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Abstract

Chronic high-frequency repetitive transcranial magnetic stimulation (rTMS) is a noninvasive brain stimulation
technique that has recently received increasing interests as a therapeutic procedure for neurodegenerative diseases.
To identify the metabolism mechanism underlying the improving effects of rTMS, we observed that high frequency
(25Hz) rTMS for 14 days could reverse the decline of the performance of the passive avoidance task in aged mice.
We further investigated the metabolite profiles in the prefrontal cortex (PFC) in those mice and found that rTMS could
also reverse the metabolic abnormalities of gamma-aminobutyric acid, N-acetyl aspartic, and cholesterol levels to the
degree similar to the young mice. These data suggested that the rTMS could ameliorate the age-related cognitive
impairment and improving the metabolic profiles in PFC, and potentially can be used to improve cognitive decline in
the elderly.
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Introduction

Repetitive transcranial magnetic stimulation (rTMS) is a
noninvasive brain stimulation technique that has recently
received increasing interests as a therapeutic
neurorehabilitative tool [1]. Studies confirmed that chronic high
frequency rTMS ameliorated cognitive impairment in normally
aging individuals [2,3]. Several studies have shown that rTMS
promoted neuronal plasticity related genes and proteins
expression [4-6], remodeling of dendritic spines [7], and
regulating the metabolites of frontal brain regions such as
some neurotransmitter systems including Gamma-
Aminobutyric acid (GABA) and glutamate [8-10].

Brain aging is associated with structural and functional
changes that invariably lead to a decrease in cognitive
functions even in healthy individuals, as well as to changes that
increase the brain’s susceptibility to neurodegenerative
disorders. Rodents offer several benefits as models to
investigate the mechanisms and to identify the potential
treatment of age-related cognitive decline. Such as, similar to
humans, information that requires prefrontal cortex (PFC)
processing is particularly vulnerable to ageing, and PFC

function can be easily assessed by behavioral tests and in
parallel with biochemical changes in brain tissues [11,12].
Previous study reported that Kunming mice exhibited an age-
related cognitive impairment during normal aging [13]. The
classic method of passive avoidance task to test the cognitive
ability in rodent relied on memory of the footstock punishment,
which is involved in deeply involved in PFC [14,15].

Metabonomics combined with untargeted multivariate
analysis, has been extensively applied to many fields, such as
understanding the diseases of the biochemical basis in the
process of diagnosis and treatment according to the metabolic
profiles in biological fluids and tissues [16-19]. From the
metabolites profiles, several studies have shown that the
metabolic dysfunction of cholesterol [20], GABA [21-23] and N-
Acetyl aspartic (NAA) [24], which are much more related with
the cognition decline during aging.

Therefore, using an aging mouse model, we aim to
investigate the behavior changes in combination with metabolic
profiling before and after application of rTMS to investigate the
possible mechanism of rTMS improvement of PFC dysfunction
in ageing mice.
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Materials and Methods

Animals and rTMS methods
Female Kunming mice in two age groups (3-4 and 16-17

months old) were used. All the mice were housed in a room
under conditions of temperature (20-22 °C) and a 12-hour light-
dark cycle, and mice had access to the food and water ad
libitum. All animal experiments were performed under an
animal study protocol approved by the ethics committee of
Hebei Medical University.

Aged mice (16-17 months old) were randomly divided into
two groups: aged rTMS group and aged group. Aged rTMS
group, mice exposed to high frequency rTMS (25 Hz) with the
coil placed just above the head of the mice for 14 consecutive-
days, 10 trains per day with a 30-s intertrain interval, 100
pulses per train. Aged group, mice were treated similar to aged
rTMS mice by the reverse side of the coil without rTMS effect.
Young group (3-4 months old), mice were treated same as
aged mice by the reverse side of the coil for a sham purpose.
During the procession of rTMS or sham rTMS, mice were fixed
calmly with a flexible plastic tube with holes at both ends, a
small hole at one end for mice breathing and the other hole
suitable for the mice probed into and fixed it with a sponge.

Behavioral Test
The cognitive performance of all animals was observed with

passive avoidance test in the following day after 14
consecutive-days rTMS exposure or sham rTMS exposure (15
mice were in each group). The apparatus for passive
avoidance task was a plastic box (12 cm × 12 cm × 18 cm),
and a column insulation platform (diameter, 4.5 cm; height, 5
cm) placed inside the box. The box had a grid floor consisting
of stainless-steel bars 0.2 cm in diameter at 1 cm intervals,
which could be electrified by a shock scrambler.

First day, adaptation trial was conducted in order to facilitate
habituation to the apparatus. Mice were placed on the platform
facing the wall and allowed to explore the compartment freely
for 300 s. As mice placed on the platform, they generally step
down onto the floor within a short time. Second day, acquisition
session was performed in the condition of electric current (36
mV) continually delivered through the grid floor. During the
acquisition trial, the mice placed individually on the platform
facing the wall, and will receive footshock, when they step
down onto the grid floor. The times of electric shock as
acquisition index was recorded. 24 hours later, the retention
trial was the same behavioral procedure with the acquisition
trial. For the memory of the footshock punishment of last day,
mice would avoid stepping down from the platform. The latency
of mice step down was recorded as avoidance latency. Latency
was measured up to a maximum of 300 s (cut-off point) in the
retention trials. If the mouse failed to step down within this time,
it was removed, and deemed to have reached this maximum
value. The cognitive function of mice was accessed with
acquisition index and retention index. All data were expressed
as mean±SD, and statistical significance was evaluated by
one-way ANOVA and post hoc analysis. Values with P<0.05
were considered significant for all the analysis.

Tissue sample pretreatment
Mice were sacrificed by decapitation after behavior test. The

PFC were quickly separated, and placed in liquid nitrogen, and
then stored at -80 °C. The procedure of sample pretreatment
was carried out according to Meng et al. [25]. For gas
chromatography-mass spectrometry (GC-MS) analysis, 20 mg
of mice PFC tissue sample was transferred into a 2 mL
centrifuge tube and submerged in 1.0 mL mixture solution of
water-methanol-chloroform (2:5:2, v/v/v) dissolved in 30 μg
Heptadecanoic acid (Sigma) as an internal standard. The
mixture was sonicated in the circumstance of 0 °C and then
treated with refrigerated centrifuge at 4 °C, 14,000 rpm for 20
min. After centrifugal process, 800 μL of supernatant was
collected from each sample into a vial (5 mL) and evaporated
with nitrogen gas at 50 °C. Then 100μL of BSTFA with 1%
TMCS (Sigma) was added to each sealed vial and the
derivatization reaction was carried out at 70 °C for 60 min. After
derivatization, the samples were ready to inject in the GC-MS
for analysis.

GC-MS analysis
The GC-MS instrument used for metabolites profiling was an

Agilent 7890/5975 with a HP-5MS fused silica capillary column
(30 m × 250 μm, 0.25 μm). Helium (99.999%) was used as
carrier gas with a flow rate of 1.0 mL min−1, and 1μL sample
was injected at a splitless mode. The temperature of injection
was set to 260 °C. The column temperature was first kept at 50
°C for 3 min, increased to 280 °C at a rate of 8 °C min−1 and
maintained at 280 °C for 10 min. The detector was a
quadrupole mass spectrometer and the temperature of
quadrupole and ion source were 150 °C and 230 °C, and
solvent delay 6.5 min.

GC-MS Data processing
GC-MS data were processed according to Yao et al. [26].The

total ion chromatograms were processed into a single data set
used XCMS software. The parameters were default settings
except for the following: fwhm = 5, sleep = 0.001, family = ‘‘s’’.
The data set of processed mass ions was exported from
XCMS, and then removed the artifacts arising from the BSTFA
derivatizing reagent. The data set was treated to change all
median retention times (MRTs) with the unit of the second into
ones with the unit of minute and sorted in ascendant according
to the MRTs. Observably, there were many ions with similar
MRTs, which were found to be from the same silylation
derivatives. Data were untargetedly filtered by manual and
regardless of what the metabolite was, the largest peak area
remained as the representing ion and excluded the other ions
at the similar MRTs. The ratios of the intensities of mass ions
to the internal standard fraction ion were calculated. A data
matrix was obtained after these processes and then employed
for analysis with Partial least-squares discriminant analysis
(PLS-DA). To search the potential difference metabolites, a
parameter VIP (Variable Importance in the Projection) was
employed to reflect the variable importance. The remained ion
peaks of VIP>1 were identified by comparing the mass-to-
charge ratios against a standard mass chromatogram in the
NIST (National Institute of Standards and Technology) mass
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spectral library. Peaks with similarity index more than 70%
were tentatively identified as metabolites. Ion peak areas of
adjacent MRTs multiple derivative peaks belonging to the same
compound were summed and considered as a single
compound [27,28]. Comparisons among groups were
performed using one-way ANOVN and post hoc analysis, and
P < 0.05 was considered statistically significant. Based on
selected difference metabolites, principal components analysis
(PCA) was used as the verify classification method for
modeling the discrimination among the young group, aged
group, and aged rTMS group. The Multivariate analysis was
performed using the SIMCA-P demo version. For Multivariate
analysis R2X and R2Y are quality factors for PCA and PLS-DA,
while Q2 is a predictive factor (Q2(cum) - Cumulative overall
cross-validated R2X for as PC model R2Y for a PLS model).
Typically, a robust model has a Q2 > 0.4 and a R2 > 0.5 [22].

Results

Passive avoidance response performance
The latency was not significantly different among young

mice, aged mice and aged rTMS mice in adaptation trial
indicated that aging and rTMS did not affect the native
tendency of rodent step-down off a small, elevated platform to
a corner (Figure 1A). Times of electric shock in aged mice were
significantly increased compared with young mice in the
acquisition sessions, and application of rTMS in aged mice
could decrease the times significantly (Figure 1B). It was found
that compared with the young mice, passive avoidance latency
in aged mice significantly decreased. The latency in aged mice
delivered 14 successive-days rTMS increased significantly,
compared with aged mice without rTMS effect (Figure 1C). This
suggested that PFC-related cognitive dysfunction in mice was
detected at 16 months old, and exposure to chronic rTMS
could improve the impaired function significantly.

Altered Metabolic Profiles by Aging and rTMS
The typical total ion current chromatogram of mouse PFC

was shown in Figure 2. The score plot of the PLS-DA model
(Figure 3) showed separation of samples in different groups.
The model generated with two components had a cumulative
R2Y of 0.84 and a cumulative Q2 of 0.69. According to the
value of VIP>1 and after merging the variables from the same
metabolites, 23 identified variables were collected. To
accurately evaluate the metabolite circulating level changes,
one-way ANOVA and post hoc analysis was employed to these
ratios, and significant differences were found in the 23
variables from young group, aged group and aged rTMS group,
which were considered as the potential different biomarkers
(Table S1).

Based on selected 23 difference metabolites from young
mice, aged mice, and aged rTMS mice, PCA analysis was
used as the verify classification method for modeling the
discrimination. The score plots of the first two principal
components allowed visualization of the data and comparing
the three-group samples. The R2X and Q2 were 0.60 and 0.45.
The PCA score plot showed the samples from different groups
were scattered into three different regions (Figure 4).

Compared to the young mice, 16 metabolites were found
different in aged mice (Figure S1), in which metabolites of
GABA and cholesterol increased significantly in aged mice
(Figure 5). Interestingly, both increases in GABA and
cholesterol levels could be reversed by the rTMS treatment in

Figure 1.  The performance of passive avoidance test
altered in mice exposed to aging and rTMS.  (A) There were
no significant changes in the latency of the first day (shown is
latency to enter into the dark box on adaptation trial). (B) The
times of electric shock in the second day were significantly
increased during aging and reduced significantly by rTMS
(shown is the times of electric shock to enter into the dark box
on acquisition trial; *P<0.05 vs young group; #P<0.05 vs aged
group). (C) Reduced passive avoidance latency of aged mice
in the third day was enhanced significantly by the application of
rTMS (shown is latency to enter into the dark box on retention
trial; *P<0.05 vs young group; #P<0.05 vs aged group). Data
were presented in mean ± SD (n=15 in each group).
doi: 10.1371/journal.pone.0081482.g001

Figure 2.  The typical GC–MS total ion chromatograms
from PFC after chemical derivati-zaiton.  The internal
standard of heptadecanoic acid ion peak and selected maker
peaks of GABA, NAA and Cholesterol were labeled above.
doi: 10.1371/journal.pone.0081482.g002
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ageing mice, to the degree similar to young mice (Figure 5).
We also found that NAA levels significantly increased with
rTMS treatment in aged mice (Figure 5). The detailed changes
in the rest 18 metabolites were shown in Figure S2.

Correlation between cognitive function and metabolic
profiles

We assessed the correlation between the performance of
passive avoidance task and the levels of metabolites of
cholesterol, GABA, and NAA in the tested mice (Table S2). The
Pearson Correlation of cholesterol with passive avoidance
latency is -0.413 (p=0.026, n=29), and metabolites of GABA,
and NAA with the avoidance latency is -0.25 (p=0.19, n=29)
and 0.146 (p=0.448, n=29).

Discussion

The function of PFC-related learning and memory declined
during normal aging [12,29]. Studies confirmed that chronic
high frequency rTMS improved cognitive function in AD
patients [30], and normal aging individuals [2,3]. We found that
chronic of high frequency rTMS reversed the cognitive
dysfunction in aged Kunming mice in the passive avoidance
task. This suggests that our model could be used the further
investigation for the mechanisms of rTMS for the treatment of
age-related cognitive dysfunction.

For the cognitive related metabolic changes in PFC, we used
the untargeted multivariate analysis to find the difference

Figure 3.  The score plot of PLS-DA analysis with all of the
metabolites tested from PFC.  Class 1 (■), Young group;
Class 2 (●), Aged group; Class 3 (▲), Aged rTMS group. The
PLS-DA score plot showed the samples from different groups
were scattered into three distinct regions (each sample
represents a mouse, n=10 in young group; n=9 in aged group;
n=10 in aged rTMS group).
doi: 10.1371/journal.pone.0081482.g003

maker metabolites during aging and rTMS exposure. Our
analyses revealed that metabolites of young mice, aged mice,
and aged rTMS treated mice fell into three distinct regions. The
improvement of PFC function in elderly mice exposure to rTMS
was by a compensatory ways of changing metabolic profiles
rather than merely the reversal of metabolic abnormality.

Amongst the selected difference metabolites, several
metabolites were further investigated. Cholesterol reached in
membrane played an important role in various cellular signaling
pathways [31,32], and its accumulated in brain cells was
association with oxidative stress during normal aging [33],
which has been shown to be associated with late onset AD
[34-38]. In this study, we found that the concentration of
cholesterol increased in aged PFC and application of rTMS
decreased the cholesterol levels with improved cognition.
These suggested that there is a relationship between
cholesterol and cognition, and cholesterol may be a specific
target of the mechanism by rTMS application. GABA is a chief
inhibitory neurotransmitter in the mammalian central nervous
system known to play an important role in the regulation of
neuronal excitability throughout the nervous system. GABA
concentrations altered during aging in different brain areas
[22,23]. In this study, we found that GABA concentration was
significantly increased in aged PFC. Several independent
studies reported previously in aged rodents both applications of
GABA (A) receptor antagonist treatment [39], and GABA (B)
receptor antagonist [21], improves performance in a cognitive
task. It has been shown that GABA could be decreased by

Figure 4.  The score plot of PCA analysis with marker
difference metabolites.  Class 1 (■), Young group; Class 2
(●), Aged group; Class 3 (▲), Aged rTMS group. The PCA
score plot showed the samples from different groups were
scattered into three different regions (each sample represents
a mouse, n=10 in young group; n=9 in aged group; n=10 in
aged rTMS group).
doi: 10.1371/journal.pone.0081482.g004
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rTMS [40]. In this study, we found that increased GABA in PFC
was reversed by the application of rTMS. These results
suggested that application of rTMS have a role to maintain the
homeostatic environment between the excitatory
neurotransmitter and inhibitory neurotransmitter in aged PFC.
NAA was produced predominantly in neuronal mitochondria
and reported being a biomarker of neuron. Hence, its decrease
can be considered as a marker of neuronal dysfunction and
loss [24,41]. Report has shown reduction of NAA during aging,
suggested that dendritic arborization may be reduced in the old
rodent [24]. In this study, NAA ratio increased in aged PFC
exposure to rTMS, indicated that application of rTMS seems to
increase the synaptic density in PFC. The reversal of
cholesterol, GABA and increased NAA in aged PFC by rTMS
are part of the altered metabolic profiles with ameliorated
cognition impairment in aged mice. The further mechanism
under the rTMS to aged cognition remains to be explored.

In summary, our study indicated that age-related cognitive
performance impairment accompanied with a homeostatic

Figure 5.  Metabolites of Cholesterol, GABA and NAA were
changed during aging and rTMS application.  (A) Compared
to the young mice, GABA increased significantly in aged mice
(*P<0.05 vs young group), and reversed significantly by rTMS
application (shown is the GABA peak ratio; #P<0.05 vs aged
group). (B) Application of rTMS increased the NAA significantly
in aged rTMS mice (#P<0.05 vs aged group), compare with the
sham mice, and the concentration of NAA between young and
aged mice was observed no significant difference (shown is the
NAA peak ratio). (C) Similar to GABA, rTMS application
significantly reversed the increased Cholesterol during aging
(shown is the Cholesterol peak ratio;*P<0.05 vs young group;
#P<0.05 vs aged group). Data were presented in mean ± SD
(n=10 in young group; n=9 in aged group; n=10 in aged rTMS
group).
doi: 10.1371/journal.pone.0081482.g005

dysfunction in the form of the altered metabolites profile in
PFC. Application of rTMS ameliorated the cognitive
performance impairment and improved the metabolites profiles
including cholesterol, GABA and NAA.

Supporting Information

Table S1.  Difference metabolites selected by one-way
ANOVA among the three groups.
(DOC)

Table S2.  The performance of passive avoidance and the
levels of metabolites. The “--” indicated that the levels of
metabolites were not tested in these mice.
(DOC)

Figure S1.  Changes of metabolites were observed during
aging. Plot data of above indicated that metabolites of Ala,
Pho, Ser, Thr, Mal, Lac, Urea and M-In decreased significantly
in aged group compared with young group (*P<0.05).
Metabolites of GABA, Cit, Ole, Eic, M-Ste, Oct, Asc and Cho
were significantly increased during aging (*P<0.05). The blank
bars represented young mice and dark bars represented aged
mice. Data were presented in mean ± SD (n=10 in young
group; n=9 in aged group).
(DOC)

Figure S2.  Metabolites profile in aged mice exposure to
rTMS was altered. It could be found that compared with aged
mice metabolites of Pho, Fum, Thr, Mal, Cit, Ala, Urea, GABA,
Ser, P-Pho, M-In, Lac, P-Glu, Asp, Cre, Asc and Cho
decreased significantly in aged rTMS mice (#P<0.05), while
metabolites of Ole, Eic, NAA, P-Gly were increased
significantly in aged rTMS mice (#P<0.05). The blank bars
represented aged mice and dark bars represented aged rTMS
mice. Data were presented in mean ± SD (n=10 in aged rTMS
group; n=9 in aged group).
(DOC)
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