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ABSTRACT: The collapse of the polypeptide backbone is an
integral part of protein folding. Using polyglycine as a probe,
we explore the nonequilibrium pathways of protein collapse in
water. We find that the collapse depends on the competition
between hydration effects and intrapeptide interactions. Once
intrapeptide van der Waal interactions dominate, the chain
collapses along a nonequilibrium pathway characterized by
formation of pearl-necklace-like local clusters as intermediates
that eventually coagulate into a single globule. By describing
this coarsening through the contact probability as a function
of distance along the chain, we extract a time-dependent
length scale that grows in a linear fashion. The collapse dynamics is characterized by a dynamical critical exponent z ≈ 0.5 that is
much smaller than the values of z = 1−2 reported for nonbiological polymers. This difference in the exponents is explained by
the instantaneous formation of intrachain hydrogen bonds and local ordering that may be correlated with the observed fast
folding times of proteins.

■ INTRODUCTION
Changing the solvent condition from good to poor renders an
extended polymer to undergo a collapse transition by forming
a compact globule.1,2 Both experiments3,4 and simulations5,6

indicate that a protein also experiences such a collapse
transition while folding into its native state. However, the
nonequilibrium dynamics of the collapse of proteins is only
poorly understood and an active research topic.7 Most previous
studies consider only the hydrophobicity of apolar side chains
of amino acids in a protein as the driving force for its
collapse.8,9 In the present paper, we focus instead on the
contributions by intrapeptide interactions, present even for
residues with no or only weakly hydrophobic side chains10−13

where the collapse-driving forces are not necessarily propor-
tional to the exposed surface. Our test system is polyglycine
and has been chosen to connect our work with recent studies
of homopolymer collapse dynamics14−17 that found non-
equilibrium scaling laws as known for generic coarsening
phenomena.18 Our hope is to establish such scaling laws also
for the collapse of proteins. As a first stride toward this goal,
here, we explore the kinetics of the collapse of polyglycine.
The collapse of homopolymers was first described by de

Gennes’ seminal “sausage” model,19 but today, the phenom-
enological “pearl-necklace” picture by Halperin and Goldbart20

is more commonly used, both for flexible14,16,17,21−25 and
semiflexible polymer models.26,27 In this picture, the collapse
begins with nucleation of small local clusters (of monomers)
leading to formation of an interconnected chain of (pseudo-)
stable clusters, that is, the pearl-necklace intermediates. These
clusters grow by eating up the unclustered monomers from the
chain and subsequently coalesce, leading eventually to a single

cluster. Finally, monomers within this final cluster rearrange to
form a compact globule.
Of central interest in this context is the scaling of the

collapse time τc with the degree of polymerization N (the
number of monomers). While power-law scaling of the form

τ ∼ N z
c (1)

where z is the equilibrium dynamic critical exponent, has been
firmly established, there is no consensus on the value of z.
Molecular dynamics (MD) simulations provide much smaller
values (z ≈ 1) than Monte Carlo (MC) simulations (z ≈ 2).
This difference is often explained with the presence of
hydrodynamics in the MD simulations, but a z value of 1
has been reported recently also for MC simulations.16 The
pearl-necklace stage or the cluster growth kinetics can be
understood by monitoring the time (t) dependence of the
mean cluster size Cs(t), the relevant length scale. By drawing
analogy with coarsening ferromagnets, it has been shown that
scaling of the form

∼ αC t t( )s
c (2)

with growth exponent αc = 1 holds for flexible homopoly-
mers.14,16

Protein collapse is much less understood. While it has been
shown by modeling a protein as a semiflexible heteropolymer
that the equilibrium scaling of the radius of gyration Rg with N
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is random-coil-like (Rg ∼ N3/5) in a good solvent and globule-
like (Rg ∼ N1/3) in a poor solvent,28,29 there have been few
attempts to explore nonequilibrium collapse pathways,30,31 and
the corresponding scaling laws are not known. In order to
probe the existence of such nonequilibrium scaling laws in
protein collapse, we have simulated polyglycine chains (Gly)N
of various numbers N of residues. This choice allows us to
probe in a systematic way the collapse of the polypeptide
chain, considering only homopolymers built from the simplest
amino acid, namely, glycine. Our results show that, in water,
there is a tug of war between collapse-disfavoring hydration
effects and collapse-favoring intrapeptide interactions. For
longer chains (N ≥ 15), the intrapeptide interactions win over
the hydration effect leading to a collapse, making water in
practice a poor solvent. We use these longer polyglycine chains
to shed light on the collapse kinetics, with an emphasis on the
presence of nonequilibrium scaling laws. Our results from all-
atom MD simulations in the NVT ensemble using a
hydrodynamics preserving thermostat suggest a collapse
mechanism that relies on fast local ordering by formation of
pearl-necklace structures, which eventually merge into a single
globule. This process is characterized by a dynamic critical
exponent z ≈ 0.5 much smaller than the exponents z = 1−2
observed for nonbiological polymers, and we speculate that
this quicker local ordering during collapse enables the fast
folding times seen in proteins.

■ MODEL AND METHODS
We construct (Gly)N molecules with hydrogenated N-terminus
(−NH2) and C-terminus (−COOH). All-atom MD simulations are
performed using standard GROMACS 5.0.2 tools, while
CHARMM22 with CMAP corrections32,33 is used for interactions

between the atoms. For studying the collapse dynamics, we first
prepare an extended chain in the random-coil phase at 1500 K. This
follows solvation of this extended chain in a simple cubic box with
water (modeled by the TIP3P model34). The final MD run is
performed at the desired quench temperature Tq = 290 K, which is
lower than 310 K, roughly the collapse transition temperature of
(Gly)N in water. The size of the box and the number of water
molecules, of course, are dependent on N and are so chosen that the
number density of water molecules is the same for all N. For the
smallest N, that is, for N = 20, the default box size is 4.2 nm.
Subsequently, the box sizes for longer chains are determined using the
scaling relation Rg ∼ N3/5 for the radius of gyration discussed below.
The size of the boxes should not have much role in the collapse
provided that the two ends of the chain do not interact while using
the periodic boundary condition. However, the number density of
water molecules is supposed to play a role, which we keep the same
for all N. For N = 20, the total number of water molecules used is
2000 giving a number density of 32 per nm−3, which is maintained for
all N. After the solvation, we run our MD simulations using the
velocity Verlet integration scheme with a time step δt of 2 fs in the
NVT ensemble using the Nose−́Hoover thermostat that conserves
linear momentum and thus is believed to be sufficient for preserving
hydrodynamic effects.35 Here, we use chains of lengths N ∈
[20,50,75,100,150,200], and for each N, we generate 50 different
initial configurations in the random-coil-like phase, except for N = 200
where this number is 15. Independent simulations starting from these
different initial conditions are performed for every N. All these
simulations are run up to time tf, which is 10 ns for N = 20, 20 ns for
N ∈ [50,150], and 25 ns for N = 200. Unless otherwise mentioned,
the results presented subsequently are all averaged over the aforesaid
number of independent simulations for respective N.

In the following, we briefly discuss three standard observables that
we use for the analyses of our simulation data. (i) The squared radius
of gyration for a polymer of length N (the number of monomers) is
calculated as

Figure 1. Time evolution of a short polypeptide. (a) The upper row shows typical representative snapshots from the time evolution [of replica #1
shown in panel (b)] for the collapse of the (Gly)20 chain in water at Tq = 290 K, starting from an extended state at t = 0 ns. The lower row shows
the corresponding residue contact maps where two residues along the chain are in contact if the distance between them is less than 1.5 nm. (b)
Time dependence of the squared radius of gyration Rg

2(t) shown for five different replicas chosen randomly out of the total 50 independent
simulations for (Gly)20. (c) Illustration of the structural evolution of the chain during the collapse shown via structure factors S(q) averaged over 50

independent simulations for (Gly)20, as a function of the modulus q = |
⎯→⎯
q | of the wave vector

⎯→⎯
q , at four different times as indicated. The dashed

lines with power-law decay exponents 5/3 and 4 correspond to the expected behavior for an extended chain and crumpled globule, respectively.
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For (Gly)N, the chain length is determined from N, the number of
residues or repeating units that contain a fixed set of atoms. Thus, Rg

2

for (Gly)N is calculated considering all the atoms present in all the
residues. However, the scaling can still be checked in terms N, as is
done here. (ii) The static structure factor is calculated as

∑⃗ = [− ⃗· ⃗ − ⃗ ]S q
N

iq r r( )
1

exp ( )
i j

i j
, (4)

where
⎯→⎯
q is the scattering wave vector. In general, S(

⎯→⎯
q ) is the Fourier

transform of the radial distribution function and is directly
comparable with the experimentally observed X-ray scattering. For
an isotropic system, as in the case here, everything depends on q = |
⎯→⎯
q |. As explained above, in the case for measuring Rg

2, for S(
⎯→⎯
q ), too,

we use all the atoms in all the residues. (iii) Hydrogen bonds are
calculated using the standard GROMACS tool gmx hbond. It
considers all possible donors and acceptors and decides for the
existence of a hydrogen bond if the distance between them is less than
0.35 nm and the hydrogen-donor-acceptor angle is less than 30°.

■ RESULTS
Evolution of Short Chains. We begin our analysis with a

rather short chain, that is, (Gly)20. The time evolution
snapshots during the collapse in water at a temperature Tq =
290 K, well below the corresponding collapse transition
temperature, are shown in Figure 1a. In a protein, collapse
leads eventually to folding characterized by formation of
distinct native contacts among the residues. We show for this
reason in the lower panel the residue contact maps where we
define two residues as being in contact if they are within a
distance of rc = 1.5 nm. The red stripe along the diagonals
depicts the self-contacts. The size of the extended (Gly)20

chain is 2.0 nm; thus, almost all the mutual distances between
the residues fall under rc. This makes it difficult to capture
segregation or formation of any local structures on length
scales comparable to rc. Only late in the trajectories do we find
a signature for loop formation, which is also apparent in the
snapshot at t = 10 ns. The emergence of such a loop is due to a
competition between the hydration effects and the intrapeptide
interactions leading to residue−residue contacts along the
chain, although there are trapped water molecules. The
interplay can be deduced from the nonmonotonous behavior
of the squared radius of gyration Rg

2 as a function of time in
Figure 1b, obtained from five different replicas chosen
randomly out of the total 50 independent simulations. Note
that, for all the cases, Rg

2 decays eventually to the equilibrium
value.
In order to probe further the structural evolution of the

chain along the collapse of (Gly)20, we calculate the static
structure factor S(q) at different times. Figure 1c shows S(q)
for the times corresponding to the snapshots. At t = 0 ns,
within the range q ∈ [3,30] nm−1, the chain can be described
as an extended coil with S(q) ∼ q−1/ν,36 where ν = 3/5 is the
critical (Flory) exponent describing the scaling of Rg ∼ Nν for a
self-avoiding polymer. With time, the decay exponent should
increase from −5/3 and is expected to approach −4 in order to
be consistent with the globule-like behavior of S(q) ∼ q−4.36

Although the slope in our data in Figure 2c gradually increases
with time, it does not appear to approach −4. This again could
be due to the still ongoing interplay between the hydration
effect and the intrapeptide interactions that hinders the chain
to form a compact globule; however, extending the simulations
up to 20 ns does not change the overall behavior. Similar
observations are made for all systems (Gly)N having a chain
length of N < 50 residue units.

Figure 2. Pearl-necklace formation during collapse of a long chain. (a) Same as in Figure 1a but for (Gly)200 and correspondingly at different times,
as mentioned. (b) Time dependence of the squared radius of gyration Rg

2(t) obtained from five different replicas chosen randomly out of the total
15 independent simulations for (Gly)200. (c) Structure factors S(q) averaged over the total 15 independent simulations for (Gly)200 at times
indicated in the figure. The dashed lines have the same meaning as in Figure 1c but are plotted with different prefactors.
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Evolution of Long Chains. For longer chains, the collapse
is more pronounced, and we finally encounter characteristic
features reminiscent of the homopolymer collapse. For
instance, in the upper row of Figure 2a, we present snapshots
of the collapse of (Gly)200 at Tq = 290 K. The sequence of
these snapshots demonstrates a process that starts with local
ordering of the residues along the chain. These local structures
later merge with each other before finally forming a single
globule at t = 20 ns. The emergence of these local
arrangements is similar to the formation of local clusters in
the pearl-necklace picture of homopolymer collapse.14,16,17,20,21

The resemblance becomes even more obvious when looking at
the corresponding contact maps in the lower row of Figure 2a.
The box-like clustering along the diagonal indicates formation
of pearls along the chain (see particularly at t = 2 and 5 ns)
that are reminiscent of the ones observed during the collapse
of a semiflexible homopolymer in ref 27. However, we do not
see the antiparallel hairpins that are associated with the
diamond-shaped internal order within these boxes. An idea
about the variation of these contact maps for different
independent simulations and other chain lengths can be
obtained from the Supporting Information.
In order to check for the presence of a competition between

hydration effects and the intrapeptide interactions, we probe
again the time dependence of Rg

2 as measured in five
independent simulations. Data are presented in Figure 2b.
Unlike for the shorter (Gly)20 chain, the radius of gyration is
now monotonically decreasing. This can be explained by the
assumption that, for longer chains, the intrachain interactions
overcome the hydration effects. A similar picture emerges from
Figure 2c. The plots of the structure factor S(q) as a function
of time demonstrate how the extended coil behavior of
S(q) ∼ q−5/3 at t = 0 ns gradually changes to a globule-like
behavior of S(q) ∼ q−4 at t = 20 ns.
Relaxation Dynamics. Next, we analyze the number of

intramolecular (protein−protein npp) and intermolecular
(protein−water npw) hydrogen (H) bonds. The time depend-
ence of npp measured for different N and normalized by the
respective values at tf (the maximum time up to which the
simulations are run; for details see the Model and Methods
section) is plotted in the main frame of Figure 3a. Data for all
N in Figure 3a attain a saturation value of 1 at the same time,
demonstrating a reasonable overlap of the data. Similar
observations can be made in panel (b), which shows that the
decay of npw(t)/npw(0) to the saturation value happens at
almost the same time for different N, leading again to nicely
overlapping curves. In the inset of Figure 3a, the time
dependence of npp for (Gly)20 is nonmonotonous, whereas the
npw data in the inset of Figure 3b exhibit a jump at an early
time before reaching saturation. This again confirms the
hydration effects for smaller chains. The overlap of the
hydrogen-bond kinetics for large N (>20) implies that the
collapse dynamics, that is, the presence of any scaling of the
collapse time with respect to the chain length, shall not depend
on the intrapeptide hydrogen bonds. Equilibrium studies, too,
suggest that collapse is driven by the intrapeptide van der
Waals interactions rather than the hydrogen-bond formation.7

The overlap of the hydrogen-bond data does not allow one
to calculate the collapse time τc from the time evolution of this
quantity. More suitable for this purpose is the decay of the
average squared radius of gyration Rg

2 depicted in Figure 4a.
The nonoverlapping data are consistent with the respective
solid lines obtained from the previously proposed fit16,17

τ= + [− ]βR t b b t( ) exp ( / )g
2

0 1 c (5)

where b0 corresponds to the value of Rg
2(t) in the collapsed

state and b1 and β are associated nontrivial fitting parameters.
The obtained values of β (see the inset of Figure 4a) indicate a
very weak dependence on N, similar to the case of the earlier
studied collapse of synthetic homopolymers.16 Although the
above fit yields a collapse time τc, more accurate estimates can
be calculated from the time when Rg

2(t) has decayed to 50% of
its total decay, that is, Δ = −R R R t(0) ( )fg

2
g

2
g

2 . We plot the
measured values of τc for different chain length N (including N
= 20) in Figure 4b to check for scaling of the form in eq 1. Due
to the competition between hydration effects and intrapeptide
interactions that dominate for smaller N, one expects distinct
scaling forms for small and large N. Our data indeed hint at the
existence of two such scaling regions. Especially interesting is
the consistency of our data for large N with the solid line
having z = 0.5. This exponent suggests that the dynamics is
faster than the one observed in MC simulations of non-
biological homopolymers.16 Surprisingly, it is even faster than
in the case of homopolymer collapse in the presence of
hydrodynamics.22,23 We conjecture that the more rapid
collapse is due to the almost instantaneous presence of
intrachain hydrogen bonds that hasten local ordering; that is,
once the intrachain hydrogen bonds are formed, the Cα atoms
along the backbone come closer to form clusters, which in turn

Figure 3. Kinetics of H bonding. (a) Time dependence of the number
of protein−protein hydrogen bonds npp(t) during the collapse of
(Gly)N for different N. To make the curves fall within the same scale,
the data is normalized with npp(tf); tf is the maximum run time the
simulations are done. The inset shows the time dependence of npp(t)
for (Gly)20. (b) Same as in panel (a) but for the number of protein−
water hydrogen bonds npw(t). Here, the normalization is done with
npw(0). The inset shows the variation of npw(t) with time for (Gly)20.
The error bars in all the plots here correspond to the standard error of
the mean calculated while averaging the data obtained from a number
(mentioned in the Model and Methods section) of independent
simulations.

Macromolecules Article

DOI: 10.1021/acs.macromol.9b00562
Macromolecules 2019, 52, 5491−5498

5494

http://pubs.acs.org/doi/suppl/10.1021/acs.macromol.9b00562/suppl_file/ma9b00562_si_001.pdf
http://dx.doi.org/10.1021/acs.macromol.9b00562


coalesce to finally form a single globule. This latter phase of the
collapse is guided by the diffusive dynamics, which is certainly
N-dependent. However, in combination with the initial N-
independent phase of local pearl-necklace formation, one
observes an overall collapse time that is weakly dependent on
N. Simulations of longer chains would be desirable to confirm
the value of z = 0.5 and the super-fast collapse mechanism in
hydrogen-bonded polymers; however, such simulations were
computationally too costly to be considered in the present
study.
Cluster Growth Kinetics. In a final step, we want to

quantify the coarsening kinetics of the pearls observed in
Figure 2a. A measure of the relevant length scale, that is, the
mean cluster or pearl size Cs(t), can be obtained from a box
plot analysis of the contact maps.27 Conjecturing that the
collapse is driven by the intrapeptide van der Waals attraction
of the backbone, we extract Cs(t) from an analysis of the
contact probability P(cij) as a function of the contour distance
cij = | i − j| between any two Cα atoms at the ith and jth
positions along the chain.37 Two Cα atoms are said to have
contact if they are within a cutoff distance rc. Using rc = 2.5
nm, we show in Figure 5a values of P(cij) calculated at different
times during the collapse of (Gly)200. These contact
probabilities indicate indeed a growing length scale as their
decay slows with time. At the beginning, for t = 0 ns, the chain
is in the extended state and P(cij) decays according to a power
law ∼ γ−P c c( )ij ij with an exponent γ = 1.5, as expected in a
good solvent.38 As time progresses, this power-law behavior
appears at larger cij after crossing over from a plateau-like
behavior for small cij, which marks the local ordering along the
chain. For any reasonable choice of rc, the form of the curves
stays unchanged as demonstrated in Figure 5b. Similarly, the
form of the curve also does not depend on the chain length N

as illustrated in the inset of Figure 5b where we use rc = 2.5 nm
and choose the point in time t = 2 ns. Results analogous to
Figure 5a for N = 100 and N = 150 are presented in the
Supporting Information.
The crossover point in the decay of P(cij) as a function of cij

is estimated from the discrete local slope calculated as37

γ = −
Δ [ ]

Δ [ ]
c

P c

c
( )

ln ( )

lnt ij
ij

ij (6)

Plots of γt(cij) as a function of cij are shown Figure 5c for the
data presented in Figure 5a. The crossing of the data with the

Figure 4. Scaling of the collapse time. (a) Variation of the average
squared radius of gyration Rg

2(t) with time for different chain lengths
as indicated. The solid black lines are respective fits using eq 5, and
the corresponding β obtained is shown as a function of N in the inset.
(b) Dependence of the collapse times τc extracted from the time
decay of Rg

2 on the number of residues N. The solid line represents
the behavior τc ∼ Nz with z = 0.5. For all the data shown in the main
frames, the error bars correspond to the standard error of the mean,
while in the inset, they result from the fitting exercise.

Figure 5. Contact probabilities along the contour of the chain. (a)
Contact probability P(cij) calculated using the cutoff rc = 2.5 nm as a
function of the distance cij along the chain at five different times
during collapse of (Gly)200. The dashed line there represents a power-
law decay with an exponent γ = 1.5 as expected in a good solvent.38

(b) P(cij) at a fixed time t = 2 ns using different rc as indicated,
demonstrating the consistency of the proportionality behavior of the
estimated contact probability. The inset shows P(cij) at t = 2 ns using
rc = 2.5 nm for different N. (c) Discrete slope γt obtained from eq 6 as
a function of cij for the times presented in panel (a). The solid line is
for γt = 1, marking the crossover value that gives the measure of the
length scale Cs(t).
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γt = 1 line happens at larger cij as t increases, and thus, this
crossover point gives a measure of the pearl size Cs(t). The
obtained Cs(t) values for three different N are shown as a
function of t on a double-log scale in the main frame of Figure
6. The flattening of the data for very large t is due to finite-size

effects when no more ordering is possible due to the eventual
formation of a single globule. For large t, before hitting finite-
size effects, the growth resembles a power law Cs(t) = ANt

αc,
where the amplitude AN depends still on the chain length N as
the considered N is not large enough. Hence, P(cij) calculated
using the same rc will overlap with each other, a fact that is
demonstrated in the inset of Figure 5b. However, since their
form stays invariant in the large t regime, they apparently
follow the same power law. To estimate the exponent αc of the
power-law growth (eq 2) on a double-log scale, one needs to
have data ranging over several decades, which is not the case
with our data for Cs(t). Thus, to distinguish the consistency of
the data with either αc = 2/3 or αc = 1 behavior as shown in
the main frame of Figure 6 by the dashed and the solid lines,
respectively, is not so easy. In such cases, instead of eq 2, it is
advantageous to describe the growth as

= + − αC t C t A t t( ) ( ) ( )Ns s 0 0
c (7)

by considering a crossover time t0 and cluster size Cs(t0). This
approach, originally developed for ferromagnets,39 was already
necessary in our earlier work for describing the collapse of
nonbiological homopolymers.14,16,17 Using the transformation

= −C t C t C t( ) ( ) ( )s
p

p s s 0 (8)

one finds = αC t A t( ) Ns
p

p p
c, with the shifted time tp = t − t0. If

αc = 1 in eq 7, the transformation in eq 8 is invariant under any
choice of t0 in the post-crossover regime. This is demonstrated
in the inset of Figure 4 where we plot Cs

p(tp) as a function of tp
on a log−log scale for two different choices of t0 as mentioned.
The data for both the cases are consistent with a linear power-
law behavior ∼ αtp

c having αc = 1 as represented by the solid
line there. This further consolidates our finding of a linear
growth of clusters.

■ DISCUSSION

In summary, we have investigated the nonequilibrium
pathways by which polyglycine [(Gly)N] collapses in water.
For short chains, the pathway has few noticeable features and
is driven by the competition between the hydration of the
peptide, opposing the collapse, and the intrapeptide
attractions, favoring the collapse.7 For chains with N > 20,
the importance of hydration effects decreases, and the kinetics
of hydrogen bonds indicates that van der Waals interactions of
the backbone dominate7 and drive the collapse. The
nonequilibrium intermediates seen during the collapse exhibit
local ordering or clustering that is analogous to the
phenomenological pearl-necklace picture known to be valid
for the earlier studied coarse-grained homopolymer models.20

Using the contact probability of the Cα atoms in the backbone,
we extract a relevant dynamic length scale, that is, cluster size
Cs, that as in simple homopolymer models grows linearly with
time (Cs ∼ t).16 We believe that this linear growth is a result of
the Brownian motion of the clusters and subsequent
coalescence as in the case of droplet growth in fluids.40

Especially intriguing is that the scaling of the collapse time
with the length of the chain indicates a faster dynamics, with a
critical exponent z ≈ 0.5 instead of z ≈ 1 that was seen in
earlier homopolymer collapse studies,22,23 which considered
simplified models describing non-hydrogen-bonded polymers
such as polyethylene and polystyrene.41 The smaller exponent
found in this study may be connected with a mechanism that
allows a more rapid collapse in amino acid based polymers
than seen in nonbiological homopolymers such as poly(N-
isoporpylacrylamide) and polystyrene where collapse times of
300 ms up to 350 s have been reported,42,43 respectively. We
conjecture that the smaller exponent z is characteristic of
collapse transitions in amino acid based polymers where the
presence of intrachain hydrogen bonding immediately seeds
(transient) local ordering, while in non-hydrogen-bonded
polymers such local ordering only happens as a consequence
of diffusive motion.
This connection of rapid collapse with a quick appearance of

local ordering would also have implications for possible folding
mechanisms and may explain the fast folding times of proteins
(typically in the μs−ms range for proteins with 100−200
residues). While the topology and roughness of protein folding
funnels vary with sequence, making it difficult to establish the
scaling laws observed for amino acid based homopolymers, we
expect to see a comparable mechanism at work during protein
folding. In this picture, the formation of the intermediate and
transient secondary structures and other local ordering hasten
the collapse of the protein chain, which in turn enables
formation of the long-range contacts that stabilize the final
fold. While the latter part would be modulated by the protein
sequence, the fast collapse itself appears to be a polymer
property involving only the backbone.
In order to test this conjecture, one would need to repeat

first our above investigation for the other 19 amino acids
verifying whether the scenario observed in this paper for
polyglycine applies to all amino acids. Such studies and their
extension to protein-like heteropolymers are beyond the scope
of our current paper; however, the presented results
demonstrate already that our approach provides a general
platform to understand various conformational transitions that
occur in biomolecules via local ordering. Another example
would be, for instance, the helix−coil transition of polyalanine

Figure 6. Cluster growth during the collapse. The main frame shows
the growth of the mean cluster or pearl size Cs(t) with time for
different N. The solid and the dashed lines represent power-law
behavior Cs(t) ∼ tα with α = 1 and 2/3, respectively. The inset shows
the plot of Cs

p(tp) as a function of the shifted time tp = t − t0 for N =
200 with two different choices of t0. The solid line there represents a
linear power-law behavior ∼ αtp

c with αc = 1.
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where the short-time dynamics has already been explored44,45

or the study of two-time properties such as aging and
dynamical scaling in collapse and folding15,17 Hence, the
main advantage of our approach is that it allows for a clearer
separation between polymer properties and sequence-depend-
ent factors in folding and structural changes of proteins.
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