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Abstract DPOP (DPOP or Delta-POP) is a non-invasive

parameter which measures the strength of respiratory

modulations present in the pulse oximetry photoplethys-

mogram (pleth) waveform. It has been proposed as a non-

invasive surrogate parameter for pulse pressure variation

(PPV) used in the prediction of the response to volume

expansion in hypovolemic patients. Many groups have

reported on the DPOP parameter and its correlation with

PPV using various semi-automated algorithmic imple-

mentations. The study reported here demonstrates the

performance gains made by adding increasingly sophisti-

cated signal processing components to a fully automated

DPOP algorithm. A DPOP algorithm was coded and its

performance systematically enhanced through a series of

code module alterations and additions. Each algorithm

iteration was tested on data from 20 mechanically venti-

lated OR patients. Correlation coefficients and ROC curve

statistics were computed at each stage. For the purposes of

the analysis we split the data into a manually selected

‘stable’ region subset of the data containing relatively noise

free segments and a ‘global’ set incorporating the whole

data record. Performance gains were measured in terms of

correlation against PPV measurements in OR patients

undergoing controlled mechanical ventilation. Through

increasingly advanced pre-processing and post-processing

enhancements to the algorithm, the correlation coefficient

between DPOP and PPV improved from a baseline value of

R = 0.347 to R = 0.852 for the stable data set, and, cor-

respondingly, R = 0.225 to R = 0.728 for the more chal-

lenging global data set. Marked gains in algorithm

performance are achievable for manually selected stable

regions of the signals using relatively simple algorithm

enhancements. Significant additional algorithm enhance-

ments, including a correction for low perfusion values,

were required before similar gains were realised for the

more challenging global data set.

Keywords Hemodynamic monitoring � Fluid
responsiveness � Pulse oximetry � DPOP � PPV

1 Introduction

Volume expansion is commonly used for the critically ill

patient to optimize hemodynamic status. Fluid is admin-

istered with the expectation that it will increase cardiac

preload and cardiac output significantly; however, the

response may be variable. Respiratory variation in stroke

volume (SVV) allows the clinician to determine where on

the Frank-Starling curve the patient’s hemodynamic sys-

tem is operating. Respiratory modulations in the arterial

blood pressure waveform are also known to be a good

indicator of likely response to fluid loading in the

mechanically ventilated patient [1]. The use of this pulse

pressure variation (PPV) parameter to indicate the volemic

status of a patient is increasingly widespread in practice,

and has therefore been the focus of much attention in this

area [2]. DPOP is a non-invasive parameter which
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measures the strength of respiratory modulations present in

the pulse oximetry photoplethysmograph (‘POP’ or ‘pleth’)

waveform. It has been proposed as a non-invasive alter-

native to PPV with many studies showing favourable cor-

relation between the two parameters [3–9, 24]. Cannesson

et al. [10] defined the parameter as

DPOP ¼ AMPmax� AMPminð Þ= AMPmaxþ AMPminð Þ=2ð Þ
ð1Þ

where AMPmax and AMPmin are the maximum and mini-

mum amplitudes of the cardiac pulse waveforms in the

pleth during a respiratory cycle. These are illustrated in

Fig. 1, where the cardiac pulse component of the pleth is

shown being modulated by respiratory activity.

The development of a fully-automated algorithm capable

of coping with the extremes of data characteristics in the

clinical environment requires significant processing. Gen-

erally such an algorithm consists of three parts [11]: (1) pre-

processing, where the raw pleth is manipulated prior to the

computation of DPOP; (2) processing, where the compu-

tation of the DPOP value according to Eq. (1) is carried out;

and, (3) post-processing where the current computed value

of DPOP is further processed. These processing steps

involve: filtering of the raw signal, assessment of its quality,

removal of irregular pulse waveforms, identification and

removal of outlying data points, smoothing and, finally,

incorporation of the most recently calculated value within

the reported value. The latter step may include an average of

a number of previous points weighted by temporal rele-

vance and the quality of the data before updating the dis-

played value to the clinician. The aim of the present study

reported here was to demonstrate the performance gains

made by adding increasingly sophisticated signal process-

ing components to the DPOP algorithm. The performance

gains are measured in terms of a progressively enhanced

correlation against PPV measurements in OR patients

undergoing controlled mechanical ventilation (Table 1).

Fig. 1 Deriving DPOP from the Pleth

Table 1 Details of signal

processing runs

Subscripts ‘s’ and ‘g’ refer to

stable and global data results

respectively

Run Rs P Sens Spec YI AUC Rs-med 10 % Rs 90 % Rs

(a) Stable region data results

1 0.347 \0.01 0.808 0.751 0.560 0.858 0.355 0.233 0.532

2 0.521 \0.01 0.831 0.729 0.560 0.859 0.522 0.352 0.690

3 0.651 \0.01 0.833 0.712 0.545 0.849 0.645 0.483 0.761

4 0.691 \0.01 0.828 0.743 0.571 0.868 0.685 0.535 0.791

5 0.758 \0.01 0.863 0.741 0.604 0.890 0.753 0.587 0.851

6 0.817 \0.01 0.876 0.713 0.589 0.888 0.813 0.679 0.892

7 0.844 \0.01 0.892 0.697 0.589 0.881 0.842 0.718 0.911

8 0.826 \0.01 0.882 0.709 0.591 0.881 0.823 0.710 0.897

9 0.826 \0.01 0.858 0.699 0.557 0.877 0.824 0.712 0.897

10 0.852 \0.01 0.892 0.819 0.711 0.917 0.848 0.803 0.889

Run Rg P Sens Spec YI AUC Rgmed 10 % Rs 90 % Rg

(b) Global data results

1 0.225 \0.01 0.773 0.562 0.335 0.713 0.228 0.144 0.308

2 0.221 \0.01 0.749 0.561 0.311 0.697 0.228 0.154 0.303

3 0.261 \0.01 0.761 0.542 0.303 0.688 0.269 0.165 0.362

4 0.274 \0.01 0.797 0.545 0.342 0.699 0.280 0.181 0.372

5 0.311 \0.01 0.811 0.532 0.343 0.700 0.318 0.210 0.414

6 0.326 \0.01 0.771 0.536 0.306 0.691 0.338 0.221 0.436

7 0.350 \0.01 0.876 0.537 0.413 0.716 0.362 0.247 0.459

8 0.468 \0.01 0.836 0.600 0.435 0.734 0.464 0.279 0.609

9 0.467 \0.01 0.810 0.609 0.419 0.733 0.463 0.273 0.610

10 0.728 \0.01 0.834 0.756 0.590 0.863 0.724 0.559 0.808
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2 Methods

2.1 Patients

With institutional review board approval and written

informed consent, a convenience sample of adult patients

was enrolled at the Ohio State University Wexner Medical

Center. Patients requiring the placement of an intra-arterial

line who have been scheduled to undergo elective surgery

or required surgical intensive care unit (SICU) admission

were enrolled in the study. No specific disease states or

pathophysiologic conditions were targeted during enrol-

ment. Exclusion criteria were: (1) currently participating in

or has participated in an investigational drug study within

7 days of enrolment, (2) known severe contact allergies,

(3) existing health conditions preventing proper sensor

application, and (4) vulnerable groups.

2.2 Data acquisition

Each patient was fitted with a finger sensor (Nellcor Oxi-

Max Max-A, Covidien, Boulder CO) as per the sensor’s

device labelling. The sensor was connected to a custom

data-recording box that contained a Nellcor OEM pulse

oximeter of the same type found in the commercially

available N-600x monitor (Nell-1 board, Covidien, Boulder

CO). The blood pressure signal from an intra-arterial blood

pressure monitor (Solar 8000, by GE-Marquette) was also

recorded. A synchronized acquisition of the pulse oximeter

and arterial pressure signals was performed during the

whole procedure and saved to the laptop for later analysis.

The resulting OR data set comprised 36 patient records

where pleth and arterial line waveforms were collected

simultaneously. 16 data sets were excluded from analysis

for a variety of reasons, including: the absence of, or

missing, information in the case report form (CRF);

absence of a blood pressure waveform recording; absence

of a pleth waveform recording; presence of an arrhythmia;

corrupted data files; and pleth data with artefacts due to BP

cuff inflations on the same arm as the oximeter probe. The

remaining 20 subjects had a mean length of data record of

115 min, with the shortest recording of 43 min and longest

recording of 204 min.

The collected signals were further sub-divided into two

distinct data sets for use in the analysis: (1) a stable region

data set, and (2) a global data set. The ‘‘stable data set’’

corresponds to a few minutes of high quality signal seg-

ments manually selected from within the post-induction,

pre-incision period, where only general anaesthetic drugs

had been administered (i.e. no vasoactive drugs), and

where the pleth and BP signals were deemed artefact free.

The stable data set is intended to provide a comparison to

results from studies based on manually selected, high sig-

nal quality regions often reported in the literature. The

identification of the stable region was performed by eye.

An example of a stable region selected for analysis is

shown shaded in Fig. 2 where the artefact in the signals

within regions ‘A’ and ‘B’ caused the exclusion of these

parts of the signals from the stable region. The ‘‘global data

set’’ contains the entire data record of the patient, i.e.

including sections such as A and B in Fig. 2, and is

indicative of all data encountered by a commercial device

in practice including artefact due to movement, large blood

pressure changes, drug infusions, incisions, vasomotion,

etc. As such, it provides a much tougher test for an auto-

mated algorithm which has to make decisions on signal

quality and optimize the reported parameter accordingly

via advanced signal processing measures.

2.3 Analysis

An algorithm development infrastructure was set up to aid

the rapid development and refinement of the parameter

where, during each iteration, the candidate DPOP

Fig. 2 Selection of a stable

region (top finger pleth, bottom

arterial BP)
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algorithm may be modified according to previous perfor-

mance characteristics. A schematic of the algorithm

development infrastructure is shown in Fig. 3. In this way,

various controlling parameters may be examined both

independently of each other and in a combined fashion.

This parametric analysis allows for the rapid examination

of candidate code changes relating to potential improve-

ments to the algorithm. A series of 10 runs was conducted

using the patient data sets where increasingly sophisticated

processing elements were incorporated within the DPOP

algorithm. Note that the PPV calculation was performed

using the same processing approach as DPOP during each

of the runs, e.g. as buffer lengths and filter characteristics

were altered for the DPOP calculation these were matched

in the calculation of PPV. These are described in more

detail in the results section together with the corresponding

incremental improvement in performance.

The performance analysis of the DPOP parameter

against the PPV signal involves computing statistics that

describe quantitatively their correlation. A linear least

square regression line for DPOP versus PPV was plotted.

The Pearson correlation coefficient, R, was used to

describe how well DPOP fitted the linear relationship with

PPV. The statistical significance (p value) of R was also

calculated. Bootstrapping was used to provide non-para-

metric accuracy statistics for the computed correlation

coefficients: 10th and 90th percentile error bars were

determined based on a 1,000-run iteration, random per-

subject replacement of the data. Receiver operator char-

acteristic (ROC) curves were also computed, by deter-

mining the sensitivity and specificity pairs over a range of

DPOP thresholds, together with the corresponding area

under the curve (AUC) values. These correspond to the

hypothetical substitution of DPOP for PPV achieved by

setting a fixed threshold for PPV of 13 % (as used in

several studies for indicating the boundary between non-

responsive and responsive patients, e.g. Poli de Figueiredo

et al. [12], Cannesson et al. [10] Natalini et al. [13],

Landsverk et al. [14], Westphal et al. [7] ). We also

determined optimal sensitivity/specificity pairs using the

pre-defined criterion of maximising the Youden index

(sensitivity ? (specificity - 1)) [8, 13, 15]. Note that in

practice we prefer the use of the R statistic over AUC’s in

driving our analysis of performance as it is generally more

sensitive to outliers.

3 Results

A series of 10 runs was conducted comprising increasingly

sophisticated processing elements incorporated within the

algorithm. An overview plot of the performance over the

series of runs is provided in Fig. 4 based on the R statistic.

This plot highlights the trending over the runs and allows

the reader to set in context the incremental performance

gain made at each step described below in relation to

overall gains. The rest of this section discusses each signal

processing improvement in turn and its effect on perfor-

mance. Note that the values of the parameters associated

with each incremental step were determined through

parametric analyses carried out to determine the optimal

values.

3.1 Run 1: basic run

For this first run, a basic algorithm was implemented which

employs a signal turning point detector to determine the

minimum and maximum points on each cardiac pulse

waveform in the pleth. The beat amplitude was then

computed as the difference between these two fiducial

Fig. 3 Schematic overview of

the algorithm development

infrastructure
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points and used in the calculation of DPOP. However, in

practice a number of local minima and maxima are present

on many of the pulses due to strong dicrotic notches and/or

various types of signal noise. These erroneous beat maxima

and minima must be removed from each pulse prior to the

determination of its true amplitude. In Run 1, this was

achieved through a relatively simple method which: (1)

locates all peaks on the pleth; (2) removes all smaller peaks

occurring in close proximity (\0.35 s) to a nearby larger

peak; and (3) searches for the minimum point between

peaks (to find the beat minimum point between consecutive

beat maxima). DPOP is computed from the resulting pulse

amplitudes over a fixed 10 s ‘analysis window’ (large

enough to include the expected range of respiratory peri-

ods). Figure 5a, b show the correlation plots between PPV

and DPOP for both stable and global regions for Run 1.

These plots both exhibit relatively low values of Pearson

correlation coefficient of R = 0.347 and 0.225 respec-

tively. We can see from the figure that a number of outliers

appear near DPOP = 200 % as this relatively simple

algorithm implementation is not robust enough to cleanly

delineate every whole beat in the data set. In fact, it

sometimes wrongly identifies the local minimum and

maximum at the dicrotic notch as a separate peak. This

amplitude of the dicrotic notch may be erroneously chosen

as the minimum pulse amplitude. This has a near zero

value compared to the maximum pulse amplitude and

hence, through equation (1), the maximum amplitude is

divided by approximately half of itself, resulting in a

computed value near 200 %. In addition to dicrotic not-

ches, arrhythmic beats and excessive baseline shifts can

cause distortion of the pleth pulse leading to misidentified

fiducial points and hence errors in the computed DPOP

values. This kind of interference occurs frequently in

practice and is the cause of much of the spread of data in

the global plot. Figure 6 contains two examples of these

types of distortions from within the current data set.

3.2 Run 2 and Run 3: pre-filtering of the pleth

In order to mitigate the effects of identifying multiple

points per beat, the pleth was pre-processed by low pass

filtering the raw signal prior to the calculation of DPOP

using a fixed low pass filter (3rd order Butterworth filter

with cut-off frequency fc = 2.83 Hz). This resulted in a

marked improvement in the stable region results from Run

1 to Run 2 of R = 0.347 to R = 0.521. A further

improvement, to R = 0.651, was achieved in Run 3 where

a more flexible adaptive filter was implemented based on

the heart rate (set at a cut-off frequency of 1.2*HR/60 Hz,

where HR is the heart rate in beats per minute). The global

region results improved only slightly over the first three

runs from 0.225 to 0.261. These correlation coefficients are

markedly smaller than those for the stable regions due to

the substantially noisier nature of the extended data set,

which include movement, large blood pressure changes,

drug infusions, incisions, vasomotion, etc. These are effects

that require more than simple filtering of the data to deal

with. We can see by comparing the plots for Runs 1 to 3 in

Fig. 5 that by Run 3 the pre-processing has removed all

outliers at around 200 % for the stable runs and a signifi-

cant proportion of these outliers for the global region runs.

3.3 Run 4: alternative fiducial detection methods using

the derivative pleth

This run corresponds to a method based on identifying

fiducial points using the derivative of the pleth. For Run 4,

fiducial points of the signal were first identified in the

derivative pleth and then mapped back to the original

signal where the amplitude information is calculated. The

original pleth is first filtered using a band pass filter to

smooth out the dicrotic notches before the derivative is

computed. For this run an optimum non-zero threshold was

obtained empirically every 5 s and used to separate each

pulse. A non-zero threshold allows the dominant gradient

associated with the pulse systolic rise to be located more

easily. The peaks of the derivative are then used to locate

and separate the pulses in the time domain. Once this has

been carried out, the local pulse maxima and minima are

found and used to determine pulse amplitudes. This further

improved the correlation for the stable region to R = 0.691

and for the global region to R = 0.274. The correlation

plots for Run 4 appear very similar to that of Run 3 and

hence are not plotted here.

Fig. 4 Correlation coefficients for each run. Note that the median

values displayed in this graph obtained from 1,000 iteration

bootstrapping are equivalent (within 2 decimal places) to the single

run values derived through the whole data analysis shown in

subsequent figures. Subscripts ‘s’ and ‘g’ relate to the stable and

global regions respectively
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3.4 Runs 5 to 7: post-processing

Runs 1 to 4 aimed to improve the incoming pleth signal to

the algorithm in order to optimize the detection of fiducial

points. These runs calculated the DPOP value within the

analysis window and reported the value directly (i.e.

without post-processing). This calculation was performed

every 5 s and the reported DPOP value updated at the same

Fig. 5 Correlation Plots for runs 1 to 3 a Run 1 stable region b Run 1 global region c Run 2 stable region d Run 2 global region e Run 3 stable

region f Run 3 global region
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time. The following three runs include steps to post-process

this ‘instantaneous’ DPOP value in order to provide a more

robust parameter. Run 5 and 6 averaged the resulting

instantaneous DPOP values, first over 15 s (3 values) then

60 s (12 values). The simple mean of the data within these

‘smoothing windows’ was calculated in each case and used

in the correlation plots. The results for the stable signal set

increased the previous ‘raw’ Run 4 value of R = 0.691 to

0.758 (Run 5) and then 0.817 (Run 6). This further

improves to 0.844 for Run 7 which employs both a 120 s

smoothing window length and a percentile averaging

method. The percentile averaging method only averages

the data within the 25 to 75 % percentiles of the instanta-

neous values contained within the smoothing window.

Hence for the 120 s smoothing window, 24 instantaneous

values are obtained (every 5 s reported value) of which the

lowest 6 and highest 6 values are removed and the mean

taken of the remaining middle 12 values. This method

provides both robust outlier removal and smoothing of the

data. There are also successive small improvement gains in

the global data results with R’s of 0.311, 0.326 and 0.350

for Runs 5 to 7 respectively. The correlation plots for post-

processing Runs 5 and 7 are provided in Fig. 7. Comparing

the figures we can see an obvious tightening up of the data

around the best fit line for both data sets as the character of

the smoothing window was changed as described.

3.5 Runs 8 and 9: further post-processing

Without manual data selection, the pleth signal itself

appears to be very vulnerable to measurement-based signal

interference and movement-related baseline shifts. We

limited the instantaneous DPOP values calculated by the

analysis window to 70 %. Any values over 70 % were set

to invalid values and not used in the calculation. We did

this because manual inspection of our data, and reference

to the literature for mechanically ventilated patients,

revealed that all good quality sections of data were com-

mensurate with DPOP values\70 %. In addition to this we

further increased the integrity of the averaging process

described for Run 7 by setting the requirement that at least

18 valid instantaneous DPOPs must be present within the

24 value smoothing window buffer; otherwise a value is

not calculated. Adding these conditions to the algorithm in

Run 8 resulted in a slight fall in the reported R for the

stable region to 0.826 but a marked increase in the global

region correlation coefficient to 0.468.

A number of further post-processing steps were added to

the algorithm in Run 9 in order to make it robust for

general use (i.e. not specific to these data reported here).

These are common to many pulse oximetry and other

device algorithms. These included holding values (for up to

30 s) when less than 18 valid DPOPs are present within the

24 value smoothing window buffer; adding a IIR filter to

the reported value; and withholding instantaneous DPOP

values from the averaging process when certain internal

flags were triggered, including notifications of arrhythmia,

gain changes, heart rate out of range, pulse amplitude out

of range and signal too noisy. Because these scenarios

seldom appear in our data set, the correlation coefficient for

Run 9 did not change for either data set through the

addition of these extra code modules. However, in practice,

these modules should always be included. The stable and

global plots for Run 9 are given in Fig. 8a, b. (These are

very similar to the corresponding Run 8 plots.)

3.6 Run 10: correcting for low perfusion

In this final run, a new module was added with the specific

aim of correcting the DPOP value when the pleth signal

exhibited low perfusion. Low perfusion was defined when

pulse amplitude values occurred at less than 3 % of the

pleth baseline value. In the method, the DPOP values are

corrected as follows:

DPOPb ¼ 1� �0:8=3� PModþ 0:8ð Þð Þ � DPOPa ð2Þ

where DPOPb is the corrected value, DPOPa is the original

value and PMod is the perfusion index [24]. The addition

of this low perfusion code module improved the stable

Fig. 6 Example of signal erroneous fiducial detections run 1. a Dicrotic notch error, b excessive baseline error
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region results from R = 0.826 to 0.852. Further, a large

improvement in the global region results was exhibited:

from R = 0.467 to 0.728. The stable and global plots for

Run 10 are given in Fig. 8c, d. This distinct improvement

in the global result is also obvious in the overview results

plot of Fig. 5.

4 Discussion

A series of runs was conducted with increasingly sophis-

ticated signal processing elements within an algorithm for

the computation of DPOP. Through increasingly advanced

pre-processing and post-processing techniques, the corre-

lation coefficient between DPOP and PPV improved from a

baseline value of R = 0.347 to R = 0.852 for the stable

data set, and, correspondingly, R = 0.225 to R = 0.728 for

the more challenging global data set. Early gains in per-

formance were achieved for the stable data set using rela-

tively straightforward algorithm improvements. However,

the more challenging global data set incorporating all

collected signals required significant additional algorithm

improvements, including a correction for low perfusion

values, before similar gains were realized.

The R values found in the present study for the final

algorithm match well with many of the results reported in

the literature for both OR and ICU data [3–10, 12, 13].

Many of these studies describe the algorithm employed for

the computation of DPOP, all of which employ a degree of

manual manipulation of the data with some attempting to

automate the process to some degree. In addition, some

studies plot a single averaged data point per subject, and

often this may be averaged over a few hand-picked respi-

ratory cycles, while others attempt much longer term

averaging schemes. (We have considered this effect in

other work [23]). This variation in method may account for

much of the variability in reported values. Many research

groups also cite the pre-processed nature of the pleth with

which they have worked as an extra impediment to pro-

ducing optimal results, as they do not have access to the

Fig. 7 Correlation plots for Runs 5 and 7 a Run 5 stable region b Run 5 global region c Run 7 stable region d Run 7 global region
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raw (unfiltered) signal used by the pulse oximeter device

[4, 14, 16, 17]. A full account of the various attempts to

develop a DPOP algorithm is given in the review by

Addison [24]. The algorithm we have described here uses

the raw pleth signal acquired at the pulse oximeter probe

and is fully automated, in that it must process all signals

detected by the probe (i.e. all signal characteristics

encountered in practice).

During our algorithm development work we continually

compared the algorithm value of DPOP against manually

derived values from the raw pleth waveform. However, the

ultimate goal is to provide a non-invasive surrogate param-

eter for PPVwhich adds considerable complexity to the task.

The detrimental effect of variable and/or low perfusion

levels on methods to extract respiratory modulation infor-

mation from the pleth has received attention in the literature

[8, 10, 18–20] and, in fact, some groups have cited low

perfusion as a criterion for excluding the data from analysis

[3, 5, 9]. Although the pulse pressure waveform and pulsatile

pleth waveform resemble each other [7], additional com-

plex, nonlinear pressure-mechanical coupling between the

blood fluid column, vessel walls and the body tissuematrix at

the pulse oximeter sensor site separates the physiological

processes giving rise to the two signals [21, 22]. The cor-

rection for DPOP accounts for the relative nonlinear changes

in these two signals that occur at low perfusion which are

driven by these complex physiological processes. The cor-

rection employed in this study provided a marked perfor-

mance improvement for the global data set from Run 9 to

Run 10 (from R = 0.467 to 0.728). This is particularly

dramatic given the sophistication already incorporated

within the algorithm by Run 9 achieved using a toolbox of

signal processing techniques specific to the extraction of

respiratory modulations from the pleth [11]. A small

improvement was also achieved for the stable region from

R = 0.826 to 0.852 due to the correction.

In conclusion, an automated algorithm for the determi-

nation of a robust automated DPOP parameter has been

Fig. 8 Correlation plots for Runs 9 and 10 a Run 9 Stable region b Run 9 global region c Run 10 stable region d Run 10 global region
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developed where the systematic gains in performance

achieved by adding increasingly sophisticated signal pro-

cessing elements to it have been demonstrated. Marked

gains were achieved using relatively simple algorithm

enhancements for the stable region data, but significant

additional algorithm enhancements, including a correction

for low perfusion values, were required for similar gains

when considering the whole data set.
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