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Abstract
A large amount of brain imaging research has focused on group studies delineating differences between males and females
with respect to both cognitive performance as well as structural and functional brain organization. To supplement existing
findings, the present study employed a machine learning approach to assess how accurately participants’ sex can be
classified based on spatially specific resting state (RS) brain connectivity, using 2 samples from the Human Connectome
Project (n1 = 434, n2 = 310) and 1 fully independent sample from the 1000BRAINS study (n = 941). The classifier, which was
trained on 1 sample and tested on the other 2, was able to reliably classify sex, both within sample and across independent
samples, differing both with respect to imaging parameters and sample characteristics. Brain regions displaying highest sex
classification accuracies were mainly located along the cingulate cortex, medial and lateral frontal cortex, temporoparietal
regions, insula, and precuneus. These areas were stable across samples and match well with previously described sex
differences in functional brain organization. While our data show a clear link between sex and regionally specific brain
connectivity, they do not support a clear-cut dimorphism in functional brain organization that is driven by sex alone.

Key words: classification, functional magnetic resonance imaging, machine learning, resting state brain connectivity, sex
differences

Introduction
A large amount of brain imaging research has focused on delin-
eating differences between males and females with respect to
both cognitive performance as well as structural and functional
brain organization. However, while the terms “male brain” and
“female brain” are often used both in scientific and popular
writing, it is so far unclear if a sexual dimorphism in the human
brain actually exists. In a strict sense the term “dimorphism”
should only be used for those aspects of differences that come
in two strictly distinct forms like the male and female genitalia

(Joel and Fausto-Sterling 2016). In contrast, it has been suggested
that most differences in brain and behavior are not actually
dimorphic, since they show a high degree of overlap between
males and females (Joel and Fausto-Sterling 2016). With respect
to brain structure, some literature (Joel et al. 2015) even argues
that any particular brain might comprise certain features that
are statistically more typical of females and others which are
more typical for males. In that sense, these authors suggested
(Joel et al. 2015) that most brains are comprised of “mosaics” of
features, some more common in females, some more common
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in males, and some common in both. They showed that brains
with structural features that are consistently at either end of
the “maleness–femaleness” continuum are rare and an exten-
sive overlap exists between the distributions of females and
males for gray matter, white matter, and structural connectivity
(Joel et al. 2015). However, several other authors have criticized
this conclusion by showing that multivariate classifiers can be
trained to classify male and female brains based on structural
data with a high accuracy of roughly 80% (Chekroud et al. 2016;
Del Giudice et al. 2016; Rosenblatt 2016). These data suggest that
despite the absence of dimorphic differences and lack of internal
consistency observed by (Joel et al. 2015), multivariate analyses
of whole-brain structural patterns are able to reliably classify
the sex of a subject. Of note, these two results are not mutually
inconsistent (Chekroud et al. 2016). While a strict dichotomy
between the brains of males and females might not exist, this
does not mean that statistical differences cannot or should not
be considered (Chekroud et al. 2016).

Recent group studies also reported structural differences
between the sexes. For example, the largest single-sample study
so far on sex differences in the brain, comprising more than 5200
participants (Ritchie et al. 2018), found that males had higher
cortical and sub-cortical volumes, cortical surface areas, and
white matter diffusion directionality while females had thicker
cortices and higher white matter tract complexity. Furthermore,
these authors identified some subregional differences that were
not fully attributable to differences in total volume, total sur-
face area, mean cortical thickness, or height. Similarly, a meta-
analysis of more than 100 studies (Ruigrok et al. 2014) showed
that, on average, males have larger total brain volumes than
females and identified regional sex differences in volume and
tissue density in the amygdala, hippocampus, and insula.

Despite these structural differences, it is unclear if and how
structural brain variations translate into differences in func-
tional brain organization. While a large body of literature has
aimed to delineate the cognitive domains in which males and
females differ, assessment of brain function using functional
imaging techniques has so far mostly revealed relatively small
and inconstant group-level differences between females and
males. Historically, sex differences have been reported across a
wide variety of cognitive tasks (Miller and Halpern 2014) and a
variety of brain imaging studies have been conducted to iden-
tify the brain basis of these difference. Implicitly assuming
that there actually is a binary distinction between the male
and female brain, the vast majority of these studies are based
on group comparisons between males and females. However,
results so far have been inconclusive (Hyde and Plant 1995; Del
Giudice 2009). For certain cognitive domains, especially language
and emotional processing, there has been some evidence of sex
differences in cognition and functional brain organization. How-
ever, more recent, larger analyses have not found any conclusive
sex effects in these domains (Russell et al. 2007; Wallentin 2009).

Further trying to elucidate the neuronal basis of sex dif-
ferences, more recent functional magnetic resonance imaging
(fMRI) research has considered functional brain connectivity in
the absence of any specific cognitive task (Weis et al. 2017;
Ritchie et al. 2018; Zhang et al. 2018). Resting state (RS) fMRI
provide an estimate of the functional connectivity of the brain at
rest, that is, the intrinsic brain connectivity. Some studies have
identified specific networks, in which RS connectivity seems to
differ between the sexes (Biswal et al. 2010; Zuo et al. 2010; Tian
et al. 2011; Ritchie et al. 2018). However, other studies have not
found any effect of sex in RS fMRI data (Weissman-Fogel et al.

2010). Furthermore, a more recent study, employing repeated
RS measurement across different menstrual cycle phases in
women and time-matched tests in men, identified sex differ-
ences in some RS networks, while in others, the sex difference
was dependent on the cycle phase of the women (Weis et al.
2017), suggesting that sex is not the only factor influencing
individual differences in RS connectivity.

Sex Classification

Altogether, evidence for sex differences in functional brain orga-
nization is inconsistent. Importantly, existing results based on
group studies are fundamentally compromised by being based
on the questionable assumption of a clear-cut sexual dimor-
phism of the human brain. Thus, more advanced computational
methods seem to be more appropriate for the characterization
of the complex patterns that characterize differences between
the sexes. To this end, machine-learning methods can be used to
delineate how accurately the sex of an individual, out-of-sample
subject can be predicted from neuroimaging data (Bzdok 2017).
In this approach, a classifier learns the relationship between a
set of features, which are extracted from brain imaging data, and
a particular outcome, in this case the sex of the subject, using a
sample of observations. In the next step, this classifier can be
used to predict the sex of a previously unseen subject given its
features.

To date, there are not many studies that have adopted a
classification approach based on structural (Feis et al. 2013;
Chekroud et al. 2016; Rosenblatt 2016) or functional (Smith, et al.
2013b; Ktena et al. 2018; Zhang et al. 2018) brain imaging data. In
general, these studies employed whole-brain structural and or
functional connectivity based on pre-defined regions of interest
(ROIs) or brain parcellations. Based on whole-brain connectiv-
ity patterns, they have achieved a sex prediction accuracy of
roughly 80% both based on brain structure and function. While
these findings suggest that multivariate analyses of whole-brain
structural patterns are able to reliably classify the sex of a
subject based on brain imaging data, whole-brain functional
connectivity does not appear to be the optimal approach to
characterize the brain basis of sex differences.

From a methodological point of view, machine-learning
approaches based on whole-brain connectivity are extremely
vulnerable to the so called “curse of dimensionality.” Features
based on whole-brain connectivity are of extremely high dimen-
sionality. Even if the connectivity patterns are computed based
on a parcellation of only a few hundred parcels, the dimension of
connectivity feature vectors ranges on the order of several tens
of thousands—much higher than the dimensionality of the data
sets which usually contain far less than a thousand subjects. To
avoid overfitting resulting in deflated classification accuracies,
dimensionality reductions need to be applied. Furthermore,
whole-brain connectivity complicates the interpretability of
the results, as it is difficult to conclude which specific parts
of the brain are most distinct between males and females. As
classification performance can usually not be linked to specific
brain regions, it is impossible to draw any conclusions as to
those cognitive domains in which males and females differ
most. Thus, it is impossible to put sex classification findings in
relation to findings from classical group studies.

To avoid the curse of dimensionality, while at the same
time aiming to identify spatially specific effects, we employed a
novel approach that is based on spatially specific connectivity
for individual ROIs across the brain, instead of being based on
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whole-brain connectivity. The examination of spatially specific
effects is based on the assumption that sex differences in the
performance within specific cognitive domains can be taken
to suggest some rather selective neural differences restricted
to specific brain regions. As opposed to most previous studies,
which employed on whole-brain connectivity for classification,
we chose a parcelwise approach to assess how many and which
brain regions’ connectivity is best able to classify sex with
highest accuracies. Identifying those brain parcels that achieve
high accuracies based on their connectivity patterns allows
for straight-forward interpretations, especially when putting
the present results in relation to classical group studies on
sex differences. Furthermore, our parcelwise approach avoids
the curse of dimensionality, which typically leads to worsened
predictions in very high dimensional data sets like the whole-
brain connectome.

Altogether, the present study aimed to show that parcel-
wise connectivity patterns allow the classification of previously
unseen subjects sex with accuracies that approach those that
can be achieved based on whole-brain connectivity. Based on
spatially specific effects, functional decoding, that is, meta-
analyses based analysis of structure-function relationships (Fox
et al. 2014), can be employed to identify the cognitive domains
that these brain regions are related with. Only the assessment of
such spatially specific effects makes it possible to directly link
sex classification results to sex differences in specific cognitive
domains as suggested by existing group studies.

Additionally, we aimed to examine if these spatially specific
effects generalize across samples, differing both with respect
to imaging parameters and sample characteristics like age. To
this end, we trained a classifier on one set of imaging data and
applied this classifier to an independent data set. If the classifier
performs well on independent samples, this can be taken as
strong support for the generalizability of spatially specific brain
differences between the sexes.

Materials and Methods
Samples

Two mutually exclusive samples of unrelated subjects were con-
structed from data provided by the Human Connectome Project
(HCP S1200 release, Van Essen et al. 2012). Sample 1 contained
434 subjects (age range: 22–37, mean age: 28.6 years; 217 males),
sample 2 comprised 310 subjects (age range: 22–36, mean age:
28.5 years; 155 males). Within each of the two samples, males
and females were matched for age, twin status, and education.
Twins were not included in the samples. RS blood oxygen level–
dependent data comprised 1200 functional volumes per sub-
ject, acquired on a Siemens Skyra 3T scanner with the follow-
ing parameters: voxel size, 2 × 2 × 2 mm3; FoV, 208 × 180 mm2;
matrix, 104 × 90; 72 slices; TR = 720 ms; TE = 33.1 ms; flip angle,
52 degrees. The data were collected using a novel multi-band
echo planar imaging pulse sequence that allows for the simul-
taneous acquisition of multiple slices (Xu et al. 2013). For RS
data acquisition, subjects were asked to lie with eyes open, with
“relaxed” fixation on a white cross (on a dark background), think
of nothing in particular, and not to fall asleep (Smith et al. 2013a).
Sample 3, a fully independent sample covering a different age
range, was obtained from the population-based 1000BRAINS
study (Caspers et al. 2014). It comprised 300 volumes per subject,
scanned on a Siemens TRIO 3T scanner with the following
parameters: voxel size, 3.1 × 3.1 × 3.1 mm3; FoV, 200 × 200 mm2;

matrix, 64 × 64; 36 slices; TR = 2200 ms; TE = 30 ms; flip angle, 90
degrees. This sample comprised 941 subjects (age range: 18–88,
mean age: 62.8 years; 512 males). During RS data acquisition,
participants kept their eyes closed and were instructed to let
the mind wander without thinking of anything in particular
(Caspers et al. 2014).

To examine the influence of volumetric differences between
males and females, an additional sample (sample 4) was cre-
ated from sample 1 and 2 (both HCP samples), in which males
and females were matched for gray matter volumes. This new
sample comprised 260 participants (age range: 22–37, mean age:
28,48, 130 males).

Pre-processing

For sample 1 and sample 2, we employed the pre-processed and
FIX-denoised data provided by the Human Connectome Project
(HCP S1200 release), for which also the spatial normalization to
the MNI152 template had already been performed before down-
load. Thus, no further motion correction was performed. Move-
ment parameters, as provided in the HCP S12000 release, indi-
cated that movement in the scanner, measured as mean frame-
wise displacement (FD, Power et al. 2014), did not differ between
males and females in sample 1 [females: mean (FD) = 0.164, SD
(FD) = 0.063; males: mean (FD) = 0.171, SD (FD) = 0.073; t = 1.038,
P > 0.05] or sample 2 [females: mean (FD) = 0.166, SD (FD) = 0.053;
males: mean (FD) = 0.157, SD (FD) = 0.055; t = 1.364, P > 0.05].

For sample 3, to ensure that physical noise and effects of
within scanner motion are minimized as much as possible,
RS fMRI data were cleaned of structured noise through the
multivariate exploratory linear optimized decomposition into
independent components (MELODIC) method from the FSL
toolbox (www.fmrib.ox.ac.uk/fsl). This process combines inde-
pendent component analysis with a more complex automated
component classifier referred to as FIX (FMRIB’s ICA-based
X-noisifier) to automatically remove artefactual components
(Salimi-Khorshidi et al. 2014). The FIX-denoised data were
further pre-processed using SPM12 (Statistical Parametric
Mapping, Wellcome Department of Imaging Neuroscience,
London, UK, http://www.fil.ion.ucl.ac.uk/spm/), running under
MATLAB R2014a (Mathworks, Natick, MA). For each participant,
the first four echo-planar imaging (EPI) volumes were discarded
prior to further analyses. Then EPI images were corrected
for head movement by affine registration using a two-pass
procedure: in the first step, images were aligned to the first
image, and in the second step to the mean of all volumes.

Movement in the scanner, measured as mean FD (Power et al.
2014), did not differ between males and females [females:
mean (FD) = 0.132, SD (FD) = 0.001; males: mean (FD) = 0.130,
SD (FD) = 0.001; t = 0.321, P > 0.05].

The mean EPI image was spatially normalized to the MNI152
template (Holmes et al. 1998) by using the “unified segmenta-
tion” approach in order to account for inter-individual differ-
ences in brain morphology (Ashburner and Friston 2005). This
approach was chosen, as several recent studies have indicated
increased registration accuracies of this approach as opposed to
normalization based on T1 weighted images (Calhoun et al. 2017;
Dohmatob et al. 2018).

Connectome Extraction

Instead of using whole-brain connectivity, as previous studies
have done, our novel approach is based on training classifiers

www.fmrib.ox.ac.uk/fsl
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on individual brain regions’ connectivity with the rest of the
parcels. This approach allows the computation of sex classifi-
cation accuracies individually for each of the regions to find out
which brain areas’ connectivity achieve the best classification
accuracies.

For each parcel, an activation time course was computed
and correlated with those of each of the other parcels. Then,
for each parcel individually, the connectivity pattern with the
rest of the brain was used as features to train a classifier to
distinguish between males and females. Finally, by using cross
validation, for each parcel the out-of-sample accuracy of sex
classification was determined. This novel approach thus offers
a straightforward way to delineate spatially specific effects.

Individual RS connectomes were created based on a novel
whole-cortex parcellation reported by (Schaefer et al. 2017),
comprising 400 parcels. Since this atlas does not cover subcor-
tical structures, we added 36 subcortical parcels taken from the
Brainnetome atlas (Fan et al. 2016). The Schaefer parcels have
been shown to agree with the boundaries of certain cortical
areas defined using histology and visuotopic fMRI, revealing
neurobiologically meaningful features of brain organization. The
Brainnetome atlas is fine grained and cross validated contain-
ing information on both anatomical and functional connec-
tions. The time series of each parcel was cleaned by excluding
variance that could be explained by mean white matter and
cerebrospinal fluid signal (Satterthwaite et al. 2013). For each
parcel, the subject-specific time series was then computed as
the first eigenvariate of the activity time courses of all voxels
within the parcel. For each parcel, we then computed pairwise
Pearson correlations between the parcel’s time series with those
of all other parcels, which were then transformed to Fischer’s
Z scores. Each parcel’s connectivity with the 435 other parcels
across the whole-brain for each subject was used as features in
the classification analysis for this specific parcel.

Sex Prediction

For each brain parcel individually, nonlinear support vector
machine (SVM) (LibSVM toolbox; Chang 2011) with radial
basis function (RBF) kernel was employed to train a model
for classification of the subject’s sex from the corresponding
connectome. SVM learns the relationship between a set of
input variables or features (the connectivity pattern of each
individual parcel) and a particular outcome (the sex of the
subject) across a set of observations. Our goal here was to fit
a function that approximates the relation between the features
and the outcomes, which can be used later on to infer the sex
of new subjects from their connectome. Effects of age were
adjusted using betas fitted only in the training. In an inner
loop, the hyper-parameters gamma and C of the model were
optimized by employing a cross validation on the training set
for each fold and the final model was created by averaging the
hyperparameters across folds.

For each parcel individually, we trained the classifier on
sample 1 and determined within sample accuracy by a 10-fold
cross validation, where the classifier was trained on 90% on the
sample and tested on the remaining 10%. The same analysis was
conducted for sample 4.

To characterize the statistical significance of the results
an approximate permutation test approach was employed,
in which associations between features and labels (sex) were
randomized. That is, the labels were randomly permuted
while the feature matrix was kept unchanged. Ten-fold cross

validation was repeated for each permutation, and accuracies
for 5000 permutations were used to construct an empirical null
distribution. To control for multiple comparisons across the 436
parcels, the maximum accuracies across all brain parcels were
obtained, resulting in 5000 null values obtained from the 5000
permutations, which were then used to compute FWE corrected
P values.

In the second step, the classifier was trained on the full
sample 1 and then tested on sample 2 and sample 3. The brain
networks were visualized with the BrainNet Viewer (http://www.
nitrc.org/projects/bnv/) (Xia et al. 2013).

Functional Decoding

By training independent SVMs or each parcel of the brain, we are
able to identify to what extent connectivity of each parcel dif-
ferentiates between males and females. These spatially specific
effects were then used to determine which cognitive domains
most strongly distinguish between males and females. In this
way, our results can be directly related to findings from classical
group studies. The highly predictive regions identified by the
classification analysis were functionally characterized using the
“Behavioral Domain (BD)” categories available in the BrainMap
database (http://brainmap.org/scribe/). BDs comprise main cate-
gories cognition, action, perception, emotion, and interoception,
as well as their related sub-categories (Fox et al. 2014). Forward
and reverse inference approaches were employed to determine
the functional profile of the parcels with high classification
accuracies. While forward inference is defined as the probability
of observing activity in a brain region given knowledge of the
psychological process, reverse inference is the probability of a
psychological process being present given knowledge of activa-
tion in a particular brain region.

Results
Sex Prediction

Within Sample Cross Validation
For sample 1, across all parcels in the brain, the highest predic-
tion accuracy reached 75.1%. All except five parcels’ accuracies
were significant at P < 0.05 (FWE corrected for multiple compar-
isons) with a minimum accuracy of 63.1% and a mean prediction
accuracy of 68.7% (SD, 2.6%). The five non-significant parcels
(accuracies between 61.5% and 62.9%) were located in right
middle occipital gyrus, bilateral precuneus, and right postcentral
gyrus. The spatial distribution of classification accuracies across
the whole brain is depicted in Figure 1a.

Between Sample Validation for Sample 2
Across all parcels in the brain, the highest prediction accuracy
reached 72.6%, with a minimum accuracy of 55.4% and a mean
prediction accuracy of 64.3% (SD, 3.0%). The spatial distribution
of classification accuracies across the whole brain is depicted in
Figure 1b.

Between Sample Validation for Sample 3
Across all parcels in the brain, the highest prediction accuracy
reached 65.7%, with a minimum accuracy of 53.4% and a mean
prediction accuracy of 60.0% (SD, 2.5%). The spatial distribution
of classification accuracies across the whole brain is depicted in
Figure 1c.

http://www.nitrc.org/projects/bnv/
http://brainmap.org/scribe/
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Figure 1. ROI-based classification accuracies for within sample cross validation in sample 1 (a) as well as for across sample classification with the model trained on
sample 1 and tested on sample 2 (b) and sample 3 (c). Across all analyses, the majority of the highly predictive parcels were located along the cingulate cortex, in right
anterior mid-cingulate cortex as well as left posterior cingulate cortex. Other highly predictive parcels were located in bilateral medial frontal cortex and in bilateral
precuneus. Further parcels with high prediction accuracy were located in left lateral frontal cortex, as well as left temporo-parietal regions and insula. The spatial

distribution of parcels with highest classification accuracies were very similar across the within sample cross validation and the out-of-sample prediction for both
samples, indicating the stability of the classification across samples with different characteristics.

Table 1 lists all those parcels, for which classification accu-
racy fell within the top 3% in all three analyses. The table lists the
localization of all cortical regions that cover more than 10% of
the respective parcel. Notably, the parcels with the highest clas-
sification accuracies were very similar across the within sam-
ple cross validation and the out-of-sample prediction for both
samples. Consistency in the spatial distribution of highest clas-
sification accuracies in across sample validation can be taken to
indicate the stability of the classification across samples with
different characteristics. The stability of the spatial pattern of
highly predictive parcels was further assessed by computing
the rank correlation of within sample CV accuracy in sample 1
and between sample classification accuracy in samples 2 and 3

respectively. For both samples, correlation was highly significant
(sample 2: rs = 0.99, P > 0.0001; sample 3: rs = 0.99; P < 0.0001). The
scatterplots are shown in Figure 2.

Furthermore, to examine the consistency of the classification
patterns across samples, we computed the mean parcelwise
connectivity pattern for females and males within each of the
three samples. By subtracting female mean connectivity from
male mean connectivity per parcel, the mean sex difference in
connectivity was computed as a 1 × 435 (number of parcels—1)
vector for each of the three samples. Then the sex difference in
connectivity for sample 1 was correlated with those for sample 2
and sample 3. For both samples, the correlation was significant,
indicating comparable patterns of connectivity between
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Figure 2. Scatter plot of classification accuracies for CV within sample one (HCP) versus out of sample classification in sample 2 (HCP, blue) and sample 3 (1000BRAINS,
red) across the 436 parcels covering the whole brain.

parcels (sample 1/sample 2: r = 0.601, P < 0.001; sample 1/
sample 3: r = 0.259, P < 0.001). The difference in correlation
strengths between sample 2 und sample 3 presumably reflects
the fact that sample 1 and sample 2 were both drawn from the
same samples, while sample 3 constituted a fully independent
sample with different participant and scanning characteristics.

Prediction Accuracies for the Whole-Brain Connectome

To compare the parcelwise classification performance to accu-
racies that can be achieved based on the whole-brain connec-
tome, respective analyses were run on the full connectome
derived from the 436 parcels. While within-sample cross val-
idation within sample 1 achieved an accuracy of 74.81%, the
between sample validation showed an accuracy of 70.39% for
sample 2 as well as of 51.13% for sample 3.

Confounding Effects of Gray Matter Volume

To examine the influence of volumetric differences between
the sexes, a standard analysis pipeline of the CAT12 toolbox
(http://www.neuro.uni-jena.de/cat/) was used to compute grey
matter volume (GMV) for each parcel in each participant within
sample 1, based on their T1-weighted anatomical scan (3D
MPRAGE, TR = 2400 ms, TE = 2.14 ms, FOV 224 mm × 244 mm,
voxel size = 0.7 mm isotropic). These data were used to compute
the mean sex difference in GMV in each parcel by subtracting,
for each parcel, mean GMV across females from mean GMV

across males. Then, a rank correlation was computed between
the mean sex difference in GMV and RS-based classification
accuracy across parcels. This was done for both the directed
as well as the absolute mean sex difference in GMV. Both
correlations were non-significant (directed sex difference:
r = 0.0374, P = 0.4364; absolute sex differences: r = −0.0320, P = 0).
Similar correlations were computed across those parcels for
which classification accuracy was significant. Again, both for
directed and absolute sex differences these correlations were
non-significant (directed sex difference: r = 0.0264, P = 0.5851;
absolute sex difference: r = −0.0210, P = 0.6641). Finally, the
correlations were computed across the parcels with top 10%
classification accuracies, again not revealing any significant
correlations (directed sex difference: r = 0.0909; P = 0.5561;
absolute sex difference: r = −0.0519, P = 0.7374).

Furthermore, for each parcel, an independent sample t-
test was used to compare GMV for those subjects that were
correctly classified to those that were misclassified. While 21
of the comparisons were significant at P < 0.05, none remained
significant after FDR correction for multiple tests across the
436 parcel, indicating that parcelwise GMV was not signifi-
cantly different between correctly and incorrectly classified
subjects.

Additionally, we repeated the cross-validation analysis on
sample 4, in which groups were matched for gray matter volume.
Overall, classification accuracies in sample 4 were lower than in
sample 1. Considering that sample 4 was constructed from sub-
sets of sample 1 and sample 2, similar signal-to-noise ratio (SNR)

http://www.neuro.uni-jena.de/cat/
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Figure 3. BDs associated with the brain parcels that achieved highest sex classification accuracies, as defined by functional decoding.

can be expected in these samples. Thus, it is assumed that that
lower accuracies observed for sample 4 are based on the smaller
sample size, as it has been shown that when a sample is fixed
then smaller random subsamples will show a lower accuracy as
there is simply less data to learn from (Provost et al. 1999). There-
fore, while smaller sample sizes tend to lead to higher variance
in accuracies, they also, on average, result in lower accuracies.
Even though, sex classification could still be achieved across the
whole brain with accuracies between 55.6% and 71.8% (mean
accuracy, 64.7%). Furthermore, the overall pattern of parcels with
highest classification accuracies was comparable to our original
results as shown in Supplementary Figure 1.

Functional Decoding

Functional characterization according to the BrainMap meta-
data was performed for all parcels that appear within the top
3% of parcel accuracies in the within sample CV as well as the
between sample classification.

Anterior Cingulate and Medial Frontal Areas
Parcels that covered regions in the right medial frontal cortex as
well as anterior and middle cingulate cortex were mainly asso-
ciated with BDs emotion, specifically fear and reward; cognition,
especially social cognition and reasoning; perception, including
gustation and pain and interoception, especially thirst; as well
as action inhibition.

Middle and Posterior Cingulate and Precuneus
The parcel in the right middle cingulate gyrus and precuneus
was associated with BDs of emotion, as well as social cognition
and explicit memory. Similar BDs were associated with the
parcel in the left posterior cingulate cortex and precuneus.

Left Lateral Frontal Areas
Parcels in the left lateral frontal cortex were associated with BDs
of working and explicit memory, as well as speech and language
(especially semantics), social cognition and emotion (disgust) as
well as action inhibition.

Left Angular Gyrus
The parcel centered in the left angular gyrus was associated with
BDs of explicit memory.

In summary, those parcels for which connectivity patterns
with the rest of the brain achieved highest sex classification

accuracies were associated with different types of emotion,
social cognition, memory, and language. The BDs associated
with the top accuracy parcels are summarized in Figure 3.

Discussion
Our data revealed that classification of an out-of-sample sub-
jects’ sex from the RS connectivity profiles was possible with
high accuracies across the whole brain, indicating that each
individual parcel’s RS connectivity carries enough information
to reliably identify a previously unseen subject’s sex. However,
and most importantly, there were pronounced differences in
the prediction accuracies of specific brain regions, indicating
spatially specific effects. Of note, those spatially specific parcels
with high prediction accuracies were stable across within and
between samples classification, indicating the generalizability
of these predictions independently of the specific characteristics
of the sample as well as the specific imaging parameters used.
These results strongly indicate that it is the functional connec-
tivity of specific regions in the brain that is most characteristi-
cally different between males and females.

We employed a functional decoding approach to examine
which cognitive domains were related to those brain regions
that most clearly differentiate between the sexes. As opposed
to group studies comparing brain activations and cognitive per-
formances, our approach does not rest on the assumption of
a clear-cut sexual dimorphism in functional brain organiza-
tion but is suitable to characterize multi-layered differences in
functional connectivity of certain brain regions, while making
it possible to assess cognitive domains in which males and
females differ most.

Of note, functional connectivity in itself is obviously not spa-
tially specific. Thus, high classification accuracy for a given par-
cel does not result from the intrinsic function of that parcel but
rather from its pattern of connectivity with other parcels across
the brain. However, there is general consensus that mental
functions arise from the coordinated activity within distributed
networks rather than any individual brain region (Park and
Friston 2013). A high classification accuracy for a given parcel
indicates differences in this parcel’s connectivity, which in turn
can be taken as evidence that those cognitive domains, for which
the parcel is typically activated, is organized in different ways in
males than in females or at the very least that the pattern of that
cognitive function is more “typical” (i.e., less variable) in one of
the sexes as opposed to the other.

https://academic.oup.com/cercor/article-lookup/doi/10.1093/cercor/bhz129#supplementary-data
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Similarly, as the present analyses are based on connectivity
patterns across the whole brain, there is a large amount of
shared information between parcels, due to the fact that con-
nectivity with other brain parcels is used as features in the anal-
ysis. This dependency between parcels presumably is reflected
in a relatively uniform classification performance across the
brain with only very few parcels displaying non-significant dis-
crimination. Still, our parcelwise classification approach clearly
identified a subset of parcels that most strongly distinguished
between males’ and females’ brain connectivity patterns and
thus allowed for an identification of cognitive domains that can
be assumed to most strongly differentiate between the sexes.

Spatially Specific Effects

Across all analyses, the majority of the highly predictive parcels
were located along the cingulate cortex, in right anterior mid-
cingulate cortex as well as left posterior cingulate cortex. Other
highly predictive parcels were located in bilateral medial frontal
cortex, in bilateral precuneus as well as left lateral frontal cortex,
left temporo-parietal regions, and insula.

Interestingly, the majority of parcels showing highest
classification accuracies in the present study match well with
brain areas that have been related to the default mode network
(Buckner et al. 2008; Biswal et al. 2010). One of the largest
studies conducted on the topic (Biswal et al. 2010) indicated
that women exhibited stronger connectivity than men in the
posterior cingulate cortex, medial prefrontal cortex, and the
inferior parietal lobe but weaker connectivity in the dorsal
anterior cingulate cortex, insula, superior temporal gyrus,
superior marginal gyrus, and occipital regions. Our results
are in line with these findings (Biswal et al. 2010), as most of
the regions reported in their study exhibit high classification
accuracies here. Furthermore, given that the methods employed
in both studies to assess functional connectivity patterns in
the RS are different, the overlap of results further speaks to the
generalizability of our findings.

Additionally, the importance of the DMN in the classification
of participant’s sex based on RS fMRI data replicates findings
from (Zhang et al. 2018). These authors employed whole-brain
connectivity in their classification approach and subsequently
identified those connections, which contributed most to the
successful classification. While our approach is different in that
it is based on spatially specific connectivity, both studies identi-
fied the importance of the DMN in successful sex classification.
The present results also match with findings from a large-
scale group comparison based study (Ritchie et al. 2018), which
showed that connectivity within the DMN is more pronounced
in females than in males.

Further brain regions that play an important role in success-
ful sex classification are associated with cognitive domains for
which sex differences have previously been identified. For exam-
ples, brain regions displaying high accuracies in differentiating
between males and females in the present study closely match
with those reported in classical studies suggesting language pro-
cessing as the key cognitive domain to differ between males and
females (Halpern 1992). For example, previously reported brain
regions that were also identified in the present study include the
angular gyrus, the prefrontal and retrosplenial cortex (Frost et al.
1999), as well as the (pre-)cuneus and cingulate areas (Clements
et al. 2006). Thus, our results support the existence of differences
in the brain basis for language processing as one of the most
distinguishing features between the sexes.

Further high prediction accuracies were identified for medial
brain regions, specifically in the frontal cortex. In accordance
with our results, a meta-analysis of the neural correlates of
sex differences in emotion processing (Stevens and Hamann
2012) identified several of the brain regions that provided highly
accurate sex prediction in our study, like the medial frontal and
anterior cingulate regions.

Finally, the high classification accuracy in bilateral precuneus
might be linked to the established male advantage in visuo-
spatial working memory, which has recently been demonstrated
based on a large meta-analysis (Voyer et al. 2017).

Altogether, similar to (Zhang et al. 2018), our findings show
that accurate sex prediction is possible on the basis of brain
connectivity at rest. However, in addition to their findings,
our novel approach enabled identification of brain regions,
for which the connectivity with the rest of the brain is most
distinctive between males and females. Functional decoding of
these regions identified the cognitive domains associated with
these regions. Speaking to the reliability of our findings, these
domains match well with those for which sex differences have
previously been reported based on group comparison. However,
importantly, our results emphasize the importance of these
areas for sex differences in a much more direct way.

However, it needs to be noted that spatial differences in the
SNR of the fMRI data might influence the results. For example,
for regions with low SNR we might not be able to achieve good
accuracies, even if biologically speaking, they are important for
distinguishing male versus female. Future studies might want to
take into account measures of SNR across the brain. While this
problem is not specific to the approach employed here but rather
exists for any analysis of fMRI data, it underlines the importance
of a thorough quality control of the data, specifically for these
types of studies.

Accuracy and Generalizability of Sex Classification

Firstly, our samples specifically excluded pairs of related sub-
jects. We could therefore make sure that classification accura-
cies are not optimistically biased because subjects are related.
Due to this selection, the sample on which our model was
trained is much smaller than the sample employed in Zhang
et al. (2018) and in fact contains only about half as many subjects.
Furthermore, we decided to base our predictions on the first of
the available RS runs only. While for the HCP data four runs of
RS data are available, this is not the case for most other data
sets, to which this method might be applied. We aimed to not
mainly identify the maximum accuracy that can be achieved—
for example by combining several RS runs as done by Zhang
et al. (2018)—but rather to show that successful classification
is possible based on just one run of RS data. Indeed, our results
show that high classification accuracies can be achieved based
on relatively small samples and just about 10 min of RS data.

More importantly, we could show that the ability of spatially
specific brain regions to predict sex is stable not only within
sample but also across different samples. The HCP sample and
the 1000BRAINS sample differ with respect to both imaging
parameters and sample characteristics. For example, while the
HCP sample contains only relatively young participants, the
1000BRAINS sample comprised a much wider age range includ-
ing older subjects. Still, the highest within-sample and between-
sample accuracies were found in highly similar brain regions,
underlining the reliability of our findings. Furthermore, average
sex differences in spatially specific brain connectivity patterns
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appear to be comparable across sample, indicating that not
only the capacity to classify but also the underlying connec-
tivity patterns show similarities across samples with different
characteristics. Still, with the availability of more large data set,
it would further strengthen the results if other groups could
independently replicate the same spatial patterns.

It needs to be noted that total brain volume is one variable
demonstrating a consistent sex difference and thus might have
influenced prediction accuracies as observed here.

This issue has been previously addressed by Zhang et al.
(2018), who showed that both sex and brain volumes could be
predicted from RS brain connectivity across the whole brain.
Based on showing that features (i.e., functional brain connec-
tions) in sex and brain volume predictions overlap by less than
20%, these authors concluded that the sex difference in brain
volume is not dominating in gender sex prediction. However,
this analysis does not address spatially specific sex differences
in GMV, which might have influenced the parcelwise classifi-
cations examined here. While spatially specific sex differences
exist in the data used in the present analyses, these local differ-
ences in GMV are unrelated to parcelwise classification accura-
cies, indicating that the quality of the classification is indepen-
dent of local volumetric differences between the sexes. There
was also no systematic association between parcelwise GMV
and individual classification performance, further suggesting
that local GMV did not influence our results.

Finally, a classification analysis in a sample that was
matched for gray matter volumes between males and females,
displayed slightly lower accuracies, but a similar spatial pattern
of highly predictive parcels as the original analysis, again
indicating that gray matter volume did not influence the
classification.

Does a Sexual Dimorphism of Functional Brain
Organization Exist?

Our results show that accurate prediction of the sex of an out-
of-sample subject is possible based on individual brain regions’
RS connectivity. The spatially specific effects identified here are
closely linked to sex differences in cognition.

Our data show that classification based on specific brain
regions can achieve classification accuracies that are com-
parable or even higher than what can be achieved based on
the whole-brain connectome. What is more, when considering
the whole-brain classification accuracies, the drop in accuracy
between within-sample cross validation and across sample
performance (especially in the independent sample) is more
pronounced than for the parcelwise analysis, which might indi-
cate an overfitting based on the extremely high dimensionality
of the whole-brain connectome.

While the vast majority of parcels distinguish between males
and females with significant accuracy, for none of the parcels’
prediction accuracies were approaching 100%. One reason for
the non-perfect prediction accuracies might be based on the
fact that our approach ignores functional brain networks. Thus,
while we cannot exclude that this might be based on method-
ological choices with respect to the machine learning approach,
it might also add further support to the recent suggestion (Joel
et al. 2015) that, even for specific regions, brains falling on the
ends of the male–female continuum are rather rare. While we
cannot directly test this assumption based on the present data
sets, it is conceivable that where a brain falls on this continuum

might be modulated by effects of each individual’s experience,
education, and culture or a combination of these (Jancke 2018).

Thus, our results do not support an actual sexual dimor-
phism of the human brain. Same as for brain structure (Joel
et al. 2015), features based on RS connectivity appear to sub-
stantially overlap between males and females. Specifically, our
data indicate that, while some regions of the brain distinguish
better between the male and the female brain, it appears to be
impossible to actually identify dimorphic features that justify
a clear sex distinction. In fact, this is not surprising but rather
might suggest that the functional organization of each individ-
ual brain is related to the individual’s sex but is also shaped
by additional factors. Further research needs to elucidate the
biological and social factors contributing to each individual’s
specific brain organization pattern.

For example, one of the most obvious biological factors influ-
encing sex differences in functional brain organization might be
hormonal differences, for example, fluctuating sex hormones
across the menstrual cycle in women. In fact, a variety of studies
have shown hormonal effects on functional brain connectivity
RS fMRI studies (Hjelmervik et al. 2012; Petersen et al. 2014;
Arelin et al. 2015; De Bondt et al. 2015; Weis et al. 2017). With
locally specific functional brain organization varying with hor-
monal chances, females might be expected to exhibit increased
variability in those regions that contribute most to sex classifi-
cation. This in turn might have a profound influence on clas-
sification performance, with classification accuracies possibly
depending on the female participants’ cycle phase. It might
also mean that successful classification can only be achieved
in specific cycle phases. This is a limitation of the present
study and in fact any study assessing sex differences without
consideration of the females’ menstrual cycle. Unfortunately, so
far none of the large-scale data sets necessary for the analyses
like those presented here has collected information on hormone
levels. If this could be done in the future, hormonal information
might in fact further inform the models and thus increase classi-
fication accuracies. Furthermore, it would be highly interesting
to examine if hormonal changes are region specific or affect
classification performances across the whole brain.

Also, there might be social factors influencing classification
accuracies and regionally specific effects, such as individual
learning experiences, culture, or gender stereotypes. In fact, it
might be the individual pattern of interaction between biological
and social factors that is picked up by the classifier. Based on our
data alone, it is not possible to disentangle these modulating
effects. Thus, future studies should take into account not only
the biological sex and biological modulators like genetics and
hormones but also social factors like the self-perceived gender
of the participants. Presumably, only the combination and inter-
action of all these factors will enable a more detailed character-
ization of individual variations in functional brain organization.

Conclusions
Our results show that sex classification based on RS fMRI data is
possible with high accuracies, which are significantly different
from chance across more or less the whole brain. The results also
show that classification can be reliably extended to independent
samples, differing both with respect to imaging parameters
and sample characteristics. Those regions that display high
prediction accuracies are stable across samples, indicating that
the spatial pattern of regions that best distinguish males from
females generalizes across samples and age ranges. This is
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further underlined by the fact that these regions confirm sex
differences that have been shown in classical group comparison.
In addition, they match well with areas that have been related to
specific clinical conditions for which prevalence differs between
the sexes.

However, our results also indicate that sex alone cannot per-
fectly explain each individual’s specific patterns of functional
brain organization. Thus, these data do not support the exis-
tence of a sexual dimorphism with respect to functional brain
organization and they strongly support the notion that terms
such as “female brains” or “male brains,” which are frequently
used especially in popular writing, are not appropriate. While
some patterns of brain organization might be driven by sex,
more complex pattern of brain organization are most likely
shaped by each individual’s environment and experiences and
thus cannot be explained by sex alone.

Supplementary Material
Supplementary material is available at Cerebral Cortex online.
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