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Abstract

This paper constructed a stacked-autoencoder neural network model (SAE model) to esti-

mate sea state bias (SSB) based on radar altimeter data. Six cycles of the geophysical data

record (GDR) from Jason-1/2 radar altimeters were used as a training dataset, and the

other 2 cycles of the GDR from Jason-1/2 were used for testing. The inputs to this SAE

model include the significant wave height (SWH), wind speed (U), sea surface height (SSH),

backscatter coefficient (σ0) and automatic gain control (AGC), and the model outputs the

SSB. The model includes one input layer, three hidden layers and one output layer. The

SSBs in the GDR of Jason-1/2 were obtained from a nonparametric model based on the

SWH and U as input variables; thus, the model has high accuracy but low efficiency. The

SSBs in the GDR of HY-2A were computed using a four-parameter parametric model that

uses the SWH and U as input variables; therefore, this model’s computational speed is high

but its accuracy is low. Thus, we used the HY-2A radar altimeter as an unseen validation

dataset to evaluate the performance of the SAE model. Then, we analyzed the contrasting

results of these methods, including the differences in the SSB, explained variance, residual

error and operational efficiency. The results demonstrate not only that the accuracy of the

SAE model is superior to that of the conventional parametric model but also that its opera-

tional efficiency is better than that of the nonparametric model.

Introduction

Satellite radar altimeters can quickly measure the global sea surface height (SSH) and invert

geophysical information, such as the significant wave height (SWH) and wind speed (U) [1].

With the development of precision orbit determination (POD) technology, sea state bias (SSB)

measurements surpass the orbit error and become the most important part of the height mea-

surement errors. Therefore, accurate estimation of SSB can greatly improve the accuracy of

height measurements obtained via a radar altimeter. Generally, two ways exist to estimate SSB:

theoretical models and empirical models. However, theoretical models are essentially imprac-

tical because obtaining a suitable function and the necessary parameters is difficult [2]. The
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commonly used empirical models include parametric models and nonparametric models.

Parametric models are suitable for real-time data processing due to their reasonably extensibil-

ity and high computational efficiency. The least squares method is used to determine the coef-

ficient of the functional formula with assumptions of the overall data distribution and

functional forms. However, the accuracy of the SSB is limited because the parametric models

use the modeling value obtained by the mismatch in the SSH at the cross point or collinearity

data, and the assumed functional formula may be incorrect [3–5]. In contrast, nonparametric

models obtain the required information from the data itself rather than assuming the overall

data distribution and functional form. Nonparametric models can describe the subtle changes

of the curve well by fitting the curve between the function and the variable using the exact least

squares method. The altimeter Jason-1/2/3 series use a nonparametric model to estimate the

SSB and exhibits substantial improvements in mid- and high-latitude areas. The Jason-1/2/3

nonparametric model is built on a kernel-smoothing statistical technique. However, the

modeling process is complicated and requires large amounts of computation, which causes

low efficiency and inferior extensibility [6–8].

A stacked-autoencoder neural network model (SAE model) is an unsupervised learning net-

work composed of multiple layers of sparse autoencoders [9–10]. A layer-by-layer greedy training

method was utilized in the SAE model [11–12] and compared with other neural network models

such as back propagation (BP). Based on Bengio’s theory, Vincent proposed a denoising autoen-

coder algorithm (improved AE) that effectively solved the problem of negative results when the

distribution has large differences between training samples and test samples [13].

In this paper, the true value of the SSB based on the results of the SSB nonparametric model

in the Jason1/2 altimeter geophysical data record (GDR) is used during model training. The

input variables, which are the SWH, wind speed (U), SSH, automatic gain control (AGC) and

backscatter coefficient (σ0), were successively added to the model. Finally, the optimal model

was determined via testing. We then used the HY-2A altimeter data as the unseen validation

data to evaluate the model’s validity. For all models, Ku-band data from the GDR data set was

used for training, testing and application.

Model training and testing

Dataset

In this paper, 6 cycles of the GDR data (2,587,994 groups) from the Jason-1 and Jason-2 radar

altimeters collected in February, June and October 2004 and 2015 (the 77th, 89th and 101st

cycles of Jason-1 and the 243rd, 255th, 267th cycles of Jason-2) were combined as a training set.

In addition, 2 cycles of the GDR data (the 60th cycle of Jason-1 and the 158th cycle of Jason-2,

831,642 groups) were used for testing.

Based on the quality requirements of the radar altimeter data and SSB, error correction val-

ues, such as instrument errors, dry and wet troposphere delays, ionosphere delays and inverse

atmospheric pressure, high frequency oscillations, tides, pole tides, solid earth tides and load

tides are included in the altimeter height measurement data [7,8]. Abnormal data (SSH>100

m or SSH<-130 m, SWH<0 m or SWH>11 m, U<0 m/s or U>21 m/s, σ0<7 dB or σ0>30 dB

and AGC>30 dB or AGC<7 dB) were removed, and the data set was normalized. The SWH,

U, SSH, σ0 and AGC values in the GDR were used as the model inputs, while the SSB in the

GDR was used as the desired model output when training the neural network.

Model training

Artificial neural network models are composed of one input layer, one or more hidden layers

and an output layer. Generally, the numbers of layers and neurons are not fixed; instead, they
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are determined by empirical methods depending on the complexity of the problem. When

there are too many layers and neurons it may require excessive time to learn the samples; in

contrast, when there are too few layers, the fault-tolerance and sample identification perfor-

mance will fall to a low level [14]. The number of neurons in each hidden layer is typically set

to (2, 4, 2) when there are 3 hidden layers and when input neurons have two variables.

In our study, the input layer components are the SWH, U, SSH, AGC and σ0. The output

layer has one element: SSB. We performed a series of data testing, using the same dataset by

changing the number of hidden layers and the number of neurons in each layer. The results

showed that the symmetrical 3 hidden layer structure has the best effect when the number of

neurons in the first hidden layer is equal to the number of inputs. Therefore, the SAE model

has three hidden layers structured as (5, 10, 5), as shown in Fig 1.

During forward propagation, any weighted input zlj of the neurons j in layer l is computed

by the activations of the upper layer aðl� 1Þ

j with the weight Wl
jk between the adjacent layers and

the bias blj of the current layer [15]. Then, a sigmoid activation function f(z) is used to compute

the activations of the current layer alj:

zlj ¼
X

k

Wl
jka
ðl� 1Þ

k þ blj ð1Þ

alj ¼ f ðzljÞ ð2Þ

f ðzÞ ¼
1

1þ e� z
ð3Þ

where l is the number of hidden layers (l2[1,3]), j is the number of neurons in the current

layer, and k is the number of neurons in the upper layer. When l is equal to 0, the input layer

values and the values of a0
j are specified by the user. The activations of output layer dL are the

values of the output neurons. L is equal to 4 when the quantity of hidden layers is 3 using Eqs

(1)–(3).

The main goal of backpropagation in a neural network is to obtain the expressions for the

partial derivatives @C/@W and @C/@b of the cost function C with respect to any weight (W)

and bias (b). During this process, the neural network will adjust the weight and bias values

depending on the error between the desired output and the model output until the error falls

Fig 1. Stacked-autoencoder neural network model.

https://doi.org/10.1371/journal.pone.0208989.g001
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below a set threshold. The quadratic cost function has the following form:

C ¼
1

2N

X

i

ðyi � yiÞ
2
; ð4Þ

where N is the total number of training examples, ŷ is the desired output obtained by the GDR,

and y is the model output from the neural network.

In the output layer, the error components δL are given by

d
L
j ¼

@C
@aLj

f 0ðzLj Þ: ð5Þ

The first term on the right, @C=@aLj , measures how fast the cost function is changing at aLj ,

while the second term on the right, f 0ðzLj Þ, measures how fast the activation function is chang-

ing at zLj .

In any hidden layer, the error δl needs to be computed from the error in the subsequent

layer δl+1 as follows:

d
l
j ¼ ððW

lþ1

j Þ
T
d
lþ1

j Þ � f
0ðzljÞ; ð6Þ

where � represents taking the Hadamard product, which is the elementwise product of two

vectors, and ðWlþ1
j Þ

T
is the transposition of the weight matrix Wlþ1

j . Then, we can obtain the

partial derivative of the cost function C with respect to the weight and bias:

@C
@Wl

jk
¼ al� 1

k d
l
j ð7Þ

@C
@blj
¼ d

l
j: ð8Þ

In this paper, we constructed an SAE model. During the training phase of this model,

SWH, U, SSH, σ0 and AGC are considered the inputs to the SAE model and the corre-

sponding SSB is the output. After multiple forward propagations and backpropagations,

the error between the desired output and model output will be less than the set threshold,

the output layer neurons will reach saturation, the weight learning and bias learning will

terminate, and the weights W and bias b of this model will be confirmed.

Model testing

The 60th cycle of Jason-1 and the 158th cycle of Jason-2 were selected for model testing. The

effectiveness of the model is evaluated via the correlation coefficient (r) and the root mean

square deviation (RMS) of the model output SSBSAE (SSB calculated by the SAE model) versus

the SSBGDR (SSB from the GDR) from the test set. As r approaches 1, SSBSAE and SSBGDR

become more highly correlated. The difference between SSBSAE and SSBGDR is smaller when

the RMS is closer to 0, and the model is more effective. The results obtained on the validation

set were r = 0.99 and RMS = 0.5 cm. The averaged absolute value of SSBSAE and SSBGDR are

7.35 cm and 7.20 cm, respectively; therefore, the mean variation is 0.15 cm. The model tests

showed that SSBSAE and SSBGDR are highly consistent, implying that the SAE model is both

effective and stable.

⌢
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Model validation

To evaluate the performance of the trained SAE model, the 70th and 71st cycles (798,726

groups) of the HY-2A radar altimeter were used as the unseen validation dataset. Data

from these two cycles are of high quality because they were reprocessed by the National

Satellite Ocean Application Service of China (NSOAS). A conventional four-parameter

model isapplied in the SSB estimation of HY-2A. This parametric model is a biquadratic,

multivariable, Taylor polynomial function for SSB that takes SWH and U as inputs. The

parameters in this polynomial function are determined by a regression method based on a

least squares estimation.

The output value of the SAE model is notated as SSBSAE, and the value of the parameter

model for the GDR of the 70th and 71st cycles of HY-2A is notated as SSBPM. To further verify

the effectiveness of the SAE model, the following analyses of these two models are conducted:

the SSB difference analysis, explained variance analysis, residual error analysis and operational

efficiency analysis.

SSB difference analysis

The density distribution of the difference ΔSSB between SSBSAE and SSBPM (ΔSSB =

SSBSAE−SSBPM) is shown in Fig 2, and a scatter diagram with a linear regression line is shown

in Fig 3.

The RMS error of the two models is 0.58 cm. The average absolute SSB value of the SAE

model is 7.58 cm—an average of 0.57 cm below the average absolute SSB from the HY-2A

GDR, which is 8.15 cm. Fig 2 shows that the majority of the differences are concentrated in the

range from -1 cm to 1 cm. The graph shows positive skewness because the average SSB bias is

negative. Combined with the related scatter plot in Fig 3, the correlation coefficient r is 0.96,

and, overall, the two values tend to be consistent.

Fig 2. Probability density distribution diagrams of ΔSSB.

https://doi.org/10.1371/journal.pone.0208989.g002
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Explained variance

The explained variance (D) is defined as the difference between the variance in the SSH devia-

tion, ΔSSH, at a cross point without SSB correction and the variance in the SSH residual error

(ΔSSH-ΔSSB) at a cross point with SSB correction. The explained variance is the portion of the

variance in ΔSSH that can be explained by the SSB. This quantity can be used to evaluate the

validity and accuracy of the SSB model. Larger values reflect better effectiveness and higher

accuracy.

The cross points in the 70th and 71st cycle of the HY-2A radar altimeter (2,997 groups)

were extracted. The ascending and descending trajectory SSH values at the cross points

were corrected using the SSB results from the SAE model and the parametric model from

the GDR of HY-2A. The results show that the explained variance in the SAE model was

31.82 cm2 comparedwith 30.69 cm2 computed for the explained variance in the paramet-

ric model. This result means that the SAE model is more accurate than the conventional

parametric model.

Residual error

The correlation analysis of the SWH, U, σ0 and AGC versus the residual error based on the

2,997 groups of cross point data was performed using the results of the two models. The corre-

lation between the average residuals of each segment and the SSH deviation value is not ana-

lyzed in this paper because they have a direct relationship.

The deviations of SWH, U, σ0 and AGC at the cross points were divided into segments

(0.5 m, 1.0 m/s, 1.0 dB and 1.0 dB), and the residual SSH error at each segment was averaged.

Thus, the correlation between the mean residual error �ε and the deviations ΔSWH, ΔU, Δσ0

and ΔAGC can be analyzed. A smaller absolute value and standard deviation of the mean

Fig 3. Scatter graph showing the relationship between SSBSAE and SSBPM.

https://doi.org/10.1371/journal.pone.0208989.g003
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residual error �ε at each segment indicates smaller correlations with ΔSWH, ΔU, Δσ0 and

ΔAGC are a more effective model [4]. The calculation results are listed in Table 1, and the

residual error distribution maps are shown in Figs 4–7.

The statistical data in the table and the residual error distribution map in Figs 4–7 show

that the residual error distributions of the SAE model for the four variables are closer to the

zero line and exhibit smaller fluctuations than the residual error distributions of the parameter

model. Thus, the SAE model is more effective for SSB estimation.

Operational efficiency

Based on a computer running a Windows 10 operating system with a 3.6 GHz CPU, 32

GB of memory and running MATLAB R2017b, the execution times of the different mod-

els were recorded. The selected data sets were the 6 cycles of Jason1/2 (2,583,776 groups)

and the 2 cycles of HY-2A (798,726 groups), and the models used are the SAE model, the

parametric model and the nonparametric model. The execution times are listed in

Table 2.

As Table 2 shows, the calculation time of the SAE model is similar to that of the parametric

model and is much faster than the nonparametric model; its efficiency is approximately 12

times higher than the nonparametric model. However, the SAE model accuracy is similar to

that of the nonparametric model results because it was trained on the results of the nonpara-

metric model.

Table 1. Residual error analysis of the SAE model and the parametric model.

SAE model (SAE) Parametric model (PM)

Mean (cm) Std (cm) Mean (cm) Std (cm)

�ε-ΔSWH 0.50 2.80 1.59 7.56

�ε-ΔU 0.48 1.78 1.31 2.87

�ε-Δσ0 0.55 3.70 1.30 7.55

�ε-ΔAGC 0.60 3.75 1.38 7.05

https://doi.org/10.1371/journal.pone.0208989.t001

Fig 4. Distributions of mean residuals �ε according to ΔSWH.

https://doi.org/10.1371/journal.pone.0208989.g004
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Conclusion

In this paper, a SAE model with 5 input parameters (SWH, U, SSH, σ0, AGC) was constructed

and tested using Jason1/2 radar altimeter data. The model is composed of 3 hidden layers and

the nodes of the hidden layers are arranged as 5, 10, 5.

The trained SAE model was validated by HY-2A radar altimeter data. A comparison analy-

sis showed that the SSB computed by the SAE model is similar to the SSB of the parametric

model in the GDR of HY-2A, although some differences exist. The results of the explained var-

iance and residual error analysis showed that both the effectiveness and the SSB accuracy of

the SAE model are better than the effectiveness and the SSB accuracy of the parametric model.

In terms of operational efficiency, the execution time of the SAE model is similar to that of the

parametric model and significantly better than the execution time of the nonparametric

model.

Fig 5. Distributions of mean residuals �ε according to ΔU.

https://doi.org/10.1371/journal.pone.0208989.g005

Fig 6. Distributions of mean residuals �ε according to Δσ0.

https://doi.org/10.1371/journal.pone.0208989.g006
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