0.570 0.761

tan 0.682 0.733

Comparison of the accuracy of the SVM classification approach using the embedding

features for individual images as input vs. using plot-day aggregated features (generated

using the average pooling described in Section 4.2.3) as inputs.

In Table 4, we compare the accuracy of the SVM approach
using the embedding features for individual images as input vs.
using plot-day aggregated features (generated using the average
pooling described in Section 4.2.3) as inputs in both training
and testing. This plot-day aggregation over all of the images
from a plot yields significant improvement for all of the genetic
markers. The most noticeable improvement comes from the ma
marker. This indicates that the most important visual features
for the ma marker may only be present in a subset of the
plot images.

This significant improvement in classification accuracy for
the SVM approach, suggests that it would be beneficial to
similarly aggregate features across all of the plot images in
the pipeline where we train a fully connected layer on top
of the pre-trained embedding. While we cannot use the same
average pooling of the embedding features that we employ in this
paper, one possible approach for such cross-image aggregation
was described in Ren et al. (2021), and presents an interesting
direction for future work.

5.2. Visualizations of Genetic Markers
In the following sections, we discuss the visualizations produced
by the classification models. We focus on the biological relevance
of the produced visualizations, as well as a comparison between
the visualizations produced by the direct classification model vs.
the embedding model.

5.2.1. Visualizations From Classification Network
In Figure 4, we show 9 of the most activated and correctly
predicted reference and alternate images and their corresponding
heatmaps for each of the genetic markers (limiting our selection
to images that aren’t extremely over-saturated or under-exposed).
These visualizations provide compelling insights into what the
networks have learned to focus on, and therefore what visual
plant features are highly correlated with a plant either being
reference or alternate for a particular genetic marker. In the
following paragraphs, we will discuss notable observations from
these visualizations and how they correspond to the phenotypes
these markers are known to control. In all visualizations, red
regions indicate visual features that are important in leading to
the correct classification, while blue regions actively detract from
the correct class.

In the d_locus and dw visualizations in Figure 4, the alternate
visualizations appear to frequently focus on particular panicles at
different growth stages (the panicles focused on for the dw and
ma genetic markers are earlier in their life cycle when compared
to the panicles in the d locus visualizations). This corresponds
to the knowledge that polymorphisms in these genetic markers
control features like plant growth rate (SNPs in the dw and
d_locus families are considered “dwarfing” markers, controlling

growth rate and ultimate plant height), flowering time and

maturity. The d_locus reference visualizations also appear to
focus on particular leaf shapes—the ends of broad leaves—which

similarly may relate to the fact that the markers are known to

exhibit control over plant structure, and the mid-rib of the leaf.
This is consistent with existing knowledge about the phenotype

controlled by the d_locus marker as described in Xia et al. (2018):
“Dry Stalk (D) locus controls a qualitative difference between
juicy green (dd) and dry white (D-) stalks and midribs, and
co-localizes with a quantitative trait locus for sugar yield.”

In the leaf wax visualizations in Figure 4, we see the most
confident correct predictions for the leaf wax genetic marker
family. Cultivars with the reference version of these SNPs
are known to be more waxy, while the alternate versions are
less waxy. In the reference heat maps, the important (red)
regions are often diffuse, covering much of the leaf, while
the alternate visualizations are very focused on the spine of
the leaf.
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FIGURE 4 | For all five families of genetic markers, we can visualize highly activated and correctly classified images from the “reference” and “alternate classes,” and

their corresponding classification visualization that highlights the features that led to the networks classification. Features highlighted in red are those that led the

network to make its correct classification, while features in blue are those which detracted from the correct classification.

We zoom in on a selection of these leaf wax images in
Figure 5, where it is apparent that in the alternate images,
this spine is more brightly differentiated from the rest of
the leaf, while in the reference images the spine has less
contrast. This corresponds to the wax build up on the leaf
in the reference images, which cause the overall leaf to be
whiter, resulting in lower contrast on the spine. The reference
visualizations also often focus specifically on the interface
between the sorghum plant spine and leaf. When reviewing
these visualizations with a biologist on our team that does
in-field ground truth phenotyping of traits including leaf
wax, they said: “That’s exactly the place I look at when

determining waxiness in the field—it’s where the wax is most
obvious!” Excitingly, this indicates that the network has learned,
without explicit direction, to focus on the same plant parts as
expert humans.

In the ma visualizations in Figure 4, we see reference heat
maps that highlight the ends and edges of leaves that are old,
damaged or browning, and the alternate heatmaps show red
highlights on the edges of smoother, apparently healthier leaves,
which correlates with impact of this particular genetic marker
on the growth stage and maturity of the plants, or the “time to
maturity” described inWang et al. (2015) to be controlled in part
by the ma genetic markers.
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FIGURE 5 | The classification network trained on the leaf wax SNPs learned to focus on specific features for the reference and alternate class. When classifying an

image as the higher wax content “reference” class, the network often focuses on the interface between the stem and either leaves or panicles, where the wax build up

is most high. When classifying an image as “alternate”, the network instead often focuses on the vivid mid-vein of the leaf that is more obvious when leaf wax content

is lower. These features correspond to phenotypes that field biologists observe in the field. Features highlighted in red are those that led the network to make its

correct classification, while features in blue are those which detracted from the correct classification.

5.2.2. Visualizations From Embedding Networks
In Figure 6, we show the same nine highly activated reference
images from Figure 4, however this time we show both
the visualization produced by the classification model and
the visualization produced by the embedding model. While
the embedding-based approach achieves higher accuracy, as
discussed in Section 5.1, the visualizations are generally less
coherent. The classification visualizations often focus on specific
and isolated visual features, such as a single panicle or the vein
down the center of a leaf.

By comparison, the contributions to the correct prediction
highlighted by the embedding visualizations are often much
more scattered, highlighting various different visual features
simultaneously. The embedding features are trained for the more
difficult task of differentiating images of plants in different plots
that may look overall quite similar. It is likely that the features
learned by the network are good in the aggregate, but individual
features may represent combinations of image properties (e.g.,
“bright midline or wavy leaves or dark shadows”) that are
more broadly active across the image. The stronger classification
results of the embedding features suggests that it is learning
more comprehensive visual features; but additional work may be
necessary for this improved performance to also include more
interpretable visualizations.

In Figure 7, we highlight three specific examples for the
d_locus marker (reference class) that show this difference
in the coherence of the visualizations. The classification

visualization clearly focuses on panicles in the first two examples
and on the leaf mid-rib in the third; by comparison, the
embedding visualization on the other hand highlights various
parts of multiple leaves in all three examples. In addition
to the classification visualization showing consistent, specific
features like the mid-rib and panicles, it highlights a relatively
small amount of the image as affecting the classification
(either positively or negatively). In contrast, the embedding
visualizations shows more overall regions of the image with small
amount of impact on the classification.

6. CONCLUSIONS AND FUTURE WORK

In this paper, we compare two different pipelines to understand
the genotype × phenotype relationship in sorghum. The first
pipeline directly creates an image classifier by training on
images of cultivars with and without a particular genetic
marker, and the second trains an embedding that differentiates
a wide variety of cultivars and then uses features in that
embedding to predict the presence or absence of genetic
markers in images of specific plants. We show the embedding
approach has an overall better accuracy on genetic marker
prediction tasks.

We also visualize the network by showing activation maps
which highlight the most important parts of the images that
led to the decision of the network. For several genetic markers,
the classification approach leads to maps that seem to give

Frontiers in Artificial Intelligence | www.frontiersin.org 10 July 2022 | Volume 5 | Article 872858

https://www.frontiersin.org/journals/artificial-intelligence
https://www.frontiersin.org
https://www.frontiersin.org/journals/artificial-intelligence#articles


Zhang et al. Deep Learning for Genotype-Phenotype Interactions

FIGURE 6 | In this figure, we compare the “reference” visualizations from the classification and embedding models over all of the markers. Features highlighted in red

are those that led the network to make its correct classification, while features in blue are those which detracted from the correct classification. In general, the

classification visualizations focus on specific and more readily identifiable features, while the embedding visualization appears to encompass more diverse but less

obvious features. Specific examples of this for the d_locus marker are highlighted in Figure 7.
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FIGURE 7 | Here we focus on a comparison of the classification and

embedding visualizations for highly activated reference images for the d_locus

genetic marker family. Features highlighted in red are those that led the

network to make its correct classification, while features in blue are those

which detracted from the correct classification. This classification visualization

clearly highlights specific features such as the panicle or the vein down the

center of the leaf, while the embedding visualizations are more diffuse,

indicating that the model achieves its higher accuracy by learning more varied

(but less readily interpretable) features.

clear explanations, as shown, for example, in Figure 5. However,
the activation maps created in the embedding approach are
more complicated. This is because the embedding network
learns features to differentiate many different plots instead
of features focused entirely on differentiating one genetic
marker. Because each feature may contribute to differentiating
many different plots, it may represent a mixture of different
kinds of image features and therefore be less interpretable.
In future work, a finer grain visualization tool like the one
proposed by Zhao et al. (2021) may help to understand and
explain the visual features that extracted by the embedding
network, and loss functions that encourage sparse representation
may make those features more interpretable. Additionally,
it may be beneficial to consider visualization strategies that
do not simply localize the most salient features, but rather
try to disentangle their semantic relevance, such as in
the Explaining-in-Style approach proposed in Lang et al.
(2021).

We demonstrated the feasibility of our pipeline to help
understand the genotype × phenotype relationship in
sorghum by training deep convolutional neural networks
on visual sensor data to predict whether different crops
have reference or alternate versions of particular genetic

markers. We show for several genetic markers that whose
phenotypic expression is well understood that these networks
can achieve well-above chance performance on this task, and
that visualizations that highlight the most important parts of
the images that led to the classification correspond with the
known phenotypes.

This approach can be extended to not only help
better understand well-established genotype × phenotype
relationships, but to explore new, less well understood
relationships. The same approach could be deployed for
SNPs and families of SNPs whose phenotypic expression is
not understood, to uncover the importance of new, unstudied
polymorphisms. Such discovery would be achieved by first
starting with a list of candidate SNPs from sequencing whose
phenotypic expression are not well understood; then, for each
one, a classifier would be trained to predict whether images
show a plant with the reference or alternate version. If a classifier
achieves significantly above random-chance performance on
this task, then there is some visual feature that is correlated
with the marker. The visualizations of the most salient features
for the classifier can then be used to determine precisely
what the most important plant features are for that genetic
marker, to help drive understanding of these as yet unknown
genotype × phenotype relationships. We acknowledge that
this approach is limited in terms of determining causation as
opposed to correlation—there are often substantial correlations
between genetic variation in cultivars making it challenging
to attribute changes to individual mutations. However, even
correlations provide useful evidence for an investigator seeking
to better understand the genotype× phenotype relationship. The
pre-trained embedding models that achieved high performance
in this study could be used in these explorations of new
genotype× phenotype relationships, and our pre-trained models
and training code are available in our GitHub code repository,
which can be found at https://github.com/GWUvision/sorghum-
snp-classification. If an investigator is seeking to generalize this
pipeline to new species or to sorghum lines and phenotypes that
are not present in the BAP, it may be necessary to re-train on
representative data.

In this paper, we focused on a relatively limited time
period of high resolution data from the TERRA-REF gantry
system (data from the entire month of June, mid-way through
the growing season in 2017). We recognize that not all
phenotypes, however, are observable during this time period.
Especially when considering unknown genetic markers, it may
be beneficial to consider longer time periods including both
early and late growing periods when different phenotypes
are expressed. This is a direction for future work: longer
time periods may require more complex training protocols
that more explicitly incorporate time—for example, using
recurrent approaches, or training a multi-headed network that
simultaneously predicts the genetic class and the date. Additional
work could focus on extending the approach to sensors other
than RGB cameras, as some phenotypes may be more readily
observed in different sensing modalities, such as hyperspectral or
thermal imagery, or in the structural information from the 3D
laser scanner.
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