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Abstract

We describe the operation and improvement of AlphaFold, the system that was
entered by the team AlphaFold2 to the “human” category in the 14th Critical Assess-
ment of Protein Structure Prediction (CASP14). The AlphaFold system entered in
CASP14 is entirely different to the one entered in CASP13. It used a novel end-to-
end deep neural network trained to produce protein structures from amino acid
sequence, multiple sequence alignments, and homologous proteins. In the assessors'
ranking by summed z scores (>2.0), AlphaFold scored 244.0 compared to 90.8 by the
next best group. The predictions made by AlphaFold had a median domain GDT_TS
of 92.4; this is the first time that this level of average accuracy has been achieved
during CASP, especially on the more difficult Free Modeling targets, and represents a
significant improvement in the state of the art in protein structure prediction. We
reported how AlphaFold was run as a human team during CASP14 and improved
such that it now achieves an equivalent level of performance without intervention,

opening the door to highly accurate large-scale structure prediction.
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1 | INTRODUCTION

John Jumper, Richard Evans, Alexander Pritzel, Tim Green, Michael Figurnov, Olaf

Ronneberger, Kathryn Tunyasuvunakool, Russ Bates, Augustin Zidek, Anna Potapenko, Alex
Bridgland, Clemens Meyer, Simon A. A. Kohl, Andrew J. Ballard, Andrew Cowie, Bernardino
Romera-Paredes, Stanislav Nikolov, Rishub Jain, and Demis Hassabis contributed equally.

In this paper, we describe the entry from team AlphaFold2? to the
“human” category in the 14th Critical Assessment of Protein
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Structure Prediction (CASP14) and, in particular, how the system was
applied and improved during the CASP assessment. The AlphaFold
system used was an updated version of the one deployed in CASP-
Covid® and differs substantially to the version of AlphaFold deployed
in CASP13.2° The new system is based around a new neural network
architecture, Evoformer, that we developed to process biological and
physical information as well as a number of advances with the “struc-
ture module” that enable us to design and train a network that accu-
rately produces a 3-D structure as output. A full description of the
method used is provided by Jumper et al.* Here, we will focus on the
operation of the system, a very small number of manual interventions,
and improvements made to the system during CASP14.

In the CASP14 assessors' ranking by summed z scores (>2.0),
AlphaFold2 scored 244.0 compared to 90.8 by the next best group.®
The system predicted high-accuracy structures (GDT_TS® > 70, best
of five) for 87 out of 92 domains, structures on par with experimental
accuracy (GDT_TS > 90, best of five) for 58 domains, and a median
GDT_TS of 92.4. This is the first time that this level of accuracy has
been routinely achieved during CASP, especially on the more difficult
Free Modeling targets, and represents a significant improvement in

the state of the art in protein structure prediction.

2 | METHODS

AlphaFold2, the model deployed in CASP14, is a deep neural network
that directly processes the MSA and intermediate pairwise representa-
tions (including template information) using a new Evoformer architec-
ture in an interleaved manner, rather than simple convolutions as in the
previous AlphaFold, allowing long-range interactions between residues.
A novel rotationally and translationally equivariant neural network mod-
ule was developed to directly generate the full atomic structure. The
network is iterated multiple times in a “recycling” procedure to further
refine the structure predictions. A full description of the model architec-
ture and details of the training process are given by Jumper et al.*

As well as the atomic coordinates, AlphaFold2 produces the dis-
togram and “predicted IDDT-Ca” (pLDDT) confidence measure as
auxiliary outputs. The latter regresses the true per-residue IDDT-Ca’
for the predicted structures during training.

To remove small stereochemical violations, we relaxed our
predicted structures using gradient descent on Amber99sb restrained
to the original prediction with harmonic restraints. This minimization
produces an extremely small structure difference in most cases but

removes distracting bond and steric violations.

2.1 | Model selection and ranking

The CASP assessment allows competitors to submit up to five differ-
ent predictions for each target. We found that generating five predic-
tions using five sets of model parameters and then ranking by pLDDT
gave the highest accuracy, as judged by the accuracy of the top
ranked prediction.

2.2 | Testing and monitoring

The system used during CASP14 was developed with the goal of mini-
mizing the possibility of human mistakes leading to poor predictions,
while making it possible to manually intervene, and to deploy new
versions of AlphaFold during the CASP14 assessment if necessary.

Components of the model were covered by tests of individual
components (unit tests), checking for issues, such as coding errors,
stability, and numerical correctness. Furthermore, a daily test of the
whole system (integration test) monitored for, otherwise, difficult-to-
detect regressions in end-to-end model accuracy.

The system was run and analysis carried out by a single researcher,
determined by a weekly rota for the duration of the CASP14 assess-
ment. When a prediction was made, a standardized Colaboratory® note-
book was used to visualize (using matplotlib? and NGL®) and check
multiple aspects of the prediction (Figure 1). First, the confidence
expressed by the model as pLDDT for the overall structure as well as
per residue was checked. High uncertainty across the entire chain was a
cause for concern, though areas of uncertainty at the C- and N-termini
and domain-linking loop regions could be expected, as they are
expected to often be disordered and not resolved in experimental struc-
tures. Other significant areas of uncertainty could also be indicative of
intrinsic disorder (rather than a poor prediction), which would not be
resolved experimentally and so not scored in CASP14, though informa-
tion about resolved regions is not known at the time of the prediction.

Next, the expected distance matrix was computed from the
predicted distogram. This is different from the distance matrix of the
predicted structure as it is able to capture distance uncertainty, and also
is not required to represent a single, concrete set of 3D coordinates.
The difference between the expected distance matrix and the distance
matrix of the predicted structure was examined to reveal predicted dis-
tances that were not realized in the predicted structure. This was con-
sidered an indicator of multiple conformations, and that the prediction
might need manual intervention. All five predictions were aligned with
TM-align! against one another to check for diversity. Very high TM
scores across the five models were considered problematic if we had
reasons to believe either that the model should be less certain (e.g., if
the pLDDT was low) or if there was a biological reason to believe that
important conformations were missed as in T1024.

The result of the relaxation process was examined to check that the
total energy and change in energy were negative, and that there was not
a large RMSD change from the starting structure. Extreme Ca-Ca dis-
tances and inter/intra-residue atomic clashes were also checked to ensure
that there were not any stereochemical violations in the structure.

When a protein was predicted with low certainty or another issue
was encountered, it was treated as both an immediate problem to find
a workaround and submit an acceptable prediction, and as a research
question to improve the automated system to avoid the need for
manual intervention in the future. The speed of prediction with
AlphaFold meant that predictions were created within a day, and usu-
ally much faster. This allowed time for a number of manual evalua-
tions and re-predictions, if necessary, before submitting to CASP

ahead of the target deadline.
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Predicted and realized distances, and the difference

Distances (from distogram) Distances (from structure) Unrealized distances

Theseus alignment of all predictions, coloured by
confidence, and side chains on single prediction

FIGURE 1

2.3 | Manualinterventions

Almost all of our submitted predictions in CASP14 were made using
our automated system without any sort of manual intervention. In the
case of a few predictions, our analysis of model quality suggested
interventions (described below) that we applied to obtain the final
predictions as well as improvements to AlphaFold to make the inter-
ventions unnecessary. While these sorts of manual interventions are
not scalable to large sets of proteins, it is instructive to see how
AlphaFold predictions could be interpreted, and see how insights led
to improvements in the automated system, which does scale to large
numbers of sequences without a significant difference in accuracy.

231 | T1024

The target T1024 is active transporter LmrP, a member of the major
facilitator superfamily, and so was expected to have both inward-

Seen templates
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Examples of visualizations used in the prediction checking Colaboratory notebook, shown with CASP target T1101

facing and outward-facing conformations. Whether the experimental
structure provided in CASP14 would be inward or outward facing was
not deducible a priori, as the conformational state is influenced by
biophysical context, and this information was not provided.

Our search of databases provided a large MSA (5702 alignments,
good coverage) and good templates: 88 were found with sum of prob-
abilities (sum_probs'?) across matching residues >100 and coverage
of both domains. Low pLDDT in the linker region (Figure 2A) around
residue 200 suggested flexibility between the domains. We observed
a lack of diversity in our initial five predictions (all >0.99 TM score to
one another), meaning that our submission would only capture one of
the multiple possible conformations. We also noted that the expected
distance matrix contained inter-domain contacts unrealized in the
structure (Figure 2B), indicating that the distogram possibly contained
alternate conformations.

We confirmed that within the set of high confidence templates
found there was a diversity of inward-facing and outward-facing con-
formations. The initial predictions had high TM scores to some of
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FIGURE 2 T1024: (A) Per-residue IDDT-Ca and pLDDT of T1024. Vertical gray shading indicates residues missing in the experimental
structure, and colored shading indicates minimum and maximum values over five predictions. The pLDDT shows low confidence in the linker
region indicating possible flexibility and qualitatively agrees with the true per-residue IDDT-Ca. (B) Unrealized distances in the expected distances
of T1024 indicating possible alternate relative conformations of the two domains

these but not others, forming distinct “clusters” of templates. We
attempted to force the model to produce the alternate conformation
by passing in only the templates from the alternate cluster, but we
found that the model largely ignored changes in the template inputs.
We hypothesized this was due to the sufficiently large MSA for this
target, and after removing the MSA entirely, we could force the model
to follow the templates. Using pLDDT as a guide, we reintroduced the
top 30 sequences (now known to be near the threshold of high confi-
dence AlphaFold predictions) in the MSA to provide an adequate bal-
ance between following the templates and the MSA, and this
successfully predicted a structure in the alternate conformation.

To automate creation of the template clusters, we clustered tem-
plates that had a value of sum_probs divided by the sequence length
greater than 0.5. Clustering was performed by measuring similarity
with TM score and then analyzed using scipy's cluster hierarchical

linkage clustering algorithm*3* to give a maximum of three clusters.

Three extra structure predictions using the three template clusters
were created, in addition to the original five predictions. Predictions
from the original five predictions that had high similarity (>97 LDDT)
to another prediction and were lower ranked were removed and rep-
laced with a maximally dissimilar template-clustered prediction.

Our final submission for T1024 used two original predictions
(in positions 1 and 2) and three template-clustered predictions

(in positions 3-5).

232 | Ti044

Targets T1031, T1033, T1035, T1037, T1039, T1040, T1041, T1042,
and T1043 are all subsequences of SOA2C3, an RNA polymerase. The
full sequence was included separately as a target, first as H1044 and

then as T1044. We initially predicted the structures of these domains
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FIGURE 3 T1044: Comparison of the number of effective alignments (Neff) per residue for each MSA, derived both from domain sequences
and from cropping the full sequence MSA. Four domains (T1033, T1039, T1040, and T1043) substantially benefit from using the full sequence
MSA. The dashed green line shows the approximate 30 alignment threshold considered sufficient for a good prediction with AlphaFold

as separate sequences. In addition, to see if the extra context helped,
we predicted the structure of the full 2180 amino acid sequence.
Several domain-level targets (T1033, T1039, T1040, and T1043)
were found to have very shallow MSAs, and the predictions had high
uncertainty and model diversity, indicating poor model outputs.
However, these domains had many more hits in their corresponding
regions when using the full chain as the sequence for genetics sea-
rch as opposed to per-domain searches (Figure 3). It was also noted
that the prediction for T1033 when cropped out of the full-
sequence prediction appeared to be superior to the domain-level

prediction of T1033 with higher confidence and more consistent
structure.

These results indicated that using the full sequence rather than
individual domains as given by the CASP targets could give a superior
prediction. However, it was noticed for T1040 that the prediction,
when cropped out of the full-sequence prediction, was lower confi-
dence (and less compact) than when the same domain was predicted
using just the domain-level MSA. The final domain (T1043) was also
nearly completely unfolded in the full-sequence prediction. It was

hypothesized that these apparent failures were “long-chain
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collapse”—that the model failed to generalize to long sequence
lengths due to making predictions far out of the distribution of
sequence lengths that the model was trained on. We describe below
both how we handled this for T1044 domain submissions and how
this led to further research that ameliorated the problem in the final
AlphaFold system.

To address this during the prediction window, new domain MSAs
were created by cropping out the appropriate columns from the full-
sequence MSA, which captured the extra alignments that it provided.
Structures were then predicted for just these domain-sized sequences

in order to avoid long-chain collapse—*“crop-then-fold.” The domain

TABLE 1
predictions of domains in T1044

(A) Confidence (pLDDT)?

structure predictions using cropped full-sequence MSAs appeared to
be higher quality and more confident than the domain predictions
using MSAs generated just from the domain sequence.

In order to create a full-chain prediction that did not suffer from
collapse and captured additional inter-domain context, we passed the
crop-then-fold domain predictions for T1031, T1033, T1041, and
T1042 + T1043 (joined) as artificial templates for a full-sequence pre-
diction. The resulting prediction was a high quality model of the full
sequence that did not suffer from collapse and gave the domains their
full structural context. Domains cropped out of this model were then
submitted as our predictions. Table 1A summarizes the pLDDT

T1044: (A) Confidence scores (pLDDT) for different prediction systems that were considered and (B) accuracy (GDT_TS) for

Original domain Original full sequence

T1031 80.6 64.4 84.1
T1033 54.7 69.0 85.0
T1035 81.7 78.8 83.2
T1037 83.9 78.7 89.7
T1039 75.0 68.2 89.3
T1040 73.1 51.6 87.2
T1041 83.7 784 86.6
T1042 79.7 68.1 81.5
T1043 375 47.4 79.7
Average 72.2 67.2 85.2
Full sequence N/A 71.3 N/A

(B) Accuracy (GDT_TS)°

Crop-then-fold domain

Submitted full sequence Final system full sequence

719 69.4
73.9 77.2
77.9 82.6
77.7 82.8
67.9 71.6
82.0 74.7
77.8 80.0
80.6 73.5
82.8 64.1
76.9 75.1
77.1 77.4

Original domain Original full sequence

T1031 87.6 86.6 86.8
T1033 440 85.7 89.0
T1035 92.6 94.1 93.1
T1037 82.9 88.4 85.0
T1039 79.2 81.4 789
T1040 55.0 30.8 70.0
T1041 86.6 89.7 85.8
T1042 62.1 80.2 69.9
T1043 16.6 53.2 76.2
Average 67.4 76.7 81.6

Full sequence N/A 0.807 N/A

(TM score)

Crop-then-fold domain

Submitted full sequence Final system full sequence

87.1 88.4
87.7 87.0
94.9 95.8
87.3 92.6
82.3 82.9
71.7 69.2
90.5 89.6
83.8 90.4
83.3 823
854 86.5
0.878 0.960

aT1044: Confidence scores (pLDDT) for different prediction systems that were considered. The mean full-sequence pLDDT over a given domain cannot be
directly compared to the mean pLDDT found just by folding that domain, as pLDDT will consider the effect of mispredicting inter-domain distances as well
as intra-domain distances, which penalizes longer predictions. However, it can be seen that using “crop-then-fold” led to an improvement, often
substantial, in confidence across all domains. The full sequence confidences of predictions made with the submitted (template-patched) system were also
superior to the original system. The final improved system gives an equivalent level of confidence to the submitted prediction.

bAccuracy (GDT_TS) for predictions of domains in T1044. It can be seen that, using the original system, T1033 was predicted more accurately as part of
the full chain, but T1040 was predicted more accurately when folded as an independent domain. Both crop-then-fold domains and submitted (template-
patched) full-sequence predictions get the best of both worlds and give better mean domain accuracy. The final system gets equivalent performance with

no complex interventions, and better chain-level TM score.
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confidences that were used to guide the process of building these
predictions.

This manual process is cumbersome so we also explored ways to
improve our model to not suffer from long-chain collapse. We found
that fine-tuning the model with 384 residue crops from the training
set (256 originally) addressed the problem, producing a non-collapsed
full sequence prediction without manual intervention with quality
equivalent to the template-patched prediction. We have tested pro-
teins up to 2700 residues in length with this fix, but expect even lon-
ger proteins (e.g., titin) to still suffer from the long-chain collapse
problem.

This improved model, the “Final system,” was used for targets
T1080, T1091, and T1095 and later targets.

233 | T1064

Target T1064 is the SARS-CoV-2 protein ORF8. The initial MSA con-
tained very few alignments (19) and gave a low confidence prediction.
ORF8 is known to be hypervariable compared to other SARS-CoV-2
proteins—it has only 30% identity to SARS-1 ORF8.11¢

Guided by pLDDT, we tried various MSAs using additional data-
bases and chose the one that maximized pLDDT. We found that an
extra five sequences from BLAST-NR'—searched with Jackhmmer
and deduplicated to have an edit distance of at least 3, to give a total
of 24 aligned sequences—gave the best improvement. We also ran a
model using a more recent version of UniRef90,'® reasoning that it
was likely that more Coronaviridae had been sequenced in the months
since the 2020_03 release.

As with some other targets, given the high uncertainty of the struc-
ture, we were concerned that the target might have multiple viable
structural modes. To address this, we developed an experimental
“multi-head” model based on the M-heads method of Kohl et al.}? This
“multi-head” model comprises four parallel copies of AlphaFold (includ-
ing the Evoformer and Structure modules), each with identical tied
parameters. However, each copy has a unique learnt embedding, which
is added to the MSA embedding and pair representation on each itera-
tion of recycling, allowing each copy to make a different prediction
despite being, otherwise, identical. The loss was modified, such that the
copy with the lowest total loss has weight 0.95, and the other copies
have weight 0.016, thus backpropagating most of the gradients into the
best model. This has the effect of allowing the model to produce a
diverse set of predictions over several modes without being penalized
as long as at least one head produced a good prediction.

Folding with the multi-head model gave higher pLDDTs than the
original model. However, it should be cautioned that the multi-head
training setup could lead to a bias toward high confidence. To check
for this bias, we assembled a small validation set of five viral proteins
with shallow MSAs. After confirming that pLDDT was rank correlated
with prediction accuracy, even across different types of model, we
decided to submit models ranked by pLDDT. In addition, literature
evidence indicated that ORF8 has nine beta strands (Figure 2B by Tan
et al.'®). On the validation set, we also found that higher non-loop

secondary structure percentage was indicative of higher IDDT-Ca.
We also found that higher pLDDT was correlated with higher beta
strand content in ORF8, lending confidence to our ranking method.

Seeing a large range of pLDDTs produced by the multi-head
model, the multi-head model was run five more times, creating the
additional 20 structure predictions with a wide range of pLDDTs,
some with substantially higher confidence. Re-running AlphaFold mul-
tiple times can produce different predictions, especially when it is
uncertain, due to the random processing (masking and clustering) of
the input MSA.

Our final submission was a combination of methods, mostly
ranked by pLDDT, to ensure a diversity of predictions. The top two
predictions were the top-ranked (by pLDDT) predictions from the
multi-head reruns. The next prediction was made by the original sys-
tem with an updated Uniref90 database, and the fourth prediction
was made by the original system without any interventions. For diver-
sity, the final model was the third best multi-head model prediction
from our first run of it.

2.4 | Other interventions

In two targets (T1074 and T1080), we found that our relaxation pro-
cedure did not remove all stereochemical violations for all five predic-
tions. For these, we re-ran the relaxation stage using weaker
restraints until a violation-free prediction was generated.

The multi-head model was also used to predict the third ranked
model for target T1100. The template clustering algorithm was also
used for target T1057, which resulted in the substitution of the fifth
ranked prediction. For T1055, models cropped out of a prediction of
the full sequence (UniProt accession AOA216J1H4) were used for the
fourth and fifth predictions.

An experimental model that used the provided homomeric stoi-
chiometry generated the fourth and fifth predictions for T1070 and
the fifth prediction for T1060s2.

3 | RESULTS

Considering domain predictions by AlphaFold in CASP14 (N = 92),
the mean domain GDT_TS over all five submitted models was 87.32,
and over the top-1 models was 88.01, an average increase of +0.69.
This indicates that the ranking procedure was effective at selecting
models that were better than the average prediction. The maximum
improvement achievable by ranking would be +0.80 GDT_TS, as the
mean domain GDT_TS of the best prediction from each chain is
88.81. This
0.69/0.80 = 86% of the maximum improvement from model selec-

means that our selection procedure achieved
tion. We note, however, that perfect selection is likely impossible in
practice since missing context may mean that the correct model is not
predictable from sequence alone, such as for T1024.

In only two cases was the top ranked prediction more than five
GDT_TS worse than the mean GDT_TS of the five predictions:
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T1030-D1 (—6.29) and T1070-D1 (—6.90); in three cases, the first
ranked structure was more than five GDT_TS better: T1030-D2
(+29.12), T1064-D1 (+11.80), and T1086-D1 (+7.95). In the case of
T1030, it appears that that large improvement in placement of a helix
in T1030-D2 (present in models 1 and 2) was associated with a small
deleterious change in helix placement in T1030-D1, giving a more
accurate chain overall.

Overall, our manual interventions on three predictions provided
+1.14 GDT_TS top-1 (+1.20 GDT_TS top-5) improvement across all
CASP14 domains versus the “unadjusted” automated system as it was
at the time of the target release. Re-running all targets using our auto-
mated “final” system as it was by the end of CASP14, manual inter-
ventions only gives +0.01 GDT_TS top-1 (+0.35 GDT_TS top-5)
improvement, largely reflecting the impact of fine-tuning AlphaFold
on larger crop sizes.

The most significant gains for domain accuracy were for T1044
and T1064 (Figure 4). The individual domains of T1024 were already
well predicted, but the best-of-five full-sequence accuracy, which
takes into account the relative placement of the domains, improved
significantly from 0.682 TM score (60.8 GDT_TS) for the prediction
by the original system to 0.929 (79.3 GDT_TS) for the submitted
structure. The TM score was 0.965 (86.7 GDT_TS) for the final
improved system.

For T1024, in CASP14, it was revealed that, out of all submis-
sions, our third model was the best match for the experimental struc-
ture. This was a model generated using template clustering. The
experimental structure had a large ligand in the pore, forcing the
outward-facing conformation. This would be hard to predict in
advance without the ligand context being provided with the protein

sequence.

A recent paper?® suggests, with the aid of distance restraints from
double electron-electron resonance spectroscopy, that our top
ranked structure correctly predicted an inward-facing conformation of
LmrP, for which a structure has so far not been determined
experimentally.

For T1044, a full comparison of the accuracy of each prediction
method on each domain is shown in Table 1B. One can see that the
average domain GDT_TS is better for the submitted (templated-pat-
ched) predictions than the original domain predictions, and that the final
automated system is able to make predictions at an equivalent level of
accuracy. The overall full-sequence accuracy, as measured by TM score,
is superior for the submitted prediction as compared to the original full-
sequence prediction, and the final improved system is superior to both.

For T1064, comparing all our predictions against the experimental
structure of ORF8 (Figure 5), pLDDT is strongly correlated with IDDT-
Ca against the ground-truth structures, even across different types of
models. This validates our decision to select predictions by ranking by
pLDDT.

Interventions for targets T1057, T1100, T1055, T1060s2, T1074,
and T1080 had no effect on top-1 or top-5 accuracy metrics. The
intervention for T1070 gave a small increase in top-5 GDT_TS for
T1070-D1 (+4.28).

3.1 | Lower accuracy targets

Despite overall exceptional performance, some predictions made by
AlphaFold failed to reach a high level of accuracy. Analysis on a very
large test set of recent PDB structures by Jumper et al. (Figure 5A)*
and Tunyasuvunakool et al. (Figure 4D)?? shows that when the model

Mean accuracy of best model
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FIGURE 4 Comparison of three different prediction methods for the targets with significant interventions: “Original system” is the
automated prediction system as it existed at target release. “Submitted prediction” is the submitted structure prediction. “Final system” is the
automated system as it existed at the end of the CASP14 assessment, improved by experience
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FIGURE 5 All models produced for T1064-pLDDT versus final IDDT-Ca. The strong correlation indicates that ranking many predictions by

pLDDT was a successful strategy for this target

fails, it can often be explained by small MSA sizes or a high proportion
of heterotypic contacts. The AlphaFold prediction for T1047s1-D1
(best-of-5 GDT_TS = 50.47) showed a relatively unique failure mode
where it captured the secondary structure of a very long beta sheet
but put it at the wrong angle from the rest of the domain and improp-
erly curled it. We speculate that the total lack of other intra-domain
structure in this region together with the very high oligomerization
state, a homo-78mer, contributed to this poor prediction.

We also note that AlphaFold can sometimes predict a single con-
formation with high certainty that was not the particular conformation
solved by the experimentalist. This likely occurred for Model 1 of
T1024, and the careful analysis of the original NMR data for T1027

.22 suggests that it is possible that the AlphaFold pro-

by Huang et a
duced a minor conformation present in the NMR data.

Finally, in some cases, discrepancies between AlphaFold and
experiment will turn out to have been limitations or errors in the
experimental model. In the same NMR analysis, the authors show that
AlphaFold's prediction for T1055 and T1029 fit the NMR data better
than the experimentalist's model. For T1029, the effect of reanalysis
is quite dramatic, and the authors develop a novel procedure to
reanalyze the NMR data in light of the AlphaFold model. After
reanalysis, the new coordinates have a GDT_TS of 89 to the
AlphaFold model submitted during CASP14.

4 | DISCUSSION

In this work, we have described the process of entering AlphaFold in

the CASP14 assessment. Almost all of our predictions were generated

by the automated system without any intervention. As described, in a
very small number of cases, we decided to adapt this system, with
positive results as compared to our original prediction. We have
described the investigations carried out for these cases and hope they
prove instructive in how to run and use AlphaFold. In all cases, we
found that the predicted IDDT-Ca (“pLDDT”) proved to be a useful
guide to understanding and improving the prediction, demonstrating
the value of robust quality indicators for both manually improving
models and finding opportunities to improve automated systems.

While we generally found that interventions that improve pLDDT
resulted in higher accuracy models, caution should be taken to avoid a
version of “Goodhart's law” by testing too many interventions and
reducing the predictive power of pLDDT. We also note that low
pLDDT can be an indicator of real disorder in the protein?? rather
than a modeling failure per se, especially when the protein is not, oth-
erwise, known to fold to a compact structure.

The challenge of entering AlphaFold in CASP14 helped to make it
better. We were able to use the insights gleaned from our manual
interventions to improve the automated system to an equivalent level
of performance. This makes it possible to create predictions at the
same level of accuracy at larger scales without intervention, as dem-
onstrated with proteome-scale predictions by Tunyasuvunakool

etal?!
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