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Purpose: To develop an automated diabetic retinopathy (DR) staging system using
optical coherence tomography angiography (OCTA) images with a convolutional neural
network (CNN) and to verify the feasibility of the system.

Methods: In this retrospective cross-sectional study, a total of 918 data sets of
3 × 3 mm2 OCTA images and 917 data sets of 6 × 6 mm2 OCTA images were obtained
from 1118 eyes. A deep CNN and four traditional machine learningmodels were trained
with annotations made by a retinal specialist based on ultra-widefield fluorescein
angiography. Separately, the same images of the test data sets were independently
graded by two human experts. The results of the CNN algorithm were compared with
those of traditional machine learning–based classifiers and human experts.

Results: The proposed CNN achieved an accuracy of 0.728, a sensitivity of 0.675, a
specificity of 0.944, an F1 score of 0.683, and a quadratic weighted κ of 0.908 for a six-
level staging task, which were far superior to the results of traditional machine learn-
ingmethods or human experts. The CNN algorithm showed a better performance using
6 × 6 mm2 rather than 3 × 3 mm2 sized OCTA images and using combined data rather
than a separate OCTA layer alone.

Conclusions: CNN-based classification using OCTA images can provide reliable assis-
tance to clinicians for DR classification.

TranslationalRelevance:ThisCNNalgorithmcanguide the clinical decision for invasive
angiography or referrals to ophthalmology specialists, helping to create more efficient
diagnostic workflow in primary care settings.

Introduction

Diabetic retinopathy (DR), a leading cause of blind-
ness worldwide, can be delayed or prevented through
appropriate treatment.1–4 Because the success of such
treatment depends on timely interventions, most guide-
lines recommend regular DR screening for diabetic
patients.5,6 However, existing screening methods can

miss a substantial fraction of DR cases, leading to
preventable vision loss because DR grading based on
traditional fundus images is often subjective depend-
ing on expert clinical interpretation.7,8 In addition,
the requirement for highly trained ophthalmologists is
an expensive and time-consuming process, making it
infeasible to screen all diabetes patients for DR.9

Deep learning application for automated
retinal image analysis has recently demonstrated
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specialist-level accuracy in the diagnosis of DR sever-
ity, substantially aiding access to DR screening and
improving the diagnostic accuracy.10–21 However, these
studies have not addressed a fundamental weakness
of their own: the uncertain accuracy of data annota-
tion. Vascular alterations caused by diabetes are
widely distributed, and up to 50% of DR lesions
are known to be located outside seven-standard
defined retinal fields.22,23 Multiple independent groups
have reported that peripheral retinal lesions outside
standard fields suggest a more severe DR grade in
9% to 19% of eyes.22,24,25 Although Early Treat-
ment Diabetic Retinopathy Study classification is
still the major staging system for DR, a rigorous
evaluation of the retina using ultra-widefield (UWF)
fluorescein angiography (FA) can be a more accurate
method of assessing DR severity, without relying
on specific features (microaneurysms or bleeding)
provided by fundus photographs with a lower resolu-
tion and limited field of view. However, invasive FA
is unsuitable as a screening tool or for use in frequent
longitudinal assessments because it carries the risk of
serious adverse reactions.26

Although optical coherence tomography angiogra-
phy (OCTA) provides a limited field of view compared
to UWF FA, it has a marked advantage of being
a noninvasive, rapid, and simple approach providing
detailed three-dimensional information of the retinal
vascular network.27,28 Accordingly, whether OCTA
can substitute UWF FA has been investigated, and
several studies have reported that OCTA imaging is
useful even for estimating peripheral capillary perfu-
sion.29–33 However, they used only predetermined
quantitative features of an OCTA analysis, relying only
on empirically selected biomarkers. To identify even the
subtle microvascular changes caused by diabetes across
the retina, it is necessary to use a much richer feature
space, latent within all OCTA data.

In this study, we presented an end-to-end deep
convolutional neural network (CNN)–based method
for classifying DR severity automatically from OCTA
images. The approach was trained and tested with
annotations based on UWF FA. The feasibility of the
proposed model was confirmed through a quantita-
tive comparison of themodel performance against four
different machine learning–based classifiers that use
handcrafted features extracted fromOCTA images and
human graders.

Methods

This cross-sectional studywas approved by the Insti-
tutional Review Board (IRB) of Yeungnam Univer-

sity Medical Center (IRB number, 2020-09-079) and
conducted in accord with the Declaration of Helsinki.
The requirement for written consent was waived by the
IRB because of the retrospective nature of the study.
Data were collected between January 2018 and July
2020.

For normal eyes, patients who had visited the
hospital for visual floater and ocular discomfort and
who had undergone detailed examination, including
OCTA (Optovue RTVue XR AVANTI; Optovue, Inc.,
Fremont, CA, USA), but had no systemic disease
or ocular disease were included. For diabetic eyes,
patients who had previously been diagnosed with
diabetes mellitus (DM) and undergone comprehen-
sive ophthalmic examinations, including UWF FA
(Optos California; Optos plc, Dunfermline, UK) and
OCTA, were included. Because this was retrospective
chart review study, indication of invasive angiography
was not related to the protocol of this study. UWF
FA was performed limitedly after explaining possible
side effects if the patient desired a full-examination
despite absence of DR. Exclusion criteria included
the presence of glaucoma or retinal disorders affect-
ing retinal capillary changes other than DR. Eyes with
macular edema (defined as a retinal thickening of at
least 315 μm and/or intra- or subretinal fluid seen
on the optical coherence tomography [OCT] B-scan)
and media opacity precluding imaging were excluded
because this can obscure retinal microvasculature on
OCTA. Images with a low signal strength (≤6), exces-
sive motion, or projection artifacts were also excluded.
OCTA images were obtained as volume scans of 3 × 3
mm2 and 6× 6mm2 in size centered on themacula, and
images of the superficial capillary plexus (SCP), deep
capillary plexus (DCP), and full-thickness retinal slab
were used for analysis. The ground truth labels for both
training and testing were grades previously assigned
to UWF FA images by an expert human grader (MS)
based on the International Clinical Diabetic Retinopa-
thy Severity Scale, which was adapted by means of
extending the grading quadrants to the periphery of
the entire image while maintaining the original grading
nomenclature for simplicity.34

The overall study design for the classification of
the DR is shown in Figure 1. OCTA images and
demographic data, including age and sex, were used as
inputs. Each of the six performance metrics obtained
from the CNN classifier, machine learning classifiers,
and experts was evaluated and compared.

Development of CNN-Based Classifier

The overall structure of the proposed CNN-based
end-to-end classifier for DR classification is shown
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Figure 1. Overall study design for classification of DR.

Figure 2. CNN-based classifier for DR. OCTA images and demographic data are passed through an end-to-end CNN-based classifier to
derive the DR class prediction and class activation maps, which visualize the regions significantly affecting the tasks.

in Figure 2. SCP, DCP, and full-thickness retina OCTA
images were concatenated and used as inputs to the
CNN. Using the ResNet 101 model, images were
passed through residual blocks with 101 layers. A
summation of the input and output feature maps
was repeatedly applied from the convolution layers,
each with a batch normalization, rectified linear unit
(ReLU) activation functions, and max pooling.35 After
passing through the residual blocks, each feature
map was averaged in the global average pooling
(GAP) layer. Using the averaged feature maps and
demographic data, the probability of each stage was

obtained through a fully connected layer with a
softmax function. Class activation maps (CAMs) were
derived from the GAP layer by summating the feature
maps with the weights from the last layer to visual-
ize regions that show a high correlation with the
task of interest.36 Notably, parameters of the network
were initially transferred from the pretrained param-
eters of the ImageNet data set, excluding the first
and last layer parameters.37 Subsequently, all param-
eters were retrained using our OCTA data set, which
was optimized based on the cross-entropy loss with an
Adam optimizer and a learning rate of 0.0001.38
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Development of Machine Learning–Based
Classifier

The machine learning–based classifier consisted of
three stages: segmentation, feature extraction, and
classification (Fig. 3).

In the segmentation step, U-Net39 was used to
segment the blood vessels and foveal avascular zone
(FAZ) from the OCTA images. The combined data
from each layer of the OCTA image were used as
input, given that prior machine learning–based studies
demonstrated best DR classification results when local
features from the combined data were used, that is,
both SCP and DCP.11,20,21,40 In the U-Net model, a
contracting path extracts high-level features from the
input images by repeatedly using convolution layers,
batch normalization, ReLU activation function, and
max pooling, whereas the expanding path generates a
segmentation map of the same size as the input image
by repeatedly using upsampling, convolution layers,
batch normalization, and ReLU activation functions
on the extracted high-level features. In the expand-
ing path, intermediate feature maps of the contract-
ing path were concatenated with the feature maps
of the previous expanding path and used as input
in the next expanding path. The parameters in the
network were optimized using the Adam optimizer
with a dice similarity coefficient loss and a learning rate
of 0.0001.38

In the feature extraction stage, four local features
(blood vessel density, skeletal vessel density, fractal
dimension, and FAZ area) were extracted from the
segmented OCTA images. In addition, 9 shape features
(major and minor axis lengths, maximum diame-
ter, elongation, sphericity, perimeter, perimeter surface
ratio, number of meshes, and number of pixels), 18
intensity features (i.e., mean, median, standard devia-
tion, and entropy of the intensity values), and 75
texture features were extracted from an image and its
segmentation masks using the Pyradiomics toolbox.41
The intensity and texture features were extracted from
the original input image as well as the image filtered
by Laplacian or Gaussian filters with different sigma
values (i.e., 1, 2, and 3). Thus, 9 + (18 + 75) × 4 = 381
features were extracted for each segmentation mask.
The features were extracted from three images (SCP,
DCP, and full retina) with two segmentation masks
(vessels and FAZ). Thus, in total, (4 + 381 × 2) × 3
= 2298 features were extracted for each patient.

Finally, in the classification step, data from these
2298 extracted features and demographic data for
each patient were fed into four different machine
learning classifiers—namely, Multiple Layer Percep-
tron (MLP), Random Forest (RF), Support Vector
Machine, and eXtreme Gradient Boost (XGB)—to
classify the OCTA images into six groups according to
DR staging.42–44

Figure 3. Machine learning–based classification networks for DR. FAZ and blood vessels were segmented fromOCTA images using a U-Net
model. The segmented FAZ and vessels were processed to extract four significant retinal features (i.e., the FAZ area, blood vessel density,
skeletal vessel density, and fractal dimension). An additional 381 features were also extracted using the Pyradiomics toolbox. These features
are supplied to four different machine learning based classifiers (i.e., MLP, RF, Support Vector Machine [SVM], and XGB) to classify the OCTA
images into six groups according to DR staging.
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Performance Evaluation of the Automated
Classifiers

To obtain the final predictions for all data samples,
we divided the data into four distinct subsets with
an even class distribution. If not divisible by 4, the
data were divided in such a way that the remainder
was added to the fold one by one. Leaving one subset
of the data for the test, a threefold cross-validation
was conducted on each configuration, where the two
subsets of the data were used for training and one
for validation. All data were randomly divided at the
patient level, and which data to use for training or
testingwas also randomly determined, but no datawere
used for both training and testing. The average metrics
were derived from three test runs on the held-out data
by comparing the predictions of the model with the
gold standard determined by a retinal specialist using
UWF FA.

Each of the automated classifiers based on a CNN
andmachine learningmodels was evaluated against the
gold-standardUWFFA grades of the test set. For each
classifier, the followingmetrics were evaluated: sensitiv-
ity, specificity, accuracy, F1 score, quadratic weighted
κ, and area under the receiver operating characteris-
tic (ROC) curve. These metrics were calculated based
on the average value obtained by applying a stratified
threefold cross-validation.

Performance Evaluation by Human Experts

Only 229 test data sets of 6 × 6 mm2 scanned
images were used to compare the performance of the
algorithms with those of human experts. Each classi-
fication was conducted independently using OCTA
images and the corresponding demographic data from

the full data sets. Two retina specialists (GR and DP)
independently classified the images by viewing them
on a computer screen at a full image resolution. Only
OCTA images and corresponding demographic data
were provided for the classification task. These graders
did not overlap with the retinal specialist who labeled
the ground truth. The performance of each human
expert was also evaluated and compared with the
results from the automated classifiers.

Results

A total of 1118 eyes (254 healthy participants,
148 diagnosed with DM without DR, 108 with mild
nonproliferative diabetic retinopathy [NPDR], 136
with moderate NPDR, 275 with severe NPDR, and
197 with proliferative diabetic retinopathy [PDR]) were
recruited. After excluding the images with motion
artifacts or an insufficient scan quality, 918 data sets of
3 × 3 mm2 scanned images (219 healthy participants,
116 diagnosed with DM without DR, 81 with mild
NPDR, 112 with moderate NPDR, 231 with severe
NPDR, and 159 with PDR) and 917 data sets with 6
× 6 mm2 scanned images (225 healthy participants, 104
diagnosed with DMwithout DR, 88 with mild NPDR,
105 with moderate NPDR, 234 with severe NPDR,
and 161 with PDR) were obtained. The details of the
data sets and splits are shown in Table 1, including the
demographic characteristics of the study participants
and the distribution of DR severity levels of the images.

Performance of CNN-Based Classifier

The performance of our CNN-based classifier was
numerically superior using 6 × 6 mm2 images than 3

Table 1. Numbers of Study Participants and OCTA Images Used for Deep Learning Model Training

Characteristic Normal
DM

Without DR Mild NPDR
Moderate
NPDR

Severe
NPDR PDR Total

Participants, n 254 148 108 136 275 197 1118
Gender (male/female), n 85/169 83/65 73/35 69/67 167/108 115/82 592/526
Age, mean ± SD, y 62.5 ± 7.8 59.3 ± 13.5 61.0 ± 11.1 57.8 ± 11.0 58.2 ± 9.6 54.0 ± 10.3 58.8 ± 10.6
Laterality (right eye/left eye), n 125/129 84/64 61/47 65/71 125/150 94/103 554/564
OCTA images, n
3 × 3 mm2 219 116 81 112 231 159 918

Training and validation 164 87 61 84 171 118 685
Test 55 29 20 28 60 41 233

6 × 6 mm2 225 104 88 105 234 161 917
Training and validation 169 78 66 79 175 121 688
Test 56 26 22 26 59 40 229
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Table 2. Performance Results of Deep Learning CNN (ResNet 101) for Automated Classification of DR Severity

Accuracy Sensitivity Specificity F1 Score QWK

Characteristic Mean SD Mean SD Mean SD Mean SD Mean SD

3 × 3 mm2 images
Combined OCTA 0.684 0.005 0.617 0.001 0.934 0.002 0.634 0.001 0.856 0.017
Individual OCTA

Superficial capillary plexus 0.681 0.019 0.619 0.017 0.934 0.004 0.635 0.022 0.840 0.014
Deep capillary plexus 0.651 0.007 0.590 0.019 0.927 0.001 0.609 0.031 0.847 0.005
Full-thickness retina 0.684 0.039 0.620 0.033 0.934 0.008 0.640 0.032 0.868 0.019

6 × 6 mm2 images
Combined OCTA 0.728 0.011 0.675 0.002 0.944 0.001 0.683 0.014 0.908 0.006
Individual OCTA

Superficial capillary plexus 0.702 0.011 0.636 0.018 0.926 0.013 0.648 0.013 0.877 0.028
Deep capillary plexus 0.667 0.020 0.602 0.023 0.930 0.004 0.621 0.027 0.877 0.017
Full-thickness retina 0.721 0.025 0.657 0.019 0.941 0.004 0.681 0.032 0.882 0.012

Combined OCTA indicates that combined data of OCTA images (superficial capillary plexus, deep capillary plexus, and full-
thickness retina layer) and demographic data (age and gender) were used as inputs. Individual OCTA indicates that individual
layer of OCTA images and demographic data were used as inputs. QWK, quadratic weighted κ .

× 3 mm2 images (Table 2). For the CNN-based classi-
fier using combined data of 3 × 3 mm2 OCTA images,
the overall accuracy was 0.684, with an accuracy of
0.857 for detecting normal images, 0.883 for DM
without DR, 0.910 for mild NPDR, 0.934 for moder-
ate NPDR, 0.871 for severe NPDR, and 0.913 for
PDR. The average sensitivity, specificity, F1 score,
and quadratic weighted κ were 0.617, 0.934, 0.634,
and 0.856, respectively. For the CNN-based classifier
using combined data of 6 × 6 mm2 OCTA images,
the overall accuracy was measured to be 0.728; the
accuracy was 0.849 for detecting normal images, 0.870
for DM without DR, 0.911 for mild NPDR, 0.956 for
moderate NPDR, 0.920 for severe NPDR, and 0.949
for PDR. In addition, the average sensitivity, specificity,
F1 score, and quadratic weighted κ were 0.675, 0.944,
0.683, and 0.908, respectively.

The performance of the CNN-based classifier was
also evaluated using the SCP, DCP, and full-thickness
retina layers separately (Table 2). The performance of
the CNN using a separate OCTA layer of SCP or a
full-thickness retina was nearly comparable to that of
a CNN using combined data as input. However, the
performances using the DCP layer were worse than
those of the other layers.

The confusion matrices between the ground truth
labels and the predictions of the proposed method are
illustrated in Supplementary Figure S1, and the results
for each of the three folds are listed in Supplemen-
tary Table S1. Figure 4 shows example CAM images
in which the CNN correctly identified the DR staging
using only OCTA images.

Performance of Machine Learning–Based
Classifiers

The performances of the four machine learning
classifiers are listed in Table 3. The average values
obtained from the machine learning–based classifiers
using local features extracted from the OCTA images
were lower than the performance of the CNN classi-
fier. Using 3 × 3 mm2 OCTA images, XGB achieved
the highest for three metrics (accuracy, specificity,
and quadratic weighted κ) and MLP for the remain-
ing two metrics (sensitivity and F1 score). Using
6 × 6 mm2 OCTA images, RF achieved the highest
for three metrics (accuracy, specificity, and F1 score) of
the five other performance metrics relative to the other
machine learning classifiers. In contrast to the CNN
classifier, the machine learning–based classifier showed
a better performance using 3 × 3 mm2 rather than
6 × 6 mm2 OCTA images.

The confusion matrices between the ground truth
labels and the predictions of the four different machine
learning classifiers are illustrated in Supplementary
Figure S2, and the results for each of the three folds
are listed in Supplementary Table S2.

Performance of Human Experts

A comparison of the performance of the CNN
classifier, machine learning classifier, and human
experts using 6 × 6 mm2 OCTA images is shown
in Table 4. As expected, the CNN classifier achieved the
highest performance, and human experts achieved the
lowest performance. The agreement between the two



Automated Classification of DR With OCTA TVST | February 2022 | Vol. 11 | No. 2 | Article 39 | 7

Figure 4. Representative examples where the CNN correctly identified the DR staging. For each of the two representative eyes, the original
OCTA images (left), CAMs overlaid on the original images (middle), and corresponding ultra-widefield fluorescein angiograms (right) are
shown. The heatmap scale for the CAMs is also shownwith a signal range from zero (purple) to+1.00 (brown). The regions with high positive
values (red to brown) in the CAM images were the regions the network used for decision-making. By contrast, the regions with nearly zero
values (blue to purple) in the CAM images have no or negative influences on the classification. The upper images were derived from an eye
with severe NPDR, and the lower images were derived from an eye with PDR. In cases similar to these examples, human grading of DR from
OCTA images is difficult to perform accurately, even for trained graders. The highlighted regions in the CAM images corresponded well with
pathologic regions such as where the density of blood vessels greatly changed or aneurysmal changes were observed.

experts was 0.463. A comparison of the ROC curve
of the CNN classifier with machine learning classifiers
and human experts is presented in Figure 5.

The confusion matrix between the ground truth
labels and the predictions of the human experts
is illustrated in Supplementary Figure S3, and the

Table 3. Performance Results of Four Different Machine Learning Classifiers (Multiple Layer Perceptron, Random
Forest, Support Vector Machine, and eXtreme Gradient Boost) for Automated Classification of DR Severity

Accuracy Sensitivity Specificity F1 Score QWK

Characteristic Mean SD Mean SD Mean SD Mean SD Mean SD

3 × 3 mm2 images
Multiple Layer Perceptron 0.562 0.031 0.497 0.036 0.909 0.006 0.504 0.038 0.782 0.025
Random Forest 0.562 0.022 0.457 0.012 0.907 0.004 0.497 0.019 0.804 0.003
Support Vector Machine 0.468 0.038 0.423 0.033 0.893 0.007 0.425 0.033 0.731 0.035
eXtreme Gradient Boost 0.574 0.024 0.489 0.025 0.912 0.005 0.501 0.030 0.814 0.016

6 × 6 mm2 images
Multiple Layer Perceptron 0.502 0.037 0.430 0.031 0.897 0.008 0.432 0.036 0.781 0.003
Random Forest 0.531 0.011 0.408 0.014 0.898 0.003 0.435 0.023 0.785 0.001
Support Vector Machine 0.450 0.000 0.397 0.002 0.887 0.001 0.398 0.004 0.735 0.002
eXtreme Gradient Boost 0.508 0.018 0.417 0.013 0.897 0.004 0.425 0.014 0.802 0.006

The combined data of OCTA images (superficial capillary plexus, deep capillary plexus, and full-thickness retina layer) and
demographic data (age and gender) were used as inputs for development of the machine learning classifiers.
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Table 4. Comparison of the Performance Results Between the CNN, Machine Learning Classifier, and Human
Experts for DR Classification From OCTA Images

Accuracy Sensitivity Specificity F1 Score QWK

Characteristic Mean SD Mean SD Mean SD Mean SD Mean SD

CNN classifier 0.728 0.011 0.675 0.002 0.944 0.001 0.683 0.014 0.908 0.006
Machine learning classifier (RF) 0.531 0.011 0.408 0.014 0.898 0.003 0.435 0.023 0.785 0.001
Human experts (average) 0.330 0.020 0.320 0.023 0.869 0.004 0.337 0.022 0.713 0.020

Only 229 test data sets of 6× 6mm2 scan imageswere used to compare the performance results between the convolutional
neural network, machine learning classifier, and human experts. As a representative of the machine learning classifier, the
results of RF, the most accurate machine learning classifier used in this study, are described in the table. For the performance
results of human experts, the average values of the performance results of the two experts are also described.

Figure 5. ROC curves illustrating classificationperformances for theprediction ofDR staging. Thedotted line represents the trade-off result-
ing from random chance, and the solid curved lines represent the trade-off of each automated classifier. The performances of retinal experts
are plotted as red and blue triangles.

results for each expert are listed in Supplementary
Table S3.

Discussion

In this study, we proposed an end-to-end CNN
architecture using OCTA for automated DR classi-
fication. As expected, the end-to-end CNN classifier
outperformed the machine learning classifiers, which
used 2298 extracted local features of eachOCTA image
to classify the images into six groups according to DR
staging. Radiomics is a systematic approach for study-
ing latent information in medical imaging for improved

accuracy. Among them, PyRadiomics is the most
widely reported radiomics tool in the literature, and it
contains thousands of handcrafted formulas designed
to extract the distribution or texture information
from medical images.41 Although these feature-based
methods achieved lower classification performance
than theCNNmethod, they can find outwhich features
have a major impact on the classification through
the random forest or L1 optimization. By contrast,
since the CNN method operates end-to-end without
explicitly extracting features, it is difficult to know
which features have a major influence on classification.
However, the parameters in a CNN can be updated
during backpropagation from the feature extraction
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perspective, allowing the extraction of a larger number
of features that are associated with the target outcome.
Because OCTA contains more unlabeled information,
a fully automated CNN algorithm can process hetero-
geneous images quickly for an accurate and objective
DR classification, potentially alleviating the require-
ment for a resource-intensive manual analysis and thus
guiding high-risk patients for further treatment.

Also, the activation map allowed us to identify the
areas in which the network was used for decision-
making. By visualizing the CAM, we may identify
informative image patterns or features that are useful
for DR staging. However, the interpretation of these
results warrants additional scrutiny because recent
studies emphasized that many popular saliency maps
used to interpret CNN trained on medical imaging did
not meet several key criteria for utility and robustness,
highlighting the need for additional validation before
clinical application.45–47 For the alternative technique,
a computer-aided diagnosis system that utilizes the
complementary information from CNN-based and
feature-based methods will need to be further devel-
oped. Also, qualitative analysis of the latest techniques
to better obtain the activation map will be required.45

When comparing the performance of the CNN
algorithm according to the input image size, OCTA
images covering a larger 6 × 6 mm2 scanned area
provided a higher performance than images covering
a smaller scanned area. These results strongly support
previous suggestions that wider fields of view may be
more desirable for early detection and monitoring of
disease progression.48–50 Meanwhile, the ML classi-
fier showed a better performance using 3 × 3 mm2

OCTA images, which is a completely opposite result
from that of the CNN classifier. We suspect that the
cause of this discrepancy is a problem in the process of
extracting handcrafted features through multiple steps.
Motion artifacts and distorted weak signal regions are
observed more frequently in widefield OCTA, partic-
ularly in the periphery. Moreover, large SCP vessels
observed in the 6× 6 mm2 OCTA images may substan-
tially contribute to the assessment of DRowing to their
large diameters, which is not observed in 3 × 3 mm2

OCTA images. Although a decreased capillary perfu-
sion and an increased capillary dropout area have been
reported to be associated with worsening DR sever-
ity, larger retinal arteriolar and venular calibers are
also known to increase with the DR progression.51–54
Because machine learning classifiers use quantitative
parameters of OCTA images to classify the DR sever-
ity, the scan size can affect the results, particularly
during the segmentation or feature extraction stage.

Interestingly, we also observed that the CNN
algorithm for DR classification achieved poor results

when using the DCP layer in comparison to other
OCTA layers. Because the pathology in DR is hypoth-
esized to preferentially involve a more vulnerable DCP,
the results may appear to be contrary to common
knowledge.55 There are several potential explanations.
Because the CNN algorithm is trained and tested
based on FA images, which only visualize the super-
ficial retinal vessels, it is perhaps not surprising that
the CNN appears to perform better using SCP images
than DCP images.56 In addition, images of DCP layers
may have been affected by projection artifacts caused
by shadows from superficial blood flow projected onto
deeper layers, resulting in an erroneous perception of
flow. Because the deeper layers are more susceptible
to projection artifacts and signal attenuation, this can
potentially explain the greater variation in the inter-
pretation of OCTA images in the DCP.57 Similar to
the results, several previous studies have also suggested
that SCP continues to have a greater diagnostic value
even after the DCP image quality has been improved
through the removal of decorrelation tail projection
artifacts.58,59

Since the wide use of CNN methods for image
classification problems, several methods for the
automated classification of DR severity have been
proposed.10–21,60 Most of these methods are based
on fundus photographs. Ghosh et al.19 proposed a
CNN-based method to classify fundus photogra-
phy into five classes (no DR, mild NPDR, moderate
NPDR, severe NPDR, and PDR) and achieved an
overall accuracy of 85%. Owing to the restricted
data set size compared to the extremely large fundus
photography data set used in the previous fundus
photography–based networks, many fewer studies
have focused on the CNN algorithm applied to OCT
and OCTA. However, OCT and OCTA have advan-
tages over fundus photography in that they provide
more instructive information on the structure and
vasculature of the retina. Zang et al.11 applied deep
learning approaches to automated DR classification
based on OCT and OCTA data and achieved an
overall accuracy of 71% for the classification into four
classes (no DR, mild and moderate NPDR, severe
NPDR, and PDR), which is a slightly lower accuracy
compared to fundus photography–based DR classi-
fications. The authors pointed out that this is due to
the relatively small data sets (approximately 1/100 of
that of previous studies using fundus photography
data sets) and the use of an algorithm trained with
classification based on fundus photography, which is
a considerably different modality from OCT/OCTA.
Although multiple studies have examined various
artificial intelligence-based approaches to the classi-
fication of DR, we are unaware of any algorithm



Automated Classification of DR With OCTA TVST | February 2022 | Vol. 11 | No. 2 | Article 39 | 10

trained with classification based on UWF FA. In
previous studies, the grading system of DR was based
on a fundus photograph examination, making it
prone to oversight of subtle fundus details, leading to
examiner errors. In addition, alterations of the micro-
circulation in the peripheral retina were not observed
upon a fundus examination. A recent study revealed
that 17% of retinal neovascularization lies anterior
to the border of seven conventional standard fields,
suggesting that UWFFA allows for amore appropriate
staging of DR.24

Although we reported a comparable performance
in this study, as a notable limitation, the number of
patients employed is still relatively small. However, the
number of patients in this study is comparable to that in
others employing OCTA,10,11,20,21,40 considering that
this technology is still not ubiquitous in ophthalmol-
ogy practices. We used training and testing OCTA
data from only a single center, without generalizabil-
ity testing using external data sets. Further studies
conducting robust prospective external validation tests
are required. Also, it is necessary to compare perfor-
mance for DR classification between ResNet 101 and
other CNN architectures (e.g., DenseNet, Efficient-
Net, or Inception v3). However, this study supports
an important first step in end-to-end deep learning
models for DR classification using OCTA images. As
a strength of this study, the ground truth for the
classification of DR stages is based on the UWF FA.
Although OCTA has several clinical advantages over
FA, its role in the clinical decision-making process is
still limited. Using the CNN algorithm, we can classify
the DR severity in an automated fashion by taking
advantage of both UWF FA and OCTA.

In this study, we introduced a fully automated deep
CNN DR classification method using OCTA images.
Although OCTA is rapidly adapted to the new modal-
ity in a clinical routine, the interpretation of OCTA
data remains limited. If the proposed automated DR
classification framework using OCTA can provide a
similar level of diagnostic value as other modalities,
the number of procedures an individual would require
for an accurate diagnosis would be reduced, ultimately
lowering both the clinical burden and the health care
costs. This system is expected to drastically reduce, on
a clinical basis, the rate of vision loss attributed to
DR; improve clinical management; and create a novel
diagnostic workflow for disease detection and referral.
For a proper clinical application of ourmethod, further
testing and optimization of the sensitivity metrics,
such as genetic factors, hemoglobin A1C, duration of
diabetes, and other clinical data, may be required to
ensure a minimum false-negative rate. Combining the
data from various imaging modalities, such as fundus

photography or FA, can reinforce the performance
value and thereby further improve the accuracy. Future
work should include extending the algorithm to a larger
number of participants, even including images with
macular edema, artifacts, or low quality, to make it
more generalizable in a practical manner.
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