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1  | INTRODUC TION

As Hurricane Irma, the most powerful Atlantic hurricane in recorded 
history, moved toward the southern coast of Florida in September 
2017, over 6 million Florida residents were evacuated from their 
homes leading to food, water, and fuel shortages throughout the 
state (National Weather Service, 2018). Irma made landfall as a Saffir-
Simpson Category 4 hurricane, ripping down power lines, and leaving 

two-thirds of individuals and families in Florida without power as it tore 
roofs off their homes and flooded their streets. Ultimately, Irma left 
a death toll of over 120 in its wake in Florida alone (Issa et al., 2018).

A large epidemiological literature associates exposure to disas-
ters with poor mental and physical health (Furr et al., 2010; Galea 
et al., 2005; Garrison et al., 1995; Neria et al., 2008; Rubonis & 
Bickman, 1991) and poor cognitive outcomes (Bahrick et al., 1998; 
Brandes et al., 2002; Hikichi et al., 2017; Yasik et al., 2007). More 
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Abstract
Hurricane Irma was the most powerful Atlantic hurricane in recorded history, displac-
ing 6 million and killing over 120 people in the state of Florida alone. Unpredictable 
disasters like Irma are associated with poor cognitive and health outcomes that can 
disproportionately impact children. This study examined the effects of Hurricane Irma 
on the hippocampus and memory processes previously related to unpredictable stress. 
We used an innovative application of an advanced diffusion-weighted imaging tech-
nique, restriction spectrum imaging (RSI), to characterize hippocampal microstructure 
(i.e., cell density) in 9- to 10-year-old children who were exposed to Hurricane Irma 
relative to a non-exposed control group (i.e., assessed the year before Hurricane Irma). 
We tested the hypotheses that the experience of Hurricane Irma would be associated 
with decreases in: (a) hippocampal cellularity (e.g., neurogenesis), based on known asso-
ciations between unpredictable stress and hippocampal alterations; and (b) hippocam-
pal-related memory function as indexed by delayed recall. We show an association 
between decreased hippocampal cellularity and delayed recall memory in children who 
experienced Hurricane Irma relative to those who did not. These findings suggest an 
important role of RSI for assessing subtle microstructural changes related to function-
ally significant changes in the developing brain in response to environmental events.
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anywhere from 15% to 23% of anxious youth meet criteria for at-
tention-deficit hyperactivity disorder (ADHD; Angold, Costello, 
& Erkanli, 1999; Kendall, Brady, & Verduin, 2001), and about 9% 
of anxious youth meet criteria for oppositional defiant disorder 
(ODD; Kendall et al., 2001). It is well established that childhood 
comorbidity is associated with significantly worse short- and 
long-term psychosocial impairments (Fraire & Ollendick, 2013; 
Franco, Saavedra, & Silverman, 2007). Despite moderate rates 
of anxiety and externalizing psychopathology comorbidity, their 
neurobiological origins are not well understood, which is sig-
nificant given increasing clinical research emphasis on under-
standing the underlying pathophysiology of common psychiatric 
disorders and syndromes, and identifying the extent to which 
disorders and subtypes are associated with similar or unique 
neurophysiological characteristics (Insel et al., 2010; Shankman 
& Gorka, 2015).

Psychophysiological tools, such as scalp-recorded electro-
encephalogram (EEG) recordings in response to environmental 
cues of threat and error monitoring, have proven to be useful in 
identifying neural correlates of different forms of psychopathol-
ogy across the life span (e.g., Shankman & Gorka, 2015). Over 
50 studies have focused on the error-related negativity (ERN), 
an event-related potential (ERP) component typically measured 
at frontocentral electrodes 50–100 ms following commission 
of an error (Olvet & Hajcak, 2008; Weinberg, Riesel, & Hajcak, 
2012). Source localization studies and investigations employing 
EEG and functional magnetic resonance imaging (fMRI; Debener 
et al., 2005; Fitzgerald et al., 2005; Mathalon, Whitfield, & Ford, 
2003) have identified the anterior cingulate cortex (ACC) as the 
region of the brain that generates the ERN. The ACC is the pri-
mary brain mechanism involved in online monitoring for conflict 
between simultaneously active but incompatible streams of in-
formation (Shiels & Hawk, 2010). Greater ERN amplitudes are 
theorized to reflect processes of heightened conflict monitor-
ing (Yeung, Botvinick, & Cohen, 2004), and sensitivity to threat 
(Weinberg et al., 2016) and punishment (Shackman et al., 2011; 
Zambrano-Vazquez, & Allen, 2014). Research has indicated that 
the ERN represents a trait-like neural response to errors, as it 
demonstrates strong test-retest reliability and rank-order stabil-
ity. Furthermore, ERN amplitudes appear to be multiply deter-
mined by genetic and environmental influences (Weinberg, Klein, 
& Hajcak et al., 2012).

Research has shown that the ERN is a neural correlate of 
psychopathology, particularly anxiety disorders. Specifically, 
enhanced (i.e., more negative) ERN in anxious individuals is fre-
quently observed, and has been consistently replicated in both 
adult (Hajcak, Klawohn, & Meyer, 2019; Weinberg, Dieterich, & 
Riesel, 2015) and pediatric samples (Ladouceur, Dahl, Birmaher, 
Axelson, & Ryan, 2006; Meyer, 2017). Enhanced ERN has been 
shown to prospectively predict the onset of anxiety psychopa-
thology in school-age children (Meyer, Proudfit, Torpey-Newman, 
Kujawa, & Klein, 2015), adolescents (Meyer, Nelson, Perlman, 
Klein, & Kotov, 2018), and adults (Tang et al., 2020), to identify 

individuals with a family history of anxiety (Riesel et al., 2019), and 
to associate with fear-based anxiety symptoms in adults (Gorka, 
Burkhouse, Afshar, & Phan, 2017).

Although studies have been more limited, differences in ERN 
have also been documented in individuals with externalizing symp-
tomatology (Pasion & Barbosa, 2019). Externalizing symptoms and 
disorders have been linked with error-related hypoactivity or a 
blunted ERN, which means more positive rather than negative ERN 
amplitudes, the latter being observed in anxiety disorders (Hall, 
Bernat, & Patrick, 2007; Pasion & Barbosa, 2019; Shiels & Hawk, 
2010). Blunted ERNs have been documented in youth with ADHD 
and disruptive behavior disorders (Geburek, Rist, Gediga, Stroux, & 
Pedersen, 2013; Meyer & Klein, 2018; Vilà-Balló, Hdez-Lafuente, 
Rostan, Cunillera, & Rodriguez-Fornells, 2014). This suggests that 
externalizing symptoms and psychopathology are characterized by 
deficient error responding and impaired error evaluation.

It is important to note that ERN findings in the anxiety and ex-
ternalizing literatures have not been entirely consistent, such that 
symptom/disorder and ERN patterns do not always demonstrate the 
expected directional relationships, particularly when there is comor-
bid psychopathology. For example, some adult studies have found 
that ERN and anxiety disorder associations differ when individuals 
have comorbid depression (Weinberg, Klein, et al., 2012; Weinberg, 
Kotov, & Proudfit, 2015). In addition, Stieben et al. (2007) found 
that the association between externalizing problems and a blunted 
ERN was less apparent among children with comorbid internalizing 
problems.

Despite the high prevalence of anxiety disorders (Beesdo et al., 
2009; Copeland et al., 2014) and frequent co-occurrence of exter-
nalizing problems in childhood (Angold, Costello, & Erkanli, 1999; 
Kendall et al., 2010; Verduin & Kendall, 2003), how anxiety and ex-
ternalizing comorbidity patterns relate to ERN profiles has yet to be 
tested. Research that examines these relations could have the po-
tential to resolve some of the inconsistencies observed in the ERN 
pediatric literature, increase precision in our understanding of neural 
correlates of anxiety comorbidity subtypes, and elucidate primary 
sources of impairment that could have translational implications. 
Accordingly, the primary aim of this preliminary study was to be one 
of the first to investigate how ERN responses could differentiate 
anxious subtypes as defined by those with and without comorbid 
externalizing problems in a pediatric sample. Healthy youth, defined 
as those without lifetime histories of psychiatric disorders, were also 
included in order to examine psychiatric symptom and ERN rela-
tions dimensionally. The overall sample consisted of anxious youth 
and healthy controls (ages 7–19 years old) who were recruited for a 
study of the treatment of pediatric anxiety disorders. Based on prior 
work on ERN in anxiety disorders (Meyer, 2017; Meyer et al., 2013), 
we hypothesized that youth with greater anxiety symptoms who did 
not have co-occurring externalizing problems would demonstrate 
enhanced ERN (i.e., greater sensitivity to errors). Drawing on pre-
liminary studies suggesting anxiety and ERN relations could be qual-
ified by psychiatric comorbidity (Stieben et al., 2007), we predicted 
that youth with co-occurring anxiety symptoms and externalizing 
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specifically, time-marked, unpredictable events such as hurricanes 
and other natural disasters have been linked to alterations in brain 
and behavior (Chen et al., 2019; Ke et al., 2018; Kessel et al., 2018; 
Kopala-Sibley et al., 2016), with some evidence suggesting that chil-
dren are disproportionately affected by natural disasters relative to 
adults (Satcher et al., 2007). Notably, prior investigations of neural 
mechanisms impacted by other forms of unpredictable stress pro-
vide important insight into how unpredictable events can lead to 
lasting or transitory alterations in brain and behavior.

The experience and expression of emotions related to environ-
mental events is associated with the limbic system (Blum et al., 2000). 
One limbic region known to be impacted by unpredictable stress in 
the hippocampus (Cameron & Schoenfeld, 2018; McEwen et al., 2015; 
Redish, 2016), which plays a key role in learning and memory (Cohen 
& Eichenbaum, 1993; O’Keefe & Nadel, 1978; Scoville & Milner, 1957; 
Squire, 2009) about emotional events and places (Girardeau et al., 2017; 
Kensinger & Corkin, 2004; LeDoux, 1993; Phelps, 2004). The duration, 
intensity, and predictability of stressful events (Joëls & Baram, 2009; 
Tottenham & Sheridan, 2010) can differentially impact hippocampal 
structure and function at microstructural (i.e., cellular) and macrostruc-
tural levels (Chen et al., 2010; Liston & Gan, 2011; Lupien et al., 2009; 
McEwen, 1999, 2007). Hurricanes like Irma vary in their trajectory, du-
ration, and intensity of destruction, often bringing about unpredictable 
events including evacuation, floods, power outages, and food and water 
shortages, which can increase hurricane-related stress and vulnera-
bility for long-term mental health problems (McLaughlin et al., 2010). 
Time-limited stressors can inhibit the induction of long-term potentia-
tion (LTP) in the hippocampus (Diamond et al., 1990; Foy et al., 1987), 
with predictability modulating the magnitude of LTP (Kavushansky 
et al., 2006; Shors et al., 1989, 1990). LTP is a reflection of synaptic 
plasticity and associated with dendritic arborization and the forma-
tion of new synapses (Bliss & Gardner-Medwin, 1973; Bliss & Lømo, 
1973). Hippocampal neurogenesis is also linked to neural plasticity and 
together these processes are thought to support optimal exploration 
of novel events and environments (Glasper et al., 2012). Unpredictable 
stressful events are associated with hippocampal microstructure 

changes in adult animal models including reductions in hippocampal 
neurogenesis (Gould et al., 1997, 1998; Tanapat et al., 2001), spine den-
sity in basal dendrites of CA1 (Diamond et al., 2006), and apical den-
drites of CA3 (Chen et al., 2008, 2010; Magariños & McEwen, 1995; 
Stewart et al., 2005). Importantly, for the purposes of this study, al-
terations in the hippocampus to unpredictable events are observed in 
younger non-human animals (Hollis et al., 2013; Romeo, 2017; Simon 
et al., 2005; Tanapat et al., 1998). Specifically, pre-pubertal and adoles-
cent non-human animals exhibit protracted stress-responses relative 
to adults (Lupien et al., 2009; Romeo, 2017). While these long lasting 
changes may be associated with elevated risk for disease (Kim et al., 
2015), dendritic atrophy and decreases in hippocampal neurogenesis 
may facilitate adaptive responding and focus on a stressor by mitigat-
ing structural changes and increasing temporary vigilance in the face 
of uncertain environmental conditions (Cameron & Schoenfeld, 2018). 
Together this work highlights the responsivity of the hippocampus to 
unpredictable experiences. However, less is known about microstruc-
tural changes that may underlie these associations in the developing 
human brain underscoring the importance of elucidating behaviorally 
significant changes in the hippocampus following natural disasters like 
Irma.

Recent advances in diffusion-weighted imaging (DWI) allow for 
non-invasively examining microstructural detail of the hippocampus. 
For example, changes in hippocampal microstructure (e.g., neurite 
density and dispersion) measured with advanced DWI techniques are 
associated with age-related changes in memory performance in adults 
(Radhakrishnan et al., 2020; Zhang et al., 2012), demonstrating that 
probing the microstructure of gray matter may be important for char-
acterizing functionally relevant changes. Other recent methodological 
advances using diffusion magnetic resonance imaging provide further 
opportunity to examine the microstructure of deep gray matter by 
providing estimates of cell and neurite density. Restriction spectrum 
imaging (RSI) provides an estimate of the cellularity of gray-matter tis-
sue in specific areas of the brain by separating the diffusion-weighted 
MRI signal into restricted and hindered diffusion components, which 
represent intracellular and extracellular water signal, respectively 

F I G U R E  1   Restriction spectrum imaging schematic. Intracellular water diffusion within cells (neurons in orange; glial cells in gray) 
is restricted, while extracellular water diffusion (teal) is hindered. Stress-related alterations in the hippocampus (e.g., decreases in 
neurogenesis, dendritic atrophy) would be associated with a decrease in restricted (intracellular) diffusion (top panel) relative to control 
conditions (i.e., no acute stress; typical neurogenesis) (bottom panel)
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anywhere from 15% to 23% of anxious youth meet criteria for at-
tention-deficit hyperactivity disorder (ADHD; Angold, Costello, 
& Erkanli, 1999; Kendall, Brady, & Verduin, 2001), and about 9% 
of anxious youth meet criteria for oppositional defiant disorder 
(ODD; Kendall et al., 2001). It is well established that childhood 
comorbidity is associated with significantly worse short- and 
long-term psychosocial impairments (Fraire & Ollendick, 2013; 
Franco, Saavedra, & Silverman, 2007). Despite moderate rates 
of anxiety and externalizing psychopathology comorbidity, their 
neurobiological origins are not well understood, which is sig-
nificant given increasing clinical research emphasis on under-
standing the underlying pathophysiology of common psychiatric 
disorders and syndromes, and identifying the extent to which 
disorders and subtypes are associated with similar or unique 
neurophysiological characteristics (Insel et al., 2010; Shankman 
& Gorka, 2015).

Psychophysiological tools, such as scalp-recorded electro-
encephalogram (EEG) recordings in response to environmental 
cues of threat and error monitoring, have proven to be useful in 
identifying neural correlates of different forms of psychopathol-
ogy across the life span (e.g., Shankman & Gorka, 2015). Over 
50 studies have focused on the error-related negativity (ERN), 
an event-related potential (ERP) component typically measured 
at frontocentral electrodes 50–100 ms following commission 
of an error (Olvet & Hajcak, 2008; Weinberg, Riesel, & Hajcak, 
2012). Source localization studies and investigations employing 
EEG and functional magnetic resonance imaging (fMRI; Debener 
et al., 2005; Fitzgerald et al., 2005; Mathalon, Whitfield, & Ford, 
2003) have identified the anterior cingulate cortex (ACC) as the 
region of the brain that generates the ERN. The ACC is the pri-
mary brain mechanism involved in online monitoring for conflict 
between simultaneously active but incompatible streams of in-
formation (Shiels & Hawk, 2010). Greater ERN amplitudes are 
theorized to reflect processes of heightened conflict monitor-
ing (Yeung, Botvinick, & Cohen, 2004), and sensitivity to threat 
(Weinberg et al., 2016) and punishment (Shackman et al., 2011; 
Zambrano-Vazquez, & Allen, 2014). Research has indicated that 
the ERN represents a trait-like neural response to errors, as it 
demonstrates strong test-retest reliability and rank-order stabil-
ity. Furthermore, ERN amplitudes appear to be multiply deter-
mined by genetic and environmental influences (Weinberg, Klein, 
& Hajcak et al., 2012).

Research has shown that the ERN is a neural correlate of 
psychopathology, particularly anxiety disorders. Specifically, 
enhanced (i.e., more negative) ERN in anxious individuals is fre-
quently observed, and has been consistently replicated in both 
adult (Hajcak, Klawohn, & Meyer, 2019; Weinberg, Dieterich, & 
Riesel, 2015) and pediatric samples (Ladouceur, Dahl, Birmaher, 
Axelson, & Ryan, 2006; Meyer, 2017). Enhanced ERN has been 
shown to prospectively predict the onset of anxiety psychopa-
thology in school-age children (Meyer, Proudfit, Torpey-Newman, 
Kujawa, & Klein, 2015), adolescents (Meyer, Nelson, Perlman, 
Klein, & Kotov, 2018), and adults (Tang et al., 2020), to identify 

individuals with a family history of anxiety (Riesel et al., 2019), and 
to associate with fear-based anxiety symptoms in adults (Gorka, 
Burkhouse, Afshar, & Phan, 2017).

Although studies have been more limited, differences in ERN 
have also been documented in individuals with externalizing symp-
tomatology (Pasion & Barbosa, 2019). Externalizing symptoms and 
disorders have been linked with error-related hypoactivity or a 
blunted ERN, which means more positive rather than negative ERN 
amplitudes, the latter being observed in anxiety disorders (Hall, 
Bernat, & Patrick, 2007; Pasion & Barbosa, 2019; Shiels & Hawk, 
2010). Blunted ERNs have been documented in youth with ADHD 
and disruptive behavior disorders (Geburek, Rist, Gediga, Stroux, & 
Pedersen, 2013; Meyer & Klein, 2018; Vilà-Balló, Hdez-Lafuente, 
Rostan, Cunillera, & Rodriguez-Fornells, 2014). This suggests that 
externalizing symptoms and psychopathology are characterized by 
deficient error responding and impaired error evaluation.

It is important to note that ERN findings in the anxiety and ex-
ternalizing literatures have not been entirely consistent, such that 
symptom/disorder and ERN patterns do not always demonstrate the 
expected directional relationships, particularly when there is comor-
bid psychopathology. For example, some adult studies have found 
that ERN and anxiety disorder associations differ when individuals 
have comorbid depression (Weinberg, Klein, et al., 2012; Weinberg, 
Kotov, & Proudfit, 2015). In addition, Stieben et al. (2007) found 
that the association between externalizing problems and a blunted 
ERN was less apparent among children with comorbid internalizing 
problems.

Despite the high prevalence of anxiety disorders (Beesdo et al., 
2009; Copeland et al., 2014) and frequent co-occurrence of exter-
nalizing problems in childhood (Angold, Costello, & Erkanli, 1999; 
Kendall et al., 2010; Verduin & Kendall, 2003), how anxiety and ex-
ternalizing comorbidity patterns relate to ERN profiles has yet to be 
tested. Research that examines these relations could have the po-
tential to resolve some of the inconsistencies observed in the ERN 
pediatric literature, increase precision in our understanding of neural 
correlates of anxiety comorbidity subtypes, and elucidate primary 
sources of impairment that could have translational implications. 
Accordingly, the primary aim of this preliminary study was to be one 
of the first to investigate how ERN responses could differentiate 
anxious subtypes as defined by those with and without comorbid 
externalizing problems in a pediatric sample. Healthy youth, defined 
as those without lifetime histories of psychiatric disorders, were also 
included in order to examine psychiatric symptom and ERN rela-
tions dimensionally. The overall sample consisted of anxious youth 
and healthy controls (ages 7–19 years old) who were recruited for a 
study of the treatment of pediatric anxiety disorders. Based on prior 
work on ERN in anxiety disorders (Meyer, 2017; Meyer et al., 2013), 
we hypothesized that youth with greater anxiety symptoms who did 
not have co-occurring externalizing problems would demonstrate 
enhanced ERN (i.e., greater sensitivity to errors). Drawing on pre-
liminary studies suggesting anxiety and ERN relations could be qual-
ified by psychiatric comorbidity (Stieben et al., 2007), we predicted 
that youth with co-occurring anxiety symptoms and externalizing 
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(White, Leergaard, et al., 2013; White, McDonald, et al., 2013; White 
et al., 2014; Figure 1). Accordingly, a greater fraction of restricted com-
ponent (i.e., a greater proportion of restricted motion of water mole-
cules) is believed to indicate greater tissue cellularity, an interpretation 
which has been histologically confirmed (White, Leergaard, et al., 
2013). This methodology provides a novel opportunity to investigate 
microstructural changes in the developing human brain following ex-
posure to unpredictable and/or stressful events.

Here, we utilized RSI to test for microstructural differences in the hip-
pocampus of children exposed to Hurricane Irma, a naturalistic, unpre-
dictable event. More specifically, we evaluated whether Irma-exposed 
children, tested in the year prior to Hurricane Irma, show decreased 
hippocampal cellularity relative to a non-exposed control group, tested 
during the year before Hurricane Irma. To test for regional specificity of 
any hippocampal effects, we examined all subcortical brain regions. To 
evaluate functional consequences of Irma and changes in hippocampal 
cellularity between Irma-exposed and non-exposed groups, we tested 
whether Irma-exposure was associated with group differences in hippo-
campal-related memory (i.e., delayed recall). We hypothesized that the 
experience of Hurricane Irma would be associated with decreases in (a) 
hippocampal cell density and (b) delayed recall memory.

2  | METHODS

2.1 | Participants

Participants were 9- and 10-year-old children from the South 
Florida site of the Adolescent Brain Cognitive Development (ABCD) 
Study® (https://ABCDS tudy.org, https://nda.nih.gov/abcd; Volkow 
et al., 2018) included in the 2.0.1 ABCD Data Release (https://doi.
org/10.15154/ 1504041). Detailed descriptions of ABCD Study® 
sampling procedures and design are detailed elsewhere (Compton 
et al., 2019; Garavan et al., 2018). To assess whether Hurricane Irma 
exposure was related to hippocampal microstructure and memory, 
participants were divided into non-exposed and Irma-exposed 
groups based on scan date. Although Hurricane Irma made landfall 
in Florida on September 10, 2017, National Hurricane Center moni-
toring and media coverage began on August 26, 2017 (14 days prior; 
Blake, 2017). Because media coverage of disasters and stressful 

events has been associated with acute stress and later PTSD (Aber 
et al., 2004; Gil-Rivas et al., 2007; Pfefferbaum et al., 2001, 2003; 
Thompson et al., 2019), ABCD participants tested between August 
26 and September 10 were excluded to avoid anticipatory ef-
fects of the hurricane resulting from news sources (Figure 2). 
Because the non-exposed group was slightly older (mean age in 
months = 119.42 (SD = 7.18)) than the Irma-exposed group (mean 
age in months = 117.31 (SD = 7.52)) (t = 3.14, df = 424.65, p < .01) 
and there are known associations between typical development and 
hippocampal neurogenesis (He & Crews, 2007; Hodes et al., 2009), 
25 (of 53) of the youngest participants (ages 108–109 months) were 
randomly excluded from the South Florida Irma-exposed group to 
eliminate significant differences in age, and age (in addition to pu-
bertal status) was included as a control variable in all models.1

The South Florida, Irma-exposed group was comprised of 232 
children (52% Girls; 69.4% pre- or early-pubertal2; 66% Hispanic; 21% 
Black; 8% White; 5% Other) (Figure S1). The South Florida non-ex-
posed group was comprised of 191 children (45% Girls; 62.9% pre- or 
early-pubertal; 79% Hispanic; 10% Black; 8% White; 2% Asian; 1% 
Other). Exclusionary criteria for this study included a diagnosis of au-
tism spectrum disorder (n = 4), history of epilepsy or seizures (n = 5), 
and missing demographic (n = 76), Rey Auditory Verbal Learning Test 
(RAVLT) (n = 23), or imaging data (n = 62). Individuals with outlier 
values (1.5 × IQR) in the RSI data were also excluded (n = 47).

Our primary hypotheses focused on differences between non-ex-
posed and Irma-exposed groups from the same geographical location 
and social structure (i.e., South Florida) that were group matched on 
gender, pubertal status, age, and family income. However, to assess for 
specificity of the results to individuals proximal to Hurricane Irma, an-
cillary analyses considered differences between groups tested in the 
year prior to and following Hurricane Irma from a distal, non-exposed 
Northeastern ABCD site using a similar sample size and an identical 
scanner platform with the same DWI sequences. The operational defi-
nition of pre- and post-Irma groups was identical to the South Florida 
non-exposed and Irma-exposed groups (i.e., children scanned prior to 
August 26 and after September 10; Figure S2), however, geographic 
location, pubertal status, family income, parent education level, and 
racial and ethnic diversity varied significantly between these proximal 
and distal sites (see Figure S3 for distribution of demographic variables 
across sites).

F I G U R E  2   Experimental design. Participants from the same geographic location were divided into two groups based on when Adolescent 
Brain Cognitive Development baseline assessments and magnetic resonance imaging scans were acquired. The Irma non-exposed group was 
scanned during the year prior to Hurricane Irma. The Irma-exposed group was scanned during the year following Hurricane Irma
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anywhere from 15% to 23% of anxious youth meet criteria for at-
tention-deficit hyperactivity disorder (ADHD; Angold, Costello, 
& Erkanli, 1999; Kendall, Brady, & Verduin, 2001), and about 9% 
of anxious youth meet criteria for oppositional defiant disorder 
(ODD; Kendall et al., 2001). It is well established that childhood 
comorbidity is associated with significantly worse short- and 
long-term psychosocial impairments (Fraire & Ollendick, 2013; 
Franco, Saavedra, & Silverman, 2007). Despite moderate rates 
of anxiety and externalizing psychopathology comorbidity, their 
neurobiological origins are not well understood, which is sig-
nificant given increasing clinical research emphasis on under-
standing the underlying pathophysiology of common psychiatric 
disorders and syndromes, and identifying the extent to which 
disorders and subtypes are associated with similar or unique 
neurophysiological characteristics (Insel et al., 2010; Shankman 
& Gorka, 2015).

Psychophysiological tools, such as scalp-recorded electro-
encephalogram (EEG) recordings in response to environmental 
cues of threat and error monitoring, have proven to be useful in 
identifying neural correlates of different forms of psychopathol-
ogy across the life span (e.g., Shankman & Gorka, 2015). Over 
50 studies have focused on the error-related negativity (ERN), 
an event-related potential (ERP) component typically measured 
at frontocentral electrodes 50–100 ms following commission 
of an error (Olvet & Hajcak, 2008; Weinberg, Riesel, & Hajcak, 
2012). Source localization studies and investigations employing 
EEG and functional magnetic resonance imaging (fMRI; Debener 
et al., 2005; Fitzgerald et al., 2005; Mathalon, Whitfield, & Ford, 
2003) have identified the anterior cingulate cortex (ACC) as the 
region of the brain that generates the ERN. The ACC is the pri-
mary brain mechanism involved in online monitoring for conflict 
between simultaneously active but incompatible streams of in-
formation (Shiels & Hawk, 2010). Greater ERN amplitudes are 
theorized to reflect processes of heightened conflict monitor-
ing (Yeung, Botvinick, & Cohen, 2004), and sensitivity to threat 
(Weinberg et al., 2016) and punishment (Shackman et al., 2011; 
Zambrano-Vazquez, & Allen, 2014). Research has indicated that 
the ERN represents a trait-like neural response to errors, as it 
demonstrates strong test-retest reliability and rank-order stabil-
ity. Furthermore, ERN amplitudes appear to be multiply deter-
mined by genetic and environmental influences (Weinberg, Klein, 
& Hajcak et al., 2012).

Research has shown that the ERN is a neural correlate of 
psychopathology, particularly anxiety disorders. Specifically, 
enhanced (i.e., more negative) ERN in anxious individuals is fre-
quently observed, and has been consistently replicated in both 
adult (Hajcak, Klawohn, & Meyer, 2019; Weinberg, Dieterich, & 
Riesel, 2015) and pediatric samples (Ladouceur, Dahl, Birmaher, 
Axelson, & Ryan, 2006; Meyer, 2017). Enhanced ERN has been 
shown to prospectively predict the onset of anxiety psychopa-
thology in school-age children (Meyer, Proudfit, Torpey-Newman, 
Kujawa, & Klein, 2015), adolescents (Meyer, Nelson, Perlman, 
Klein, & Kotov, 2018), and adults (Tang et al., 2020), to identify 

individuals with a family history of anxiety (Riesel et al., 2019), and 
to associate with fear-based anxiety symptoms in adults (Gorka, 
Burkhouse, Afshar, & Phan, 2017).

Although studies have been more limited, differences in ERN 
have also been documented in individuals with externalizing symp-
tomatology (Pasion & Barbosa, 2019). Externalizing symptoms and 
disorders have been linked with error-related hypoactivity or a 
blunted ERN, which means more positive rather than negative ERN 
amplitudes, the latter being observed in anxiety disorders (Hall, 
Bernat, & Patrick, 2007; Pasion & Barbosa, 2019; Shiels & Hawk, 
2010). Blunted ERNs have been documented in youth with ADHD 
and disruptive behavior disorders (Geburek, Rist, Gediga, Stroux, & 
Pedersen, 2013; Meyer & Klein, 2018; Vilà-Balló, Hdez-Lafuente, 
Rostan, Cunillera, & Rodriguez-Fornells, 2014). This suggests that 
externalizing symptoms and psychopathology are characterized by 
deficient error responding and impaired error evaluation.

It is important to note that ERN findings in the anxiety and ex-
ternalizing literatures have not been entirely consistent, such that 
symptom/disorder and ERN patterns do not always demonstrate the 
expected directional relationships, particularly when there is comor-
bid psychopathology. For example, some adult studies have found 
that ERN and anxiety disorder associations differ when individuals 
have comorbid depression (Weinberg, Klein, et al., 2012; Weinberg, 
Kotov, & Proudfit, 2015). In addition, Stieben et al. (2007) found 
that the association between externalizing problems and a blunted 
ERN was less apparent among children with comorbid internalizing 
problems.

Despite the high prevalence of anxiety disorders (Beesdo et al., 
2009; Copeland et al., 2014) and frequent co-occurrence of exter-
nalizing problems in childhood (Angold, Costello, & Erkanli, 1999; 
Kendall et al., 2010; Verduin & Kendall, 2003), how anxiety and ex-
ternalizing comorbidity patterns relate to ERN profiles has yet to be 
tested. Research that examines these relations could have the po-
tential to resolve some of the inconsistencies observed in the ERN 
pediatric literature, increase precision in our understanding of neural 
correlates of anxiety comorbidity subtypes, and elucidate primary 
sources of impairment that could have translational implications. 
Accordingly, the primary aim of this preliminary study was to be one 
of the first to investigate how ERN responses could differentiate 
anxious subtypes as defined by those with and without comorbid 
externalizing problems in a pediatric sample. Healthy youth, defined 
as those without lifetime histories of psychiatric disorders, were also 
included in order to examine psychiatric symptom and ERN rela-
tions dimensionally. The overall sample consisted of anxious youth 
and healthy controls (ages 7–19 years old) who were recruited for a 
study of the treatment of pediatric anxiety disorders. Based on prior 
work on ERN in anxiety disorders (Meyer, 2017; Meyer et al., 2013), 
we hypothesized that youth with greater anxiety symptoms who did 
not have co-occurring externalizing problems would demonstrate 
enhanced ERN (i.e., greater sensitivity to errors). Drawing on pre-
liminary studies suggesting anxiety and ERN relations could be qual-
ified by psychiatric comorbidity (Stieben et al., 2007), we predicted 
that youth with co-occurring anxiety symptoms and externalizing 
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The distal, Northeastern pre-Irma group was comprised of 181 
children (44.1% Girls; 80.9% pre- or early-pubertal; 20.0% Hispanic; 
9.2% Black; 61.0% White; 3.6% Asian; 6.2% Other). The distal, 
Northeastern post-Irma group was comprised of 195 children (48.1% 
Girls; 68.0% pre- or early-pubertal; 24.9% Hispanic; 20.4% Black; 
45.3% White; 9.4% Other).

2.2 | Neuroimaging data collection

The ABCD scanning protocol includes 3D T1- and T2-weighted im-
ages, diffusion-weighted images, and resting-state and task-based 
function MRI measures previously detailed in Casey et al. (2018). Data 
were collected on a 3 Tesla Siemens MAGNETOM Prisma scanner 
with a 32-channel head coil. Diffusion images were collected using a 
spin-echo EPI acquisition with the following parameters: TR = 88 ms, 
TE = 4,100 ms, flip angle = 90°, 81 slices, voxel size = 1.7 mm3, multi-
band slice acceleration factor = 3, 7 b = 0 s/mm2 frames, and 6 direc-
tions at b = 500 s/mm2, 15 directions at b = 1,000 s/mm2, 15 directions 
at b = 2,000 s/mm2, and 60 directions at b = 3,000 s/mm2.

2.3 | Image preprocessing, RSI, and volumetric data

Diffusion magnetic resonance imaging and structural magnetic 
resonance imaging (sMRI) data were processed by the ABCD Study 
Data Analysis, Informatics and Resources Center using methods 
previously detailed in Hagler et al. (2019) . Restricted normalized 
isotropic (N0) metrics were calculated for subcortical gray matter 
using a linear estimation approach (White, Leergaard, et al., 2013; 
White, McDonald, et al., 2013; White et al., 2014) with atlas-based 
segmentation (Fischl et al., 2002). Hippocampal volume differences 
were tested using data computed from the pre-processed T1 images 
using FreeSurfer v5.3 and labeled using an atlas-based volumetric 
segmentation procedure (Fischl et al., 2002; Hagler et al., 2019).

2.4 | Hippocampal-related behavioral function

The RAVLT is a widely used and robust measure of auditory learning, 
memory, and recall (Lezak et al., 2004; Luciana et al., 2018). The test 
involves five learning trials of 15 unrelated words (list A). After each 
trial, participants are asked to recall as many words as possible. After 
the initial five learning trials, participants are presented with a distrac-
tor list of 15 new words (list B) and are then asked to recall as many 
words as possible from the new list (list B). Next, an immediate recall 
trial is assessed for words from the initial list (list A). After a 30-min 
delay (where participants complete other non-verbal tasks or rest), a 
final delayed recall trial is assessed for words from the initial list (list 
A). Previous work has established the RAVLT as a reliable measure of 
hippocampal integrity (Saury & Emanuelson, 2017) and hippocampal-
dependent memory (Stevenson et al., 2018), linking the delayed recall 
trial in particular to hippocampal function (Wolk et al., 2011). Here, we 

assessed a behavioral correlate of hippocampal function using perfor-
mance (total correct) on the delayed recall trial (i.e., RAVLT Trial VII).

2.5 | Analytic approach

Analyses were performed in R version 3.6.3 (R Core Team, 2020) 
using the gamm4 package (Wood & Scheip, 2020). Mixed-effect 
models were used to evaluate RSI measures in subcortical regions 
as well as verbal memory between non-exposed and Irma-exposed 
groups. For all models, covariates included fixed effects for gender, 
interview age, race/ethnicity, parental education, and household in-
come, and a random effect for family ID. In addition, RSI models also 
included intracranial volume, motion, pubertal development, and the 
interaction of gender and pubertal development as fixed covariates. 
Supplemental analyses restricting the sample to only pre- and early-
pubertal participants were conducted (Supplemental Analyses 1) in 
addition to supplemental analyses including trauma history, threat 
exposure, and history of anxiety disorders and PTSD as other fixed 
covariates (Supplemental Analyses 2). All analyses were Bonferroni 
corrected for multiple comparisons. Non-parametric significance 
was assessed using permutation testing by randomly shuffling data 
10,000 times. Non-parametric p-values were computed by dividing 
the number of times the randomly permuted t-statistic was greater 
than the observed t-statistic by the number of tests performed (i.e., 
# observations > |t|/10,000 + 1). Additionally, because there were 
no a priori hypotheses that effects would be lateralized, RSI was av-
eraged between hemispheres for each subcortical region. Ancillary 
analyses applied identical models to the distal, Northeastern sam-
ple to evaluate if any of the findings detected in the South Florida 
sample could be attributed to other background cohort characteris-
tics (e.g., sampling protocols, other overlooked events occurring in 
September 2017).

Following the initial region of interest (ROI) analyses, a post hoc 
analysis of voxel-wise data was performed to further examine the 
spatial specificity of our imaging results. Post hoc analyses were per-
formed by applying the same model from the ROI analyses to every 
voxel within the subcortex utilizing the cifti (Muschelli, n.d.) and lme4 
(Bates et al., 2015) packages. Given previous work showing that the 
effects of stress can impact different subfields of the hippocampus 
(Hawley & Leasure, 2012; McEwen et al., 2015), the distribution 
of voxel-wise RSI (i.e., restricted diffusion) values was plotted as a 
function of the anterior/posterior coordinate axis (i.e., y-axis coordi-
nates) to further evaluate spatial specificity within the hippocampus.

3  | RESULTS

3.1 | Decreased hippocampal cellularity in Irma-
exposed group

Although a substantial literature across the fields of neuroscience 
and psychology describes relationships between unpredictable 
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anywhere from 15% to 23% of anxious youth meet criteria for at-
tention-deficit hyperactivity disorder (ADHD; Angold, Costello, 
& Erkanli, 1999; Kendall, Brady, & Verduin, 2001), and about 9% 
of anxious youth meet criteria for oppositional defiant disorder 
(ODD; Kendall et al., 2001). It is well established that childhood 
comorbidity is associated with significantly worse short- and 
long-term psychosocial impairments (Fraire & Ollendick, 2013; 
Franco, Saavedra, & Silverman, 2007). Despite moderate rates 
of anxiety and externalizing psychopathology comorbidity, their 
neurobiological origins are not well understood, which is sig-
nificant given increasing clinical research emphasis on under-
standing the underlying pathophysiology of common psychiatric 
disorders and syndromes, and identifying the extent to which 
disorders and subtypes are associated with similar or unique 
neurophysiological characteristics (Insel et al., 2010; Shankman 
& Gorka, 2015).

Psychophysiological tools, such as scalp-recorded electro-
encephalogram (EEG) recordings in response to environmental 
cues of threat and error monitoring, have proven to be useful in 
identifying neural correlates of different forms of psychopathol-
ogy across the life span (e.g., Shankman & Gorka, 2015). Over 
50 studies have focused on the error-related negativity (ERN), 
an event-related potential (ERP) component typically measured 
at frontocentral electrodes 50–100 ms following commission 
of an error (Olvet & Hajcak, 2008; Weinberg, Riesel, & Hajcak, 
2012). Source localization studies and investigations employing 
EEG and functional magnetic resonance imaging (fMRI; Debener 
et al., 2005; Fitzgerald et al., 2005; Mathalon, Whitfield, & Ford, 
2003) have identified the anterior cingulate cortex (ACC) as the 
region of the brain that generates the ERN. The ACC is the pri-
mary brain mechanism involved in online monitoring for conflict 
between simultaneously active but incompatible streams of in-
formation (Shiels & Hawk, 2010). Greater ERN amplitudes are 
theorized to reflect processes of heightened conflict monitor-
ing (Yeung, Botvinick, & Cohen, 2004), and sensitivity to threat 
(Weinberg et al., 2016) and punishment (Shackman et al., 2011; 
Zambrano-Vazquez, & Allen, 2014). Research has indicated that 
the ERN represents a trait-like neural response to errors, as it 
demonstrates strong test-retest reliability and rank-order stabil-
ity. Furthermore, ERN amplitudes appear to be multiply deter-
mined by genetic and environmental influences (Weinberg, Klein, 
& Hajcak et al., 2012).

Research has shown that the ERN is a neural correlate of 
psychopathology, particularly anxiety disorders. Specifically, 
enhanced (i.e., more negative) ERN in anxious individuals is fre-
quently observed, and has been consistently replicated in both 
adult (Hajcak, Klawohn, & Meyer, 2019; Weinberg, Dieterich, & 
Riesel, 2015) and pediatric samples (Ladouceur, Dahl, Birmaher, 
Axelson, & Ryan, 2006; Meyer, 2017). Enhanced ERN has been 
shown to prospectively predict the onset of anxiety psychopa-
thology in school-age children (Meyer, Proudfit, Torpey-Newman, 
Kujawa, & Klein, 2015), adolescents (Meyer, Nelson, Perlman, 
Klein, & Kotov, 2018), and adults (Tang et al., 2020), to identify 

individuals with a family history of anxiety (Riesel et al., 2019), and 
to associate with fear-based anxiety symptoms in adults (Gorka, 
Burkhouse, Afshar, & Phan, 2017).

Although studies have been more limited, differences in ERN 
have also been documented in individuals with externalizing symp-
tomatology (Pasion & Barbosa, 2019). Externalizing symptoms and 
disorders have been linked with error-related hypoactivity or a 
blunted ERN, which means more positive rather than negative ERN 
amplitudes, the latter being observed in anxiety disorders (Hall, 
Bernat, & Patrick, 2007; Pasion & Barbosa, 2019; Shiels & Hawk, 
2010). Blunted ERNs have been documented in youth with ADHD 
and disruptive behavior disorders (Geburek, Rist, Gediga, Stroux, & 
Pedersen, 2013; Meyer & Klein, 2018; Vilà-Balló, Hdez-Lafuente, 
Rostan, Cunillera, & Rodriguez-Fornells, 2014). This suggests that 
externalizing symptoms and psychopathology are characterized by 
deficient error responding and impaired error evaluation.

It is important to note that ERN findings in the anxiety and ex-
ternalizing literatures have not been entirely consistent, such that 
symptom/disorder and ERN patterns do not always demonstrate the 
expected directional relationships, particularly when there is comor-
bid psychopathology. For example, some adult studies have found 
that ERN and anxiety disorder associations differ when individuals 
have comorbid depression (Weinberg, Klein, et al., 2012; Weinberg, 
Kotov, & Proudfit, 2015). In addition, Stieben et al. (2007) found 
that the association between externalizing problems and a blunted 
ERN was less apparent among children with comorbid internalizing 
problems.

Despite the high prevalence of anxiety disorders (Beesdo et al., 
2009; Copeland et al., 2014) and frequent co-occurrence of exter-
nalizing problems in childhood (Angold, Costello, & Erkanli, 1999; 
Kendall et al., 2010; Verduin & Kendall, 2003), how anxiety and ex-
ternalizing comorbidity patterns relate to ERN profiles has yet to be 
tested. Research that examines these relations could have the po-
tential to resolve some of the inconsistencies observed in the ERN 
pediatric literature, increase precision in our understanding of neural 
correlates of anxiety comorbidity subtypes, and elucidate primary 
sources of impairment that could have translational implications. 
Accordingly, the primary aim of this preliminary study was to be one 
of the first to investigate how ERN responses could differentiate 
anxious subtypes as defined by those with and without comorbid 
externalizing problems in a pediatric sample. Healthy youth, defined 
as those without lifetime histories of psychiatric disorders, were also 
included in order to examine psychiatric symptom and ERN rela-
tions dimensionally. The overall sample consisted of anxious youth 
and healthy controls (ages 7–19 years old) who were recruited for a 
study of the treatment of pediatric anxiety disorders. Based on prior 
work on ERN in anxiety disorders (Meyer, 2017; Meyer et al., 2013), 
we hypothesized that youth with greater anxiety symptoms who did 
not have co-occurring externalizing problems would demonstrate 
enhanced ERN (i.e., greater sensitivity to errors). Drawing on pre-
liminary studies suggesting anxiety and ERN relations could be qual-
ified by psychiatric comorbidity (Stieben et al., 2007), we predicted 
that youth with co-occurring anxiety symptoms and externalizing 
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events and macroscale changes in hippocampal structure and func-
tion, less is known about how these associations emerge in the de-
veloping human brain. Thus, the primary aim of the current study 
was to determine if RSI could be used to detect subtle microstruc-
tural differences in the hippocampus of children exposed to a natu-
ralistic unpredictable event, Hurricane Irma (hypothesis 1).

Consistent with hypothesis 1, and with previous literature linking 
unpredictable stress to dendritic atrophy and decreased neurogen-
esis in the hippocampus, lower restricted diffusion signal, consistent 

with lower cellularity, was observed in the hippocampus of the South 
Florida Irma-exposed group relative to the South Florida non-ex-
posed control group (β = −3.90 × 10–3 (SE = 1.35 × 10–3), t = −2.875, 
p = .004, r2 (adj) = .05, Δr2 (adj) = .02; Figure 3a).3,4 Control analyses 
demonstrated that these findings are robust to the impact of pu-
berty and various adverse life events or experiences on hippocampal 
microstructure and are described in supplemental materials. Next, 
we used permutation testing to evaluate the specificity of this ef-
fect to the hippocampus by testing all subcortical regions. Across 

F I G U R E  3   Differences in restriction spectrum imaging-based hippocampal cellularity among South Florida Irma-exposed relative to 
non-exposed children. (a) Irma exposure was related to decreased hippocampal cell density; (b) post hoc voxel-wise analysis demonstrated 
spatial specificity of findings to the hippocampus in right and left hemispheres; (c) results of permutation testing (10,000 + 1 iterations) 
demonstrated specificity of Irma exposure on hippocampal cellularity and not to other subcortical regions. The histograms show the null 
distribution of t-statistics with observed effects indicated with vertical lines (solid lines represent non-parametric significance and dashed 
lines represent non-parametric non-significance)
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anywhere from 15% to 23% of anxious youth meet criteria for at-
tention-deficit hyperactivity disorder (ADHD; Angold, Costello, 
& Erkanli, 1999; Kendall, Brady, & Verduin, 2001), and about 9% 
of anxious youth meet criteria for oppositional defiant disorder 
(ODD; Kendall et al., 2001). It is well established that childhood 
comorbidity is associated with significantly worse short- and 
long-term psychosocial impairments (Fraire & Ollendick, 2013; 
Franco, Saavedra, & Silverman, 2007). Despite moderate rates 
of anxiety and externalizing psychopathology comorbidity, their 
neurobiological origins are not well understood, which is sig-
nificant given increasing clinical research emphasis on under-
standing the underlying pathophysiology of common psychiatric 
disorders and syndromes, and identifying the extent to which 
disorders and subtypes are associated with similar or unique 
neurophysiological characteristics (Insel et al., 2010; Shankman 
& Gorka, 2015).

Psychophysiological tools, such as scalp-recorded electro-
encephalogram (EEG) recordings in response to environmental 
cues of threat and error monitoring, have proven to be useful in 
identifying neural correlates of different forms of psychopathol-
ogy across the life span (e.g., Shankman & Gorka, 2015). Over 
50 studies have focused on the error-related negativity (ERN), 
an event-related potential (ERP) component typically measured 
at frontocentral electrodes 50–100 ms following commission 
of an error (Olvet & Hajcak, 2008; Weinberg, Riesel, & Hajcak, 
2012). Source localization studies and investigations employing 
EEG and functional magnetic resonance imaging (fMRI; Debener 
et al., 2005; Fitzgerald et al., 2005; Mathalon, Whitfield, & Ford, 
2003) have identified the anterior cingulate cortex (ACC) as the 
region of the brain that generates the ERN. The ACC is the pri-
mary brain mechanism involved in online monitoring for conflict 
between simultaneously active but incompatible streams of in-
formation (Shiels & Hawk, 2010). Greater ERN amplitudes are 
theorized to reflect processes of heightened conflict monitor-
ing (Yeung, Botvinick, & Cohen, 2004), and sensitivity to threat 
(Weinberg et al., 2016) and punishment (Shackman et al., 2011; 
Zambrano-Vazquez, & Allen, 2014). Research has indicated that 
the ERN represents a trait-like neural response to errors, as it 
demonstrates strong test-retest reliability and rank-order stabil-
ity. Furthermore, ERN amplitudes appear to be multiply deter-
mined by genetic and environmental influences (Weinberg, Klein, 
& Hajcak et al., 2012).

Research has shown that the ERN is a neural correlate of 
psychopathology, particularly anxiety disorders. Specifically, 
enhanced (i.e., more negative) ERN in anxious individuals is fre-
quently observed, and has been consistently replicated in both 
adult (Hajcak, Klawohn, & Meyer, 2019; Weinberg, Dieterich, & 
Riesel, 2015) and pediatric samples (Ladouceur, Dahl, Birmaher, 
Axelson, & Ryan, 2006; Meyer, 2017). Enhanced ERN has been 
shown to prospectively predict the onset of anxiety psychopa-
thology in school-age children (Meyer, Proudfit, Torpey-Newman, 
Kujawa, & Klein, 2015), adolescents (Meyer, Nelson, Perlman, 
Klein, & Kotov, 2018), and adults (Tang et al., 2020), to identify 

individuals with a family history of anxiety (Riesel et al., 2019), and 
to associate with fear-based anxiety symptoms in adults (Gorka, 
Burkhouse, Afshar, & Phan, 2017).

Although studies have been more limited, differences in ERN 
have also been documented in individuals with externalizing symp-
tomatology (Pasion & Barbosa, 2019). Externalizing symptoms and 
disorders have been linked with error-related hypoactivity or a 
blunted ERN, which means more positive rather than negative ERN 
amplitudes, the latter being observed in anxiety disorders (Hall, 
Bernat, & Patrick, 2007; Pasion & Barbosa, 2019; Shiels & Hawk, 
2010). Blunted ERNs have been documented in youth with ADHD 
and disruptive behavior disorders (Geburek, Rist, Gediga, Stroux, & 
Pedersen, 2013; Meyer & Klein, 2018; Vilà-Balló, Hdez-Lafuente, 
Rostan, Cunillera, & Rodriguez-Fornells, 2014). This suggests that 
externalizing symptoms and psychopathology are characterized by 
deficient error responding and impaired error evaluation.

It is important to note that ERN findings in the anxiety and ex-
ternalizing literatures have not been entirely consistent, such that 
symptom/disorder and ERN patterns do not always demonstrate the 
expected directional relationships, particularly when there is comor-
bid psychopathology. For example, some adult studies have found 
that ERN and anxiety disorder associations differ when individuals 
have comorbid depression (Weinberg, Klein, et al., 2012; Weinberg, 
Kotov, & Proudfit, 2015). In addition, Stieben et al. (2007) found 
that the association between externalizing problems and a blunted 
ERN was less apparent among children with comorbid internalizing 
problems.

Despite the high prevalence of anxiety disorders (Beesdo et al., 
2009; Copeland et al., 2014) and frequent co-occurrence of exter-
nalizing problems in childhood (Angold, Costello, & Erkanli, 1999; 
Kendall et al., 2010; Verduin & Kendall, 2003), how anxiety and ex-
ternalizing comorbidity patterns relate to ERN profiles has yet to be 
tested. Research that examines these relations could have the po-
tential to resolve some of the inconsistencies observed in the ERN 
pediatric literature, increase precision in our understanding of neural 
correlates of anxiety comorbidity subtypes, and elucidate primary 
sources of impairment that could have translational implications. 
Accordingly, the primary aim of this preliminary study was to be one 
of the first to investigate how ERN responses could differentiate 
anxious subtypes as defined by those with and without comorbid 
externalizing problems in a pediatric sample. Healthy youth, defined 
as those without lifetime histories of psychiatric disorders, were also 
included in order to examine psychiatric symptom and ERN rela-
tions dimensionally. The overall sample consisted of anxious youth 
and healthy controls (ages 7–19 years old) who were recruited for a 
study of the treatment of pediatric anxiety disorders. Based on prior 
work on ERN in anxiety disorders (Meyer, 2017; Meyer et al., 2013), 
we hypothesized that youth with greater anxiety symptoms who did 
not have co-occurring externalizing problems would demonstrate 
enhanced ERN (i.e., greater sensitivity to errors). Drawing on pre-
liminary studies suggesting anxiety and ERN relations could be qual-
ified by psychiatric comorbidity (Stieben et al., 2007), we predicted 
that youth with co-occurring anxiety symptoms and externalizing 
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all subcortical areas, only the hippocampus showed significant dif-
ferences in cellularity between the Irma-exposed and non-exposed 
control group (Figure 3c).

A post hoc voxel-wise analysis of deep gray matter further re-
vealed the spatial specificity of these findings. Consistent with the 
ROI results above, voxel-wise models revealed a robust relationship 
between cellularity measured with RSI and Irma exposure in the hip-
pocampus (Figure 3b). Further evaluation of the spatial distribution 
of differences in hippocampal cellularity between the Irma-exposed 
and non-exposed groups revealed that this effect was more con-
centrated in anterior hippocampus (Figure 4). There was no sig-
nificant difference in hippocampal volume between Irma-exposed 
and non-exposed groups (β = 12.5 (SE = 32.2), t = 0.389, p = .70, r2 
(adj) = .38, Δr2 (adj) < .001). Together these results are consistent 
with the hypothesis that decreased hippocampal cellularity is asso-
ciated with exposure to Hurricane Irma.

3.2 | Decreased hippocampal-related memory in 
Irma-exposed group

To assess the behavioral implications of any differences observed 
in hippocampal cellularity between the Irma-exposed and non-ex-
posed groups, we evaluated memory performance based on previous 
work showing associations between delayed recall and hippocam-
pal function (Wolk et al., 2011). Consistent with hypothesis 2, this 
analysis showed decreased performance in the South Florida Irma-
exposed group relative to the non-exposed control group (β = −0.71 
(SE = 0.28), t = −2.511, p = .01, r2(adj) = .08, Δr2 (adj) = .01; Figure 5a).5 
An ancillary analysis confirmed that this relationship was robust 
even when controlling for fluid intelligence (β = −0.67 (SE = 0.28), 
t = −2.402, p = .01, r2 (adj) = .12, Δr2 (adj) = .01). Furthermore, de-
layed recall was associated with hippocampal cell density (β = 24.53 
(SE = 10.63), t = 2.307, p = .02, r2 (adj) = .07, Δr2 (adj) = .01) such that 

children with lower hippocampal cellularity showed poorer delayed 
recall (Figure 5b).

3.3 | Distal comparison groups show no differences 
in hippocampal cellularity or delayed recall

To assess for specificity of results to individuals proximal to 
Hurricane Irma, ancillary analyses considered differences between 
individuals tested in the year prior to and following Hurricane Irma 
from a distal, non-exposed Northeastern ABCD site. This analysis 
revealed no significant difference in RSI-based hippocampal cel-
lularity between groups scanned prior to and following Irma from 
the distal, Irma non-exposed Northeastern site (β = −1.67 × 10−3 
(SE = 1.31 × 10−3), t = 1.28, p = .20, r2 (adj) = .03, Δr2 (adj) < .001; 
Figure 6a). Additionally, this comparison analysis revealed no sig-
nificant difference in delayed recall between groups tested prior to 
and following Irma from the distal, non-exposed Northeastern site 
(β = 0.06 (SE = 0.35), t = 0.187, p = .85, r2 (adj) = .05, Δr2 (adj) < .001; 
Figure 6b).

4  | DISCUSSION

The current study examined whether the unpredictable and uncontrol-
lable events of Hurricane Irma were associated with neural and behav-
ioral signatures in children. Given that unpredictable stressful events 
have been associated with cellular alterations in the hippocampus, 
we employed a novel application of RSI to characterize hippocampal 
microstructural changes (i.e., decreases in cellularity) in response to a 
naturalistic, unpredictable, and stressful event. The results showed an 
association between exposure to Hurricane Irma and decreased RSI-
based hippocampal cellularity in 9- and 10-year-old children. Analyses 
across all subcortical regions revealed specificity of this finding to the 

F I G U R E  4   Group differences in hippocampal cellularity are predominantly concentrated in anterior hippocampus. The distribution of 
restriction spectrum imaging values (i.e., restricted diffusion) derived from a post hoc voxel-wise analysis based on the Fischl atlas (Fischl 
et al., 2002) revealed decreases in left and right hippocampal cellularity in the Irma-exposed relative to non-exposed group are more 
concentrated in anterior hippocampus
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anywhere from 15% to 23% of anxious youth meet criteria for at-
tention-deficit hyperactivity disorder (ADHD; Angold, Costello, 
& Erkanli, 1999; Kendall, Brady, & Verduin, 2001), and about 9% 
of anxious youth meet criteria for oppositional defiant disorder 
(ODD; Kendall et al., 2001). It is well established that childhood 
comorbidity is associated with significantly worse short- and 
long-term psychosocial impairments (Fraire & Ollendick, 2013; 
Franco, Saavedra, & Silverman, 2007). Despite moderate rates 
of anxiety and externalizing psychopathology comorbidity, their 
neurobiological origins are not well understood, which is sig-
nificant given increasing clinical research emphasis on under-
standing the underlying pathophysiology of common psychiatric 
disorders and syndromes, and identifying the extent to which 
disorders and subtypes are associated with similar or unique 
neurophysiological characteristics (Insel et al., 2010; Shankman 
& Gorka, 2015).

Psychophysiological tools, such as scalp-recorded electro-
encephalogram (EEG) recordings in response to environmental 
cues of threat and error monitoring, have proven to be useful in 
identifying neural correlates of different forms of psychopathol-
ogy across the life span (e.g., Shankman & Gorka, 2015). Over 
50 studies have focused on the error-related negativity (ERN), 
an event-related potential (ERP) component typically measured 
at frontocentral electrodes 50–100 ms following commission 
of an error (Olvet & Hajcak, 2008; Weinberg, Riesel, & Hajcak, 
2012). Source localization studies and investigations employing 
EEG and functional magnetic resonance imaging (fMRI; Debener 
et al., 2005; Fitzgerald et al., 2005; Mathalon, Whitfield, & Ford, 
2003) have identified the anterior cingulate cortex (ACC) as the 
region of the brain that generates the ERN. The ACC is the pri-
mary brain mechanism involved in online monitoring for conflict 
between simultaneously active but incompatible streams of in-
formation (Shiels & Hawk, 2010). Greater ERN amplitudes are 
theorized to reflect processes of heightened conflict monitor-
ing (Yeung, Botvinick, & Cohen, 2004), and sensitivity to threat 
(Weinberg et al., 2016) and punishment (Shackman et al., 2011; 
Zambrano-Vazquez, & Allen, 2014). Research has indicated that 
the ERN represents a trait-like neural response to errors, as it 
demonstrates strong test-retest reliability and rank-order stabil-
ity. Furthermore, ERN amplitudes appear to be multiply deter-
mined by genetic and environmental influences (Weinberg, Klein, 
& Hajcak et al., 2012).

Research has shown that the ERN is a neural correlate of 
psychopathology, particularly anxiety disorders. Specifically, 
enhanced (i.e., more negative) ERN in anxious individuals is fre-
quently observed, and has been consistently replicated in both 
adult (Hajcak, Klawohn, & Meyer, 2019; Weinberg, Dieterich, & 
Riesel, 2015) and pediatric samples (Ladouceur, Dahl, Birmaher, 
Axelson, & Ryan, 2006; Meyer, 2017). Enhanced ERN has been 
shown to prospectively predict the onset of anxiety psychopa-
thology in school-age children (Meyer, Proudfit, Torpey-Newman, 
Kujawa, & Klein, 2015), adolescents (Meyer, Nelson, Perlman, 
Klein, & Kotov, 2018), and adults (Tang et al., 2020), to identify 

individuals with a family history of anxiety (Riesel et al., 2019), and 
to associate with fear-based anxiety symptoms in adults (Gorka, 
Burkhouse, Afshar, & Phan, 2017).

Although studies have been more limited, differences in ERN 
have also been documented in individuals with externalizing symp-
tomatology (Pasion & Barbosa, 2019). Externalizing symptoms and 
disorders have been linked with error-related hypoactivity or a 
blunted ERN, which means more positive rather than negative ERN 
amplitudes, the latter being observed in anxiety disorders (Hall, 
Bernat, & Patrick, 2007; Pasion & Barbosa, 2019; Shiels & Hawk, 
2010). Blunted ERNs have been documented in youth with ADHD 
and disruptive behavior disorders (Geburek, Rist, Gediga, Stroux, & 
Pedersen, 2013; Meyer & Klein, 2018; Vilà-Balló, Hdez-Lafuente, 
Rostan, Cunillera, & Rodriguez-Fornells, 2014). This suggests that 
externalizing symptoms and psychopathology are characterized by 
deficient error responding and impaired error evaluation.

It is important to note that ERN findings in the anxiety and ex-
ternalizing literatures have not been entirely consistent, such that 
symptom/disorder and ERN patterns do not always demonstrate the 
expected directional relationships, particularly when there is comor-
bid psychopathology. For example, some adult studies have found 
that ERN and anxiety disorder associations differ when individuals 
have comorbid depression (Weinberg, Klein, et al., 2012; Weinberg, 
Kotov, & Proudfit, 2015). In addition, Stieben et al. (2007) found 
that the association between externalizing problems and a blunted 
ERN was less apparent among children with comorbid internalizing 
problems.

Despite the high prevalence of anxiety disorders (Beesdo et al., 
2009; Copeland et al., 2014) and frequent co-occurrence of exter-
nalizing problems in childhood (Angold, Costello, & Erkanli, 1999; 
Kendall et al., 2010; Verduin & Kendall, 2003), how anxiety and ex-
ternalizing comorbidity patterns relate to ERN profiles has yet to be 
tested. Research that examines these relations could have the po-
tential to resolve some of the inconsistencies observed in the ERN 
pediatric literature, increase precision in our understanding of neural 
correlates of anxiety comorbidity subtypes, and elucidate primary 
sources of impairment that could have translational implications. 
Accordingly, the primary aim of this preliminary study was to be one 
of the first to investigate how ERN responses could differentiate 
anxious subtypes as defined by those with and without comorbid 
externalizing problems in a pediatric sample. Healthy youth, defined 
as those without lifetime histories of psychiatric disorders, were also 
included in order to examine psychiatric symptom and ERN rela-
tions dimensionally. The overall sample consisted of anxious youth 
and healthy controls (ages 7–19 years old) who were recruited for a 
study of the treatment of pediatric anxiety disorders. Based on prior 
work on ERN in anxiety disorders (Meyer, 2017; Meyer et al., 2013), 
we hypothesized that youth with greater anxiety symptoms who did 
not have co-occurring externalizing problems would demonstrate 
enhanced ERN (i.e., greater sensitivity to errors). Drawing on pre-
liminary studies suggesting anxiety and ERN relations could be qual-
ified by psychiatric comorbidity (Stieben et al., 2007), we predicted 
that youth with co-occurring anxiety symptoms and externalizing 
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hippocampus and not to other subcortical regions, demonstrating the 
sensitivity of RSI to detect changes in hippocampal microstructure as 
a function of environmental experiences. The behavioral significance 
of these findings was supported by significantly poorer delayed recall 
performance in children exposed to Irma compared to non-exposed 
children, which was associated with less hippocampal cellularity. These 
findings highlight an important role of RSI in detecting meaningful, yet 
subtle microstructure changes in the hippocampus in response to an 
unpredictable event during development.

Our results are consistent with elegant animal work showing 
dendritic atrophy (Chen et al., 2008, 2010; Eiland et al., 2012; Eiland 

& Romeo, 2013; Magariños & McEwen, 1995; Stewart et al., 2005) 
and neurogenesis reductions (Gould et al., 1997, 1998; Tanapat 
et al., 2001) in the hippocampus following exposure to unpredict-
able stress. This work suggests that hippocampal microstructural 
differences between Irma-exposed and non-exposed children may 
be related to these previously established cellular alterations fol-
lowing stress. Additionally, the spatial distribution of cellularity dif-
ferences associated with Hurricane Irma demonstrated specificity 
in the anterior hippocampus relative to the posterior hippocampus. 
This finding is consistent with previous animal work demonstrating 
decreases in ventral (analogous to anterior in primates; Fanselow 

F I G U R E  5   Differences in hippocampal function in Irma-exposed and non-exposed children. (a) Irma exposure was associated with poorer 
delayed recall; (b) less RSI-based hippocampal cellularity was associated with poorer delayed recall memory. RAVLT: Rey Auditory Verbal 
Learning Test; RSI, restriction spectrum imaging

F I G U R E  6   The distal, non-exposed Northeastern site revealed no group differences in (a) hippocampal cellularity; or (b) delayed recall 
between Pre- and Post-Irma groups. RAVLT, Rey Auditory Verbal Learning Test
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anywhere from 15% to 23% of anxious youth meet criteria for at-
tention-deficit hyperactivity disorder (ADHD; Angold, Costello, 
& Erkanli, 1999; Kendall, Brady, & Verduin, 2001), and about 9% 
of anxious youth meet criteria for oppositional defiant disorder 
(ODD; Kendall et al., 2001). It is well established that childhood 
comorbidity is associated with significantly worse short- and 
long-term psychosocial impairments (Fraire & Ollendick, 2013; 
Franco, Saavedra, & Silverman, 2007). Despite moderate rates 
of anxiety and externalizing psychopathology comorbidity, their 
neurobiological origins are not well understood, which is sig-
nificant given increasing clinical research emphasis on under-
standing the underlying pathophysiology of common psychiatric 
disorders and syndromes, and identifying the extent to which 
disorders and subtypes are associated with similar or unique 
neurophysiological characteristics (Insel et al., 2010; Shankman 
& Gorka, 2015).

Psychophysiological tools, such as scalp-recorded electro-
encephalogram (EEG) recordings in response to environmental 
cues of threat and error monitoring, have proven to be useful in 
identifying neural correlates of different forms of psychopathol-
ogy across the life span (e.g., Shankman & Gorka, 2015). Over 
50 studies have focused on the error-related negativity (ERN), 
an event-related potential (ERP) component typically measured 
at frontocentral electrodes 50–100 ms following commission 
of an error (Olvet & Hajcak, 2008; Weinberg, Riesel, & Hajcak, 
2012). Source localization studies and investigations employing 
EEG and functional magnetic resonance imaging (fMRI; Debener 
et al., 2005; Fitzgerald et al., 2005; Mathalon, Whitfield, & Ford, 
2003) have identified the anterior cingulate cortex (ACC) as the 
region of the brain that generates the ERN. The ACC is the pri-
mary brain mechanism involved in online monitoring for conflict 
between simultaneously active but incompatible streams of in-
formation (Shiels & Hawk, 2010). Greater ERN amplitudes are 
theorized to reflect processes of heightened conflict monitor-
ing (Yeung, Botvinick, & Cohen, 2004), and sensitivity to threat 
(Weinberg et al., 2016) and punishment (Shackman et al., 2011; 
Zambrano-Vazquez, & Allen, 2014). Research has indicated that 
the ERN represents a trait-like neural response to errors, as it 
demonstrates strong test-retest reliability and rank-order stabil-
ity. Furthermore, ERN amplitudes appear to be multiply deter-
mined by genetic and environmental influences (Weinberg, Klein, 
& Hajcak et al., 2012).

Research has shown that the ERN is a neural correlate of 
psychopathology, particularly anxiety disorders. Specifically, 
enhanced (i.e., more negative) ERN in anxious individuals is fre-
quently observed, and has been consistently replicated in both 
adult (Hajcak, Klawohn, & Meyer, 2019; Weinberg, Dieterich, & 
Riesel, 2015) and pediatric samples (Ladouceur, Dahl, Birmaher, 
Axelson, & Ryan, 2006; Meyer, 2017). Enhanced ERN has been 
shown to prospectively predict the onset of anxiety psychopa-
thology in school-age children (Meyer, Proudfit, Torpey-Newman, 
Kujawa, & Klein, 2015), adolescents (Meyer, Nelson, Perlman, 
Klein, & Kotov, 2018), and adults (Tang et al., 2020), to identify 

individuals with a family history of anxiety (Riesel et al., 2019), and 
to associate with fear-based anxiety symptoms in adults (Gorka, 
Burkhouse, Afshar, & Phan, 2017).

Although studies have been more limited, differences in ERN 
have also been documented in individuals with externalizing symp-
tomatology (Pasion & Barbosa, 2019). Externalizing symptoms and 
disorders have been linked with error-related hypoactivity or a 
blunted ERN, which means more positive rather than negative ERN 
amplitudes, the latter being observed in anxiety disorders (Hall, 
Bernat, & Patrick, 2007; Pasion & Barbosa, 2019; Shiels & Hawk, 
2010). Blunted ERNs have been documented in youth with ADHD 
and disruptive behavior disorders (Geburek, Rist, Gediga, Stroux, & 
Pedersen, 2013; Meyer & Klein, 2018; Vilà-Balló, Hdez-Lafuente, 
Rostan, Cunillera, & Rodriguez-Fornells, 2014). This suggests that 
externalizing symptoms and psychopathology are characterized by 
deficient error responding and impaired error evaluation.

It is important to note that ERN findings in the anxiety and ex-
ternalizing literatures have not been entirely consistent, such that 
symptom/disorder and ERN patterns do not always demonstrate the 
expected directional relationships, particularly when there is comor-
bid psychopathology. For example, some adult studies have found 
that ERN and anxiety disorder associations differ when individuals 
have comorbid depression (Weinberg, Klein, et al., 2012; Weinberg, 
Kotov, & Proudfit, 2015). In addition, Stieben et al. (2007) found 
that the association between externalizing problems and a blunted 
ERN was less apparent among children with comorbid internalizing 
problems.

Despite the high prevalence of anxiety disorders (Beesdo et al., 
2009; Copeland et al., 2014) and frequent co-occurrence of exter-
nalizing problems in childhood (Angold, Costello, & Erkanli, 1999; 
Kendall et al., 2010; Verduin & Kendall, 2003), how anxiety and ex-
ternalizing comorbidity patterns relate to ERN profiles has yet to be 
tested. Research that examines these relations could have the po-
tential to resolve some of the inconsistencies observed in the ERN 
pediatric literature, increase precision in our understanding of neural 
correlates of anxiety comorbidity subtypes, and elucidate primary 
sources of impairment that could have translational implications. 
Accordingly, the primary aim of this preliminary study was to be one 
of the first to investigate how ERN responses could differentiate 
anxious subtypes as defined by those with and without comorbid 
externalizing problems in a pediatric sample. Healthy youth, defined 
as those without lifetime histories of psychiatric disorders, were also 
included in order to examine psychiatric symptom and ERN rela-
tions dimensionally. The overall sample consisted of anxious youth 
and healthy controls (ages 7–19 years old) who were recruited for a 
study of the treatment of pediatric anxiety disorders. Based on prior 
work on ERN in anxiety disorders (Meyer, 2017; Meyer et al., 2013), 
we hypothesized that youth with greater anxiety symptoms who did 
not have co-occurring externalizing problems would demonstrate 
enhanced ERN (i.e., greater sensitivity to errors). Drawing on pre-
liminary studies suggesting anxiety and ERN relations could be qual-
ified by psychiatric comorbidity (Stieben et al., 2007), we predicted 
that youth with co-occurring anxiety symptoms and externalizing 
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& Dong, 2010) hippocampal neurogenesis following unpredictable 
stress (Hawley & Leasure, 2012; Hawley et al., 2012; Maggio & 
Segal, 2007). Although much remains to be learned about the role 
of neurogenesis and dendritic atrophy in neurobiological and behav-
ioral responses to unpredictable events, previous studies posit that 
these stress-related alterations may serve to temporarily increase 
cautiousness and focus on stressors (Cameron & Schoenfeld, 2018; 
Schoenfeld et al., 2017). For example, memory impairment following 
stress (Chen et al., 2010; de Quervain et al., 1998; Logue et al., 2018) 
may serve to promote discernment between stress-relevant and -ir-
relevant information (Oitzl et al., 2010). In the face of a hurricane, 
for example, a heightened focus on novel, relevant information may 
facilitate quick responding in preparation for evacuation. Previous 
animal work shows that the magnitude of memory deficit following 
brief, acute stress correlates with reduced density of apical dendritic 
spines (Chen et al., 2010), suggesting that alterations in hippocam-
pal microstructure may be involved in adaptive responding to envi-
ronmental stressors. We found that Irma exposure was related to 
lower delayed recall performance, and that hippocampal cellularity 
was significantly associated with delayed recall in children, which 
raises the possibility that changes in hippocampal microstructure 
detected with RSI may relate to less processing of irrelevant infor-
mation when adapting to a real-world stressful event (i.e., Hurricane 
Irma). Alternatively, these changes may be associated with long-term 
poor outcomes in children following a natural disaster as suggested 
by Satcher et al. (2007). Further research is needed to understand 
the temporal dynamics of changes in hippocampal microstructure 
and how they relate to outcomes, and whether these changes are 
stable over time.

The current findings advance our current understanding of 
microstructural changes related to unpredictable events and hip-
pocampal-related memory function; however, limitations of obser-
vational approaches must be considered. First, although a substantial 
literature links hurricane exposure to stress (Garrison et al., 1995; 
Neria et al., 2008), the baseline ABCD study data do not include a 
validated measure of self-perceived stress. In addition, psychopa-
thology, social support, and past trauma exposure or other hard-
ships such as financial burden or limited access to resources (Layne 
et al., 2014) can moderate the effects of unpredictable events on 
perceived stress (Furr et al., 2010). It is also likely that participants 
in the South Florida non-exposed control group experienced varying 
levels of adversity at other times. However, Supplemental Analyses 
2 showed that our findings were robust even when controlling for 
parent-reported trauma history, threat exposure, and clinical disor-
ders such as anxiety and PTSD. Future work that incorporates mea-
sures of self-perceived stress and other important moderators and 
mediators such as family relationships or parental care (Callaghan 
& Tottenham, 2016) is needed to further inform the specificity of 
the effect of unpredictable stress on hippocampal microstructure 
and function. Although the current study suggests an association 
between hippocampal cellularity and long-term memory, we are 
unable to relate these changes in memory to specific details about 
Irma because the ABCD study, on which this study is based, does 

not evaluate memory details for Irma-related events. Second, while 
Hurricane Irma provided an opportunity to evaluate the impact of a 
naturalistic unpredictable event on subcortical microstructure, the 
South Florida subsample of the ABCD cohort does not reflect the 
geographic, demographic, or socioeconomic distribution of children 
across the United States or world (Compton et al., 2019; Garavan 
et al., 2018) and it is unclear whether our findings would generalize 
to other populations. Moreover, all participants were 9- and 10-year-
olds and previous work suggests that changes in neurodevelopment 
with age and puberty can interact with the effects of stress (Gee 
and Casey, 2015; Gunnar & Quevedo, 2007; Lupien et al., 2009; 
Romeo, 2017). For example, the hippocampus continues to de-
velop throughout adolescence (Anderson & Teicher, 2004; Benes 
et al., 1994; Giedd et al., 1996; Giedd & Rapoport, 2010; Meyer & 
Ferres-Torres, 1978) when the brain may be more sensitive to gluco-
corticoids (Lee et al., 2003) and when gender differences in stress-re-
sponse and stress-related outcomes such as depression and anxiety 
emerge (Leussis & Andersen, 2008). Given previous work indicating 
that the effects of stress during adolescence may be longer-lasting 
relative to adults (McCormick et al., 2010; Romeo, 2018), it will be 
important to assess potential sensitive periods of greater risk or resil-
ience throughout development. Similarly, our analyses are cross-sec-
tional and cannot address causality. It is possible that differences 
in hippocampal microstructure between Irma-exposed and non-ex-
posed children could be attributed to other background factors. Our 
ancillary analyses of a distal, non-exposed Northeastern site that 
showed no differences between children assessed the year prior to 
and following Hurricane Irma provide some confidence of the spec-
ificity of the results to Irma exposure. However, future longitudinal 
analyses and studies with optimized measures of stressor timing, 
type of stress, and cumulative stress will be needed for understand-
ing how changes in subcortical microstructure emerge and relate to 
previously established interactions between gender, age, pubertal 
development, and stress on outcomes (Ho et al., 2012; Siddiqui & 
Romeo, 2019). It should also be noted that we did not observe sig-
nificant differences in hippocampal macrostructure (i.e., MRI-based 
volumetric measures) between Irma-exposed and non-exposed 
group. While some developmental human imaging studies of stress 
have shown null volumetric alterations in the hippocampus (De Bellis 
et al., 1999; Tottenham et al., 2010) or even increases in hippocam-
pal volume (Tupler & De Bellis, 2006; Woon & Hedges, 2008), others 
have demonstrated that traumatic events are associated with reduc-
tions in hippocampal volume (Lambert et al., 2017; Lee et al., 2018; 
McLaughlin et al., 2016, 2019; Weissman et al., 2020). That said, our 
current findings suggest that RSI may be a more sensitive measure 
than macrostructure measures of the hippocampus in the human 
brain. Future work is needed to further evaluate the relationship be-
tween RSI and other imaging modalities (e.g., sMRI, fMRI) to better 
understand how changes in RSI-based cellularity estimates relate to 
changes in brain structure and function. Lastly, there is speculation 
that the proportion of restricted diffusion estimated with RSI may 
also detect long cylindrical glial processes (White, Leergaard, et al., 
2013). Given previous work showing microglial sensitivity to changes 
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anywhere from 15% to 23% of anxious youth meet criteria for at-
tention-deficit hyperactivity disorder (ADHD; Angold, Costello, 
& Erkanli, 1999; Kendall, Brady, & Verduin, 2001), and about 9% 
of anxious youth meet criteria for oppositional defiant disorder 
(ODD; Kendall et al., 2001). It is well established that childhood 
comorbidity is associated with significantly worse short- and 
long-term psychosocial impairments (Fraire & Ollendick, 2013; 
Franco, Saavedra, & Silverman, 2007). Despite moderate rates 
of anxiety and externalizing psychopathology comorbidity, their 
neurobiological origins are not well understood, which is sig-
nificant given increasing clinical research emphasis on under-
standing the underlying pathophysiology of common psychiatric 
disorders and syndromes, and identifying the extent to which 
disorders and subtypes are associated with similar or unique 
neurophysiological characteristics (Insel et al., 2010; Shankman 
& Gorka, 2015).

Psychophysiological tools, such as scalp-recorded electro-
encephalogram (EEG) recordings in response to environmental 
cues of threat and error monitoring, have proven to be useful in 
identifying neural correlates of different forms of psychopathol-
ogy across the life span (e.g., Shankman & Gorka, 2015). Over 
50 studies have focused on the error-related negativity (ERN), 
an event-related potential (ERP) component typically measured 
at frontocentral electrodes 50–100 ms following commission 
of an error (Olvet & Hajcak, 2008; Weinberg, Riesel, & Hajcak, 
2012). Source localization studies and investigations employing 
EEG and functional magnetic resonance imaging (fMRI; Debener 
et al., 2005; Fitzgerald et al., 2005; Mathalon, Whitfield, & Ford, 
2003) have identified the anterior cingulate cortex (ACC) as the 
region of the brain that generates the ERN. The ACC is the pri-
mary brain mechanism involved in online monitoring for conflict 
between simultaneously active but incompatible streams of in-
formation (Shiels & Hawk, 2010). Greater ERN amplitudes are 
theorized to reflect processes of heightened conflict monitor-
ing (Yeung, Botvinick, & Cohen, 2004), and sensitivity to threat 
(Weinberg et al., 2016) and punishment (Shackman et al., 2011; 
Zambrano-Vazquez, & Allen, 2014). Research has indicated that 
the ERN represents a trait-like neural response to errors, as it 
demonstrates strong test-retest reliability and rank-order stabil-
ity. Furthermore, ERN amplitudes appear to be multiply deter-
mined by genetic and environmental influences (Weinberg, Klein, 
& Hajcak et al., 2012).

Research has shown that the ERN is a neural correlate of 
psychopathology, particularly anxiety disorders. Specifically, 
enhanced (i.e., more negative) ERN in anxious individuals is fre-
quently observed, and has been consistently replicated in both 
adult (Hajcak, Klawohn, & Meyer, 2019; Weinberg, Dieterich, & 
Riesel, 2015) and pediatric samples (Ladouceur, Dahl, Birmaher, 
Axelson, & Ryan, 2006; Meyer, 2017). Enhanced ERN has been 
shown to prospectively predict the onset of anxiety psychopa-
thology in school-age children (Meyer, Proudfit, Torpey-Newman, 
Kujawa, & Klein, 2015), adolescents (Meyer, Nelson, Perlman, 
Klein, & Kotov, 2018), and adults (Tang et al., 2020), to identify 

individuals with a family history of anxiety (Riesel et al., 2019), and 
to associate with fear-based anxiety symptoms in adults (Gorka, 
Burkhouse, Afshar, & Phan, 2017).

Although studies have been more limited, differences in ERN 
have also been documented in individuals with externalizing symp-
tomatology (Pasion & Barbosa, 2019). Externalizing symptoms and 
disorders have been linked with error-related hypoactivity or a 
blunted ERN, which means more positive rather than negative ERN 
amplitudes, the latter being observed in anxiety disorders (Hall, 
Bernat, & Patrick, 2007; Pasion & Barbosa, 2019; Shiels & Hawk, 
2010). Blunted ERNs have been documented in youth with ADHD 
and disruptive behavior disorders (Geburek, Rist, Gediga, Stroux, & 
Pedersen, 2013; Meyer & Klein, 2018; Vilà-Balló, Hdez-Lafuente, 
Rostan, Cunillera, & Rodriguez-Fornells, 2014). This suggests that 
externalizing symptoms and psychopathology are characterized by 
deficient error responding and impaired error evaluation.

It is important to note that ERN findings in the anxiety and ex-
ternalizing literatures have not been entirely consistent, such that 
symptom/disorder and ERN patterns do not always demonstrate the 
expected directional relationships, particularly when there is comor-
bid psychopathology. For example, some adult studies have found 
that ERN and anxiety disorder associations differ when individuals 
have comorbid depression (Weinberg, Klein, et al., 2012; Weinberg, 
Kotov, & Proudfit, 2015). In addition, Stieben et al. (2007) found 
that the association between externalizing problems and a blunted 
ERN was less apparent among children with comorbid internalizing 
problems.

Despite the high prevalence of anxiety disorders (Beesdo et al., 
2009; Copeland et al., 2014) and frequent co-occurrence of exter-
nalizing problems in childhood (Angold, Costello, & Erkanli, 1999; 
Kendall et al., 2010; Verduin & Kendall, 2003), how anxiety and ex-
ternalizing comorbidity patterns relate to ERN profiles has yet to be 
tested. Research that examines these relations could have the po-
tential to resolve some of the inconsistencies observed in the ERN 
pediatric literature, increase precision in our understanding of neural 
correlates of anxiety comorbidity subtypes, and elucidate primary 
sources of impairment that could have translational implications. 
Accordingly, the primary aim of this preliminary study was to be one 
of the first to investigate how ERN responses could differentiate 
anxious subtypes as defined by those with and without comorbid 
externalizing problems in a pediatric sample. Healthy youth, defined 
as those without lifetime histories of psychiatric disorders, were also 
included in order to examine psychiatric symptom and ERN rela-
tions dimensionally. The overall sample consisted of anxious youth 
and healthy controls (ages 7–19 years old) who were recruited for a 
study of the treatment of pediatric anxiety disorders. Based on prior 
work on ERN in anxiety disorders (Meyer, 2017; Meyer et al., 2013), 
we hypothesized that youth with greater anxiety symptoms who did 
not have co-occurring externalizing problems would demonstrate 
enhanced ERN (i.e., greater sensitivity to errors). Drawing on pre-
liminary studies suggesting anxiety and ERN relations could be qual-
ified by psychiatric comorbidity (Stieben et al., 2007), we predicted 
that youth with co-occurring anxiety symptoms and externalizing 
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in environment (Walker et al., 2013), it is possible that the changes in 
hippocampal microstructure observed in the current study may also 
relate to changes in glial processes. However, current research on 
the response of glial cells to unpredictable stress is mixed (Delpech 
et al., 2016; Jauregui-Huerta et al., 2010; Paolicelli & Ferretti, 2017; 
Pearson-Leary et al., 2016) and more research is needed.

Overall, the present study provides novel evidence suggesting the 
potential utility of RSI in detecting behaviorally significant, yet subtle 
microstructure changes in the hippocampus in response to naturalis-
tic stressful events. Although further research is needed, our results 
suggest that advanced diffusion MRI methodology may provide novel 
opportunities to elucidate how cumulative stressors and dimensions 
of stressors (e.g., threat vs. deprivation; McLaughlin et al., 2014), such 
as those experienced during the coronavirus disease 19 pandemic, 
impact youth. Given changing weather patterns and predicted in-
creases in hurricanes and other natural disasters (Bender et al., 2010), 
our results provide important information that has relevance for re-
searchers, clinicians, families, and policy makers for identifying and 
ultimately minimizing the impact of these events on young people.
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ENDNOTE S
 1 All main effects hold when including or excluding these participants. 

However, we focus on the sample with 25 participants randomly ex-
cluded in our main text to eliminate significant differences in age be-
tween the Irma-exposed and non-exposed groups. 

 2 Given previous work showing that development and hormonal 
changes during puberty can affect neuronal proliferation within the 
hippocampus (Allen et al., 2014; Hueston et al., 2017) and stress re-
sponse (Viau, 2002), supplementary analyses using data from only 
pre- or early-pubertal participants was conducted and is provided in 
supplementary materials (Supplemental Analyses 1). 

 3 This result was consistent when including the 25 participants that 
were randomly excluded to reduce significant differences in age be-
tween the Irma-exposed and non-exposed groups, (β = −4.20 × 10–3 
(SE = 1.34 × 10–3), t = −3.29, p = .001, r2 (adj) = .05, Δr2 (adj) = .02). 

 4 Ancillary analyses revealed no significant difference in hippocampal 
cellularity between groups scanned prior to and following Irma from 
the distal, Irma-non-exposed Northeastern site (β = −1.67 × 10–3 
(SE = 1.31 × 10–3), t = 1.28, p = .20, r2 (adj) = .03, Δr2 (adj) < .001; 
Figure 6a). 

 5 Ancillary analysis revealed no significant difference in delayed re-
call between groups tested prior to and following Irma from the dis-
tal, non-exposed Northeastern site (β = 0.06 (SE = 0.35), t = 0.187, 
p = .85, r2 (adj) = .05, Δr2 (adj) < .001; Figure 6b). 
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anywhere from 15% to 23% of anxious youth meet criteria for at-
tention-deficit hyperactivity disorder (ADHD; Angold, Costello, 
& Erkanli, 1999; Kendall, Brady, & Verduin, 2001), and about 9% 
of anxious youth meet criteria for oppositional defiant disorder 
(ODD; Kendall et al., 2001). It is well established that childhood 
comorbidity is associated with significantly worse short- and 
long-term psychosocial impairments (Fraire & Ollendick, 2013; 
Franco, Saavedra, & Silverman, 2007). Despite moderate rates 
of anxiety and externalizing psychopathology comorbidity, their 
neurobiological origins are not well understood, which is sig-
nificant given increasing clinical research emphasis on under-
standing the underlying pathophysiology of common psychiatric 
disorders and syndromes, and identifying the extent to which 
disorders and subtypes are associated with similar or unique 
neurophysiological characteristics (Insel et al., 2010; Shankman 
& Gorka, 2015).

Psychophysiological tools, such as scalp-recorded electro-
encephalogram (EEG) recordings in response to environmental 
cues of threat and error monitoring, have proven to be useful in 
identifying neural correlates of different forms of psychopathol-
ogy across the life span (e.g., Shankman & Gorka, 2015). Over 
50 studies have focused on the error-related negativity (ERN), 
an event-related potential (ERP) component typically measured 
at frontocentral electrodes 50–100 ms following commission 
of an error (Olvet & Hajcak, 2008; Weinberg, Riesel, & Hajcak, 
2012). Source localization studies and investigations employing 
EEG and functional magnetic resonance imaging (fMRI; Debener 
et al., 2005; Fitzgerald et al., 2005; Mathalon, Whitfield, & Ford, 
2003) have identified the anterior cingulate cortex (ACC) as the 
region of the brain that generates the ERN. The ACC is the pri-
mary brain mechanism involved in online monitoring for conflict 
between simultaneously active but incompatible streams of in-
formation (Shiels & Hawk, 2010). Greater ERN amplitudes are 
theorized to reflect processes of heightened conflict monitor-
ing (Yeung, Botvinick, & Cohen, 2004), and sensitivity to threat 
(Weinberg et al., 2016) and punishment (Shackman et al., 2011; 
Zambrano-Vazquez, & Allen, 2014). Research has indicated that 
the ERN represents a trait-like neural response to errors, as it 
demonstrates strong test-retest reliability and rank-order stabil-
ity. Furthermore, ERN amplitudes appear to be multiply deter-
mined by genetic and environmental influences (Weinberg, Klein, 
& Hajcak et al., 2012).

Research has shown that the ERN is a neural correlate of 
psychopathology, particularly anxiety disorders. Specifically, 
enhanced (i.e., more negative) ERN in anxious individuals is fre-
quently observed, and has been consistently replicated in both 
adult (Hajcak, Klawohn, & Meyer, 2019; Weinberg, Dieterich, & 
Riesel, 2015) and pediatric samples (Ladouceur, Dahl, Birmaher, 
Axelson, & Ryan, 2006; Meyer, 2017). Enhanced ERN has been 
shown to prospectively predict the onset of anxiety psychopa-
thology in school-age children (Meyer, Proudfit, Torpey-Newman, 
Kujawa, & Klein, 2015), adolescents (Meyer, Nelson, Perlman, 
Klein, & Kotov, 2018), and adults (Tang et al., 2020), to identify 

individuals with a family history of anxiety (Riesel et al., 2019), and 
to associate with fear-based anxiety symptoms in adults (Gorka, 
Burkhouse, Afshar, & Phan, 2017).

Although studies have been more limited, differences in ERN 
have also been documented in individuals with externalizing symp-
tomatology (Pasion & Barbosa, 2019). Externalizing symptoms and 
disorders have been linked with error-related hypoactivity or a 
blunted ERN, which means more positive rather than negative ERN 
amplitudes, the latter being observed in anxiety disorders (Hall, 
Bernat, & Patrick, 2007; Pasion & Barbosa, 2019; Shiels & Hawk, 
2010). Blunted ERNs have been documented in youth with ADHD 
and disruptive behavior disorders (Geburek, Rist, Gediga, Stroux, & 
Pedersen, 2013; Meyer & Klein, 2018; Vilà-Balló, Hdez-Lafuente, 
Rostan, Cunillera, & Rodriguez-Fornells, 2014). This suggests that 
externalizing symptoms and psychopathology are characterized by 
deficient error responding and impaired error evaluation.

It is important to note that ERN findings in the anxiety and ex-
ternalizing literatures have not been entirely consistent, such that 
symptom/disorder and ERN patterns do not always demonstrate the 
expected directional relationships, particularly when there is comor-
bid psychopathology. For example, some adult studies have found 
that ERN and anxiety disorder associations differ when individuals 
have comorbid depression (Weinberg, Klein, et al., 2012; Weinberg, 
Kotov, & Proudfit, 2015). In addition, Stieben et al. (2007) found 
that the association between externalizing problems and a blunted 
ERN was less apparent among children with comorbid internalizing 
problems.

Despite the high prevalence of anxiety disorders (Beesdo et al., 
2009; Copeland et al., 2014) and frequent co-occurrence of exter-
nalizing problems in childhood (Angold, Costello, & Erkanli, 1999; 
Kendall et al., 2010; Verduin & Kendall, 2003), how anxiety and ex-
ternalizing comorbidity patterns relate to ERN profiles has yet to be 
tested. Research that examines these relations could have the po-
tential to resolve some of the inconsistencies observed in the ERN 
pediatric literature, increase precision in our understanding of neural 
correlates of anxiety comorbidity subtypes, and elucidate primary 
sources of impairment that could have translational implications. 
Accordingly, the primary aim of this preliminary study was to be one 
of the first to investigate how ERN responses could differentiate 
anxious subtypes as defined by those with and without comorbid 
externalizing problems in a pediatric sample. Healthy youth, defined 
as those without lifetime histories of psychiatric disorders, were also 
included in order to examine psychiatric symptom and ERN rela-
tions dimensionally. The overall sample consisted of anxious youth 
and healthy controls (ages 7–19 years old) who were recruited for a 
study of the treatment of pediatric anxiety disorders. Based on prior 
work on ERN in anxiety disorders (Meyer, 2017; Meyer et al., 2013), 
we hypothesized that youth with greater anxiety symptoms who did 
not have co-occurring externalizing problems would demonstrate 
enhanced ERN (i.e., greater sensitivity to errors). Drawing on pre-
liminary studies suggesting anxiety and ERN relations could be qual-
ified by psychiatric comorbidity (Stieben et al., 2007), we predicted 
that youth with co-occurring anxiety symptoms and externalizing 
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anywhere from 15% to 23% of anxious youth meet criteria for at-
tention-deficit hyperactivity disorder (ADHD; Angold, Costello, 
& Erkanli, 1999; Kendall, Brady, & Verduin, 2001), and about 9% 
of anxious youth meet criteria for oppositional defiant disorder 
(ODD; Kendall et al., 2001). It is well established that childhood 
comorbidity is associated with significantly worse short- and 
long-term psychosocial impairments (Fraire & Ollendick, 2013; 
Franco, Saavedra, & Silverman, 2007). Despite moderate rates 
of anxiety and externalizing psychopathology comorbidity, their 
neurobiological origins are not well understood, which is sig-
nificant given increasing clinical research emphasis on under-
standing the underlying pathophysiology of common psychiatric 
disorders and syndromes, and identifying the extent to which 
disorders and subtypes are associated with similar or unique 
neurophysiological characteristics (Insel et al., 2010; Shankman 
& Gorka, 2015).

Psychophysiological tools, such as scalp-recorded electro-
encephalogram (EEG) recordings in response to environmental 
cues of threat and error monitoring, have proven to be useful in 
identifying neural correlates of different forms of psychopathol-
ogy across the life span (e.g., Shankman & Gorka, 2015). Over 
50 studies have focused on the error-related negativity (ERN), 
an event-related potential (ERP) component typically measured 
at frontocentral electrodes 50–100 ms following commission 
of an error (Olvet & Hajcak, 2008; Weinberg, Riesel, & Hajcak, 
2012). Source localization studies and investigations employing 
EEG and functional magnetic resonance imaging (fMRI; Debener 
et al., 2005; Fitzgerald et al., 2005; Mathalon, Whitfield, & Ford, 
2003) have identified the anterior cingulate cortex (ACC) as the 
region of the brain that generates the ERN. The ACC is the pri-
mary brain mechanism involved in online monitoring for conflict 
between simultaneously active but incompatible streams of in-
formation (Shiels & Hawk, 2010). Greater ERN amplitudes are 
theorized to reflect processes of heightened conflict monitor-
ing (Yeung, Botvinick, & Cohen, 2004), and sensitivity to threat 
(Weinberg et al., 2016) and punishment (Shackman et al., 2011; 
Zambrano-Vazquez, & Allen, 2014). Research has indicated that 
the ERN represents a trait-like neural response to errors, as it 
demonstrates strong test-retest reliability and rank-order stabil-
ity. Furthermore, ERN amplitudes appear to be multiply deter-
mined by genetic and environmental influences (Weinberg, Klein, 
& Hajcak et al., 2012).

Research has shown that the ERN is a neural correlate of 
psychopathology, particularly anxiety disorders. Specifically, 
enhanced (i.e., more negative) ERN in anxious individuals is fre-
quently observed, and has been consistently replicated in both 
adult (Hajcak, Klawohn, & Meyer, 2019; Weinberg, Dieterich, & 
Riesel, 2015) and pediatric samples (Ladouceur, Dahl, Birmaher, 
Axelson, & Ryan, 2006; Meyer, 2017). Enhanced ERN has been 
shown to prospectively predict the onset of anxiety psychopa-
thology in school-age children (Meyer, Proudfit, Torpey-Newman, 
Kujawa, & Klein, 2015), adolescents (Meyer, Nelson, Perlman, 
Klein, & Kotov, 2018), and adults (Tang et al., 2020), to identify 

individuals with a family history of anxiety (Riesel et al., 2019), and 
to associate with fear-based anxiety symptoms in adults (Gorka, 
Burkhouse, Afshar, & Phan, 2017).

Although studies have been more limited, differences in ERN 
have also been documented in individuals with externalizing symp-
tomatology (Pasion & Barbosa, 2019). Externalizing symptoms and 
disorders have been linked with error-related hypoactivity or a 
blunted ERN, which means more positive rather than negative ERN 
amplitudes, the latter being observed in anxiety disorders (Hall, 
Bernat, & Patrick, 2007; Pasion & Barbosa, 2019; Shiels & Hawk, 
2010). Blunted ERNs have been documented in youth with ADHD 
and disruptive behavior disorders (Geburek, Rist, Gediga, Stroux, & 
Pedersen, 2013; Meyer & Klein, 2018; Vilà-Balló, Hdez-Lafuente, 
Rostan, Cunillera, & Rodriguez-Fornells, 2014). This suggests that 
externalizing symptoms and psychopathology are characterized by 
deficient error responding and impaired error evaluation.

It is important to note that ERN findings in the anxiety and ex-
ternalizing literatures have not been entirely consistent, such that 
symptom/disorder and ERN patterns do not always demonstrate the 
expected directional relationships, particularly when there is comor-
bid psychopathology. For example, some adult studies have found 
that ERN and anxiety disorder associations differ when individuals 
have comorbid depression (Weinberg, Klein, et al., 2012; Weinberg, 
Kotov, & Proudfit, 2015). In addition, Stieben et al. (2007) found 
that the association between externalizing problems and a blunted 
ERN was less apparent among children with comorbid internalizing 
problems.

Despite the high prevalence of anxiety disorders (Beesdo et al., 
2009; Copeland et al., 2014) and frequent co-occurrence of exter-
nalizing problems in childhood (Angold, Costello, & Erkanli, 1999; 
Kendall et al., 2010; Verduin & Kendall, 2003), how anxiety and ex-
ternalizing comorbidity patterns relate to ERN profiles has yet to be 
tested. Research that examines these relations could have the po-
tential to resolve some of the inconsistencies observed in the ERN 
pediatric literature, increase precision in our understanding of neural 
correlates of anxiety comorbidity subtypes, and elucidate primary 
sources of impairment that could have translational implications. 
Accordingly, the primary aim of this preliminary study was to be one 
of the first to investigate how ERN responses could differentiate 
anxious subtypes as defined by those with and without comorbid 
externalizing problems in a pediatric sample. Healthy youth, defined 
as those without lifetime histories of psychiatric disorders, were also 
included in order to examine psychiatric symptom and ERN rela-
tions dimensionally. The overall sample consisted of anxious youth 
and healthy controls (ages 7–19 years old) who were recruited for a 
study of the treatment of pediatric anxiety disorders. Based on prior 
work on ERN in anxiety disorders (Meyer, 2017; Meyer et al., 2013), 
we hypothesized that youth with greater anxiety symptoms who did 
not have co-occurring externalizing problems would demonstrate 
enhanced ERN (i.e., greater sensitivity to errors). Drawing on pre-
liminary studies suggesting anxiety and ERN relations could be qual-
ified by psychiatric comorbidity (Stieben et al., 2007), we predicted 
that youth with co-occurring anxiety symptoms and externalizing 
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anywhere from 15% to 23% of anxious youth meet criteria for at-
tention-deficit hyperactivity disorder (ADHD; Angold, Costello, 
& Erkanli, 1999; Kendall, Brady, & Verduin, 2001), and about 9% 
of anxious youth meet criteria for oppositional defiant disorder 
(ODD; Kendall et al., 2001). It is well established that childhood 
comorbidity is associated with significantly worse short- and 
long-term psychosocial impairments (Fraire & Ollendick, 2013; 
Franco, Saavedra, & Silverman, 2007). Despite moderate rates 
of anxiety and externalizing psychopathology comorbidity, their 
neurobiological origins are not well understood, which is sig-
nificant given increasing clinical research emphasis on under-
standing the underlying pathophysiology of common psychiatric 
disorders and syndromes, and identifying the extent to which 
disorders and subtypes are associated with similar or unique 
neurophysiological characteristics (Insel et al., 2010; Shankman 
& Gorka, 2015).

Psychophysiological tools, such as scalp-recorded electro-
encephalogram (EEG) recordings in response to environmental 
cues of threat and error monitoring, have proven to be useful in 
identifying neural correlates of different forms of psychopathol-
ogy across the life span (e.g., Shankman & Gorka, 2015). Over 
50 studies have focused on the error-related negativity (ERN), 
an event-related potential (ERP) component typically measured 
at frontocentral electrodes 50–100 ms following commission 
of an error (Olvet & Hajcak, 2008; Weinberg, Riesel, & Hajcak, 
2012). Source localization studies and investigations employing 
EEG and functional magnetic resonance imaging (fMRI; Debener 
et al., 2005; Fitzgerald et al., 2005; Mathalon, Whitfield, & Ford, 
2003) have identified the anterior cingulate cortex (ACC) as the 
region of the brain that generates the ERN. The ACC is the pri-
mary brain mechanism involved in online monitoring for conflict 
between simultaneously active but incompatible streams of in-
formation (Shiels & Hawk, 2010). Greater ERN amplitudes are 
theorized to reflect processes of heightened conflict monitor-
ing (Yeung, Botvinick, & Cohen, 2004), and sensitivity to threat 
(Weinberg et al., 2016) and punishment (Shackman et al., 2011; 
Zambrano-Vazquez, & Allen, 2014). Research has indicated that 
the ERN represents a trait-like neural response to errors, as it 
demonstrates strong test-retest reliability and rank-order stabil-
ity. Furthermore, ERN amplitudes appear to be multiply deter-
mined by genetic and environmental influences (Weinberg, Klein, 
& Hajcak et al., 2012).

Research has shown that the ERN is a neural correlate of 
psychopathology, particularly anxiety disorders. Specifically, 
enhanced (i.e., more negative) ERN in anxious individuals is fre-
quently observed, and has been consistently replicated in both 
adult (Hajcak, Klawohn, & Meyer, 2019; Weinberg, Dieterich, & 
Riesel, 2015) and pediatric samples (Ladouceur, Dahl, Birmaher, 
Axelson, & Ryan, 2006; Meyer, 2017). Enhanced ERN has been 
shown to prospectively predict the onset of anxiety psychopa-
thology in school-age children (Meyer, Proudfit, Torpey-Newman, 
Kujawa, & Klein, 2015), adolescents (Meyer, Nelson, Perlman, 
Klein, & Kotov, 2018), and adults (Tang et al., 2020), to identify 

individuals with a family history of anxiety (Riesel et al., 2019), and 
to associate with fear-based anxiety symptoms in adults (Gorka, 
Burkhouse, Afshar, & Phan, 2017).

Although studies have been more limited, differences in ERN 
have also been documented in individuals with externalizing symp-
tomatology (Pasion & Barbosa, 2019). Externalizing symptoms and 
disorders have been linked with error-related hypoactivity or a 
blunted ERN, which means more positive rather than negative ERN 
amplitudes, the latter being observed in anxiety disorders (Hall, 
Bernat, & Patrick, 2007; Pasion & Barbosa, 2019; Shiels & Hawk, 
2010). Blunted ERNs have been documented in youth with ADHD 
and disruptive behavior disorders (Geburek, Rist, Gediga, Stroux, & 
Pedersen, 2013; Meyer & Klein, 2018; Vilà-Balló, Hdez-Lafuente, 
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anywhere from 15% to 23% of anxious youth meet criteria for at-
tention-deficit hyperactivity disorder (ADHD; Angold, Costello, 
& Erkanli, 1999; Kendall, Brady, & Verduin, 2001), and about 9% 
of anxious youth meet criteria for oppositional defiant disorder 
(ODD; Kendall et al., 2001). It is well established that childhood 
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neurophysiological characteristics (Insel et al., 2010; Shankman 
& Gorka, 2015).
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amplitudes, the latter being observed in anxiety disorders (Hall, 
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Pedersen, 2013; Meyer & Klein, 2018; Vilà-Balló, Hdez-Lafuente, 
Rostan, Cunillera, & Rodriguez-Fornells, 2014). This suggests that 
externalizing symptoms and psychopathology are characterized by 
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It is important to note that ERN findings in the anxiety and ex-
ternalizing literatures have not been entirely consistent, such that 
symptom/disorder and ERN patterns do not always demonstrate the 
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tested. Research that examines these relations could have the po-
tential to resolve some of the inconsistencies observed in the ERN 
pediatric literature, increase precision in our understanding of neural 
correlates of anxiety comorbidity subtypes, and elucidate primary 
sources of impairment that could have translational implications. 
Accordingly, the primary aim of this preliminary study was to be one 
of the first to investigate how ERN responses could differentiate 
anxious subtypes as defined by those with and without comorbid 
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as those without lifetime histories of psychiatric disorders, were also 
included in order to examine psychiatric symptom and ERN rela-
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and healthy controls (ages 7–19 years old) who were recruited for a 
study of the treatment of pediatric anxiety disorders. Based on prior 
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we hypothesized that youth with greater anxiety symptoms who did 
not have co-occurring externalizing problems would demonstrate 
enhanced ERN (i.e., greater sensitivity to errors). Drawing on pre-
liminary studies suggesting anxiety and ERN relations could be qual-
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