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Abstract

Colorectal cancer (CRC) is one of the most deadly cancers in the world with few reliable biomarkers that have
been  selected  into  clinical  guidelines  for  prognosis  of  CRC  patients.  In  this  study,  mRNA  microarray  datasets
GSE113513, GSE21510, GSE44076, and GSE32323 were obtained from the Gene Expression Omnibus (GEO)
and  analyzed  with  bioinformatics  to  identify  hub  genes  in  CRC  development.  Differentially  expressed  genes
(DEGs) were analyzed using the GEO2R tool. Gene ontology (GO) and KEGG analyses were performed through
the  DAVID  database.  STRING  database  and  Cytoscape  software  were  used  to  construct  a  protein-protein
interaction  (PPI)  network  and  identify  key  modules  and  hub  genes.  Survival  analyses  of  the  DEGs  were
performed on GEPIA database. The Connectivity Map database was used to screen potential drugs. A total of 865
DEGs  were  identified,  including  374  upregulated  and  491  downregulated  genes.  These  DEGs  were  mainly
associated  with  metabolic  pathways,  pathways  in  cancer,  cell  cycle  and  so  on.  The  PPI  network  was  identified
with  863  nodes  and  5817  edges.  Survival  analysis  revealed  that HMMR, PAICS, ETFDH,  and SCG2 were
significantly associated with overall survival of CRC patients. And blebbistatin and sulconazole were identified as
candidate  drugs.  In  conclusion,  our  study  found  four  hub  genes  involved  in  CRC,  which  may  provide  novel
potential biomarkers for CRC prognosis, and two potential candidate drugs for CRC.
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Introduction

Nowadays,  colorectal  cancer  (CRC)  is  one  of  the
most deadly cancers and almost 900 000 CRC-related

deaths  were  reported  each  year  in  the  world[1].  With
the  understanding  of  pathophysiology  of  the  disease,
different  treatment  options  to  improve  the  survival
rates  of  CRC  patients  have  been  developed  in  the
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world.  The  5-year  survival  rate  of  CRC  patients  was
>90% when  the  patients  were  diagnosed  at  early
stages[2].  However,  due  to  lacking  early  detection
methods,  many  CRC  patients  were  diagnosed  at  an
advanced stage or in the metastasis status. And the 5-
year survival rate for those diagnosed with metastasis
was at approximately 12%[3]. Recently, a new kind of
analysis  method  has  been  used  to  identify  the
differential  expression  genes  between  CRC  and
normal  tissues  based  on  the  high-throughput
sequencing  platforms,  such  as  microarrays.  This  is  a
promising  tool  with  extensive  clinical  applications,
including  molecular  diagnosis,  prognosis  prediction,
new  drug  targets  discovery,  etc[4–6].  Furthermore,
microarray  assay  combining  bioinformatics  analysis
made  it  possible  to  analyze  the gene  expression  on
mRNA  level  in  CRC  progression.  For  example,
several  studies  have used this method to  identify  key
genes  in  CRC  development  through  comparing  with
normal samples,  and showed that  the key genes were
involved  in  different  signal  pathways,  biological
processes, and molecular functions[7–12].

However,  with  a  relatively  limited  degree  of
overlap,  we  still  can  not  find  reliable  biomarkers  or
drug  targets.  Therefore,  the  discovery  of  novel
biomarkers  for  early  detection  and  prognosis
prediction of CRC is urgently required.

In the present study,  we targeted to find key genes
to develop novel biomarkers or drug targets for CRC.
Therefore,  we  chose  four  Gene  Expression  Omnibus
(GEO) datasets,  GSE113513,  GSE21510,  GSE44076,
and  GSE32323,  and  used  bioinformatics  methods
to  screen  the  significant  differentially  expressed
genes  (DEGs)  between  CRC  tissues  and  normal
tissues.  Gene  ontology  (GO)  and  KEGG  Pathway
analyses were used to find the biological roles of these
DEGs through DAVID database. Furthermore, the PPI
network of DEGs was constructed and key modules or
hub  genes  were  selected  with  Molecular  Complex
Detection  (MCODE)  plugin  of  Cytoscape  software.
And the clinical significance was validated by GEPIA
database.  Finally,  small  active  candidate  molecules
were  identified  to  develop  new  drugs  through
Connectivity  Map  (CMap)  database.  In  brief,  we
found  four  hub  genes  involved  in  CRC,  which  may
provide  novel  potential  biomarkers  for  CRC
prognosis, and two potential candidate drugs for CRC.

Materials and methods

Data resources

To explore the differential gene expression profiles

between  CRC  and  normal  tissues,  we  searched  the
NCBI-GEO  database  to  collect  enough  and  adequate
tissues.  A  total  of  4  GEO  datasets  were  selected,
including  GSE113513,  GSE21510,  GSE44076,  and
GSE32323.  These  mRNA  profiles  were  based  on
platform  GPL15207  (GSE113513),  GPL570
(GSE21510  and  GSE32323),  and  GPL13667
(GSE44076).  A  total  of  253  CRC  samples  and  203
normal samples were chosen for this study, including
14 pairs of cancer and normal samples in GSE113513,
124  CRC  samples  and  24  normal  samples  in
GSE21510,  98  pairs  of  cancer  and  normal  samples
plus  50  healthy  donor  tissues  in  GSE44076,  and  17
pairs of cancer and normal samples in GSE32323.

Identification of DEGs and data preprocessing

To  identify  the  DEGs,  we  used  the  NCBI-GEO2R
online  tool  to  analyze  these  datasets.  Subsequently,
adjusted P-value <0.05 and |log2(fold change)| >1 were
set as the cutoff criteria to screen the significant DEGs
of  each  dataset.  Finally,  Venn  diagrams  were
performed to  get  the  overlap  significant  DEGs of  the
4 datasets.

GO and KEGG pathway analyses of DEGs

To find the biological functional roles of DEGs, GO
and KEGG pathway analyses were performed through
DAVID  database.  Significant  results  of  molecular
function  (MF),  biological  process  (BP),  cellular
component  (CC),  and  biological  pathways  were
selected with P-value <0.05.

PPI network construction and module analysis

The  DEGs  profiles  were  submitted  to  STRING
database  for  exploring  their  potential  interactions.
The  interactions  with  a  combined  score >0.4  were
considered  significant.  Subsequently,  the  interaction
files  were  downloaded  and  imported  into Cytoscape
software  to  construct  the  PPI  network.  The  MCODE
plugin was used to find key modules of the whole PPI
network  with  a  degree  cutoff=2,  node  score
cutoff=0.2,  K-core=2,  and  max  depth=100.  The
hub  genes  were  then  selected  with  connectivity
degree >10. Furthermore, KEGG pathway analyses of
the  significant  modules  were  performed  with
P-value <0.05.

Analysis and validation of hub genes

To verify the hub genes we found, we used GEPIA
database  to  analyze  their  expression  and  clinical
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prognostic  information in 270 CRC patients.  And the
survival  curve,  stage  analysis  and  box  plot  were
performed  to  show  the  clinical  implications  of
hub genes.

Identification of small molecules

To find potential small active molecules to develop
new  drugs  for  treating  CRC,  we  uploaded  DEGs
probe profiles  into the CMap database.  This  database
can  help  to  predict  small  molecules  that  induce  or
reverse  gene  expression  signature  with  a  score  from
−1 to 1. And the molecules which value from 0 closer
to −1 were functioned as reversing the cancer cell status.

Results

Identification of DEGs in CRC

Analyzed  with  the  GEO2R  online  tool,  a  total  of
1763,  4411,  2428,  and  2276  DEGs  were  extracted
from  GSE113513,  GSE21510,  GSE44076,  and
GSE32323, respectively, using adjusted P-value <0.05
and  |log2(fold  change)| >1  as  cutoff  criteria.  The
volcano plots of DEGs in each dataset were shown in
Fig.  1A.  And  the  Venn  diagrams  showed  that  865
overlap  DEGs  were  identified  from  these  four
datasets, including 374 significantly upregulated genes
and  491  downregulated  genes  (Fig.  1B and
Supplementary Table 1, available online).

Enrichment analysis of DEGs

To  explore  the  biological  functional  roles  of  the
overlap  DEGs,  GO  and  KEGG  analyses  were
performed on DAVID database. And the top 20 terms
were  listed  in  the  charts  (Fig.  2A– D and
Supplementary  Table  2,  available  online).  The  GO
analysis  results  consist  of  three  functional  categories,
including  BP,  CC,  and  MF.  In  the  BP  group,  DEGs
were  mainly  enriched  in  cell  proliferation  (Fig.  2A).
In  the  CC  group,  DEGs  were  enriched  in  cytoplasm
(Fig. 2B). And in the MF group, DEGs were enriched
in protein binding (Fig. 2C). KEGG pathway analysis
showed  that  DEGs  were  enriched  in  metabolic
pathways, pathways in cancer and cell cycle (Fig. 2D).
The  details  of  the  top  20  terms  were  listed  in
Supplementary Table 2.

PPI network construction and module analysis

Using  the  STRING online  database  and  Cytoscape
software,  a  total  of  865  DEGs  were  filtered  into  the
PPI network complex, containing 863 nodes and 5817

edges  (Fig.  3).  Based  on  degree  scores  using  the
MCODE plugin, two key modules were detected from
the whole PPI network complex. Module 1 contained
61 nodes and 1648 edges, and DEGs were enriched in
cell  cycle,  oocyte  meiosis,  progesterone-mediated
oocyte maturation, DNA replication and p53 signaling
pathway (Fig. 4A and B). Module 2 had 55 nodes and
625  edges,  and  these  DEGs  were  enriched  in
chemokine signaling pathway, ribosome biogenesis in
eukaryotes,  cytokine-cytokine  receptor  interaction,
pathways  in  cancer,  purine  metabolism,  RNA
polymerase,  retrograde  endocannabinoid  signaling,
TNF  signaling  pathway,  legionellosis,  regulation  of
lipolysis  in  adipocytes,  NOD-like  receptor  signaling
pathway, cytosolic DNA-sensing pathway and gastric
acid  secretion  (Fig.  4C and D).  Additionally,  the  top
20  hub  genes, CDK1, CCNB1, MYC, CCNA2,
MAD2L1, AURKA, TOP2A, CDC6, UBE2C, CHEK1,
RRM2, BUB1B, TTK, TRIP13, TPX2, BUB1, NCAPG,
KIF2C, KIF23,  and MCM4 were  identified  with
higher degrees of connectivity. These hub genes were
enriched  in  cell  cycle,  progesterone-mediated  oocyte
maturation,  oocyte  meiosis,  p53  signaling  pathway,
and HTLV-I infection (Fig. 4E and F).

Analysis and validation of hub genes

To  validate  the  hub  genes  we  got  from  this  study,
we  uploaded  the  hub  genes  list  into  GEPIA database
and  explored  the  correlation  between  hub  genes
expression  and  the  clinical  characteristics  of  CRC.  It
was  found  that HMMR, PAICS, ETFDH,  and SCG2
were  significant  DEGs  in  270  CRC  samples  from
GEPIA  (Fig.  5A).  And  these  four  genes  could
represent  the  important  prognostic  biomarkers  for
predicting  the  survival  of  CRC  patients  (Fig.  5B).
Meanwhile, PAICS and SCG2 were  related  to  the
stages of CRC progression (Fig. 5C).  The summaries
of four hub genes were shown in Table 1.

Identification of related active small molecules

To search candidate small molecules for developing
potential  drugs  to  treat  CRC,  we  uploaded  DEGs
probe  profiles  into  the  CMap  database.  And  the
predicted  results  were  download  and  filtered  with
enrichment  score <0  and P-value <0.05.  The  results
were shown in Table 2. And Fig. 5D listed the top 20
small  molecules  with  their  enrichment  scores  and
P-values. Therefore, these small molecules may be the
targets  to  develop  new  drugs  or  therapies  of  CRC.
Among these molecules, Blebbistatin and Sulconazole
may be selected for new clinical trials.
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Fig.  1   Identification  of  the  DEGs  in  CRC. A:  Volcano  plots  of  gene  expression  profiles  between  CRC  and  normal  samples  from
GSE113513,  GSE21510,  GSE44076  and  GSE32323.  Red  dots:  significantly  upregulated  genes  in  CRC;  Green  dots:  remarkably
downregulated genes in CRC. Adjusted P value <0.05 and |log2(fold change)| >1 were considered as significant criteria. B: Venn diagrams
show that  865  overlap  DEGs  were  found  through  GEO2R in  the  four  datasets,  including  374  upregulated  DEGs  and  491  downregulated
DEGs. DEGs: differentially expressed genes; CRC: colorectal cancer.
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Fig.  2   GO  and  KEGG  analysis  of  the  overlap  differentially  expressed  genes  in  colorectal  cancer  through  DAVID  online-tools.
Top 20 terms of biological processes (A), cellular components (B), molecular functions (C), and KEGG signaling pathways (D) were shown
in the charts, and P-value <0.05 was considered as selection criteria.
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In  summary,  we  chose  GSE113513,  GSE21510,
GSE44076,  and  GSE32323  GEO  datasets  and  found
865  significant  DEGs  between  CRC  tissues  and
normal  tissues.  Subsequently,  the  biological  roles  of
these DEGs were confirmed with enrichment pathway
analysis.  Furthermore,  the  four  hub  genes, HMMR,
PAICS, ETFDH,  and SCG2 were  identified  as
important  prognostic  biomarkers  for  predicting  the
survival  of  CRC  patients  based  on  the  GEPIA
database.  Finally,  blebbistatin  and  sulconazole  were
picked  out  to  develop  new  drugs  through  CMap
database (Fig. 6).

Discussion

In our study, we chose four GEO datasets and used
bioinformatics  methods  to  get  865  DEGs  (374
upregulated and 491 downregulated). KEGG pathway
analysis  showed  that  the  key  modules  were  mainly
metabolic  pathways,  pathways  in  cancer,  cell  cycle,
purine  metabolism,  pancreatic  secretion,  thyroid
hormone  signaling  pathway  and  Wnt  signaling
pathway.  The PPI network was constructed including
863  nodes  and  5817  edges.  The  four  hub  genes,
HMMR, PAICS, ETFDH, and SCG2 were remarkably

 

 

Fig. 3   PPI interaction network of the overlap differentially expressed genes by STRING database.
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related to the prognosis of patients.  Furthermore,  two
small  molecules,  blebbistatin  and  sulconazole,  also
have been identified as potential candidates to develop
new drugs.

Recently,  findings  about  DEGs  or  molecular
biomarkers  of  CRC  have  been  increasingly  reported.
Based  on  integrated  analysis  of  GSE32323,
GSE74602,  and  GSE113513  datasets,  and  TCGA
databases, CCL19, CXCL1, CXCL5, CXCL11,
CXCL12, GNG4, INSL5, NMU, PYY,  and SST were
identified  as  hub  genes.  And  9  genes  including
SLC4A4, NFE2L3, GLDN, PCOLCE2, TIMP1,
CCL28, SCGB2A1, AXIN2, and MMP1 was related to
predicting  overall  survivals  of  CRC  patients[8].
Moreover, TOP2A, MAD2L1, CCNB1, CHEK1,
CDC6,  and UBE2C were indicated as hub genes, and
TOP2A, MAD2L1, CDC6,  and CHEK1 may  serve  as
prognostic  biomarkers  in  CRC[10].  In  addition,
CEACAM7, SLC4A4, GCG,  and CLCA1 genes  were
associated  with  unfavorable  prognosis  in  CRC[11].
According  to  analysis  of  GEO  datasets  and  survival
analysis  by  GEPIA  database, AURKA, CCNB1,
CCNF,  and EXO1 were  significantly  associated  with
longer  overall  survival.  Moreover,  CMap  predicted
that  DL-thiorphan,  repaglinide,  MS-275,  and
quinostatin  have  the  potential  to  treat  CRC[9].  In  this

study,  we  have  identified  four  hub  genes  as  new
potential  biomarkers  to  predict  the prognosis  of  CRC
patients and two new small molecules. Further studies
are needed to develop new drugs to treat CRC.

Several  studies  have  reported  that  these  hub  genes
play  important  roles  in  cancer  development.  For
instance, HMMR expression  level  was  remarkably
correlated  with  the  progression  and  prognosis  of
breast  cancer[13],  bladder  cancer[14],  prostate
cancer[15–16], lung cancer[17–19], hepatocellular carcinoma
(HCC)[20–22],  and  gastric  cancer[23].  Furthermore,
HMMR was  confirmed  to  maintain  its  oncogenic
properties  and  resistance  to  chemotherapy  through
activating  TGF-β/Smad-2  signaling  pathway[24].  And
HMMR was  highly  expressed  in  glioblastoma  and
related  to  support  the  self-renewal  and  tumorigenic
potential  of  glioblastoma  stem  cells[25]. PAICS was
also upregulated in several kinds of cancer tissues and
it  promotes  cancer  cells  proliferation,  migration,  and
invasion[26–31].  The  expression  level  of ETFDH was
found significantly decreased in HCC tissues, and this
low expression was related to poor overall survival in
patients[32].  However,  the  role  of SCG2 in  cancer
remains unclear.

In the present  study, HMMR, PAICS, ETFDH,  and
SCG2 were significantly up or down regulated in CRC
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Fig.  4   Module  and  KEGG  analyses  of  the  hub  genes. A  and  C:  Two  top  modules  screened  from  the  whole  PPI  network  of  DEGs
analyzed by MCODE plugin in Cytoscape. E: Top 20 hub genes with a higher degree of connectivity of DEGs were selected with MCODE
plugin. B, D, and F: KEGG pathway analysis of the two top modules and top 20 hub genes. DEGs: differentially expressed genes.
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Fig. 5   Analysis and validation of hub genes and identification of related active small molecules. A and B: The expression level and
prognostic  value of  four hub genes based on the GEPIA database.  C:  PAICS and SCG2 were related with the stages of  CRC progression
through GEPIA database. D: Top 20 potential small active molecules reverse DEG of CRC predicted by CMap database. TPM: transcripts
per million.

 

GEO datasets selection

DEGs identification

Overlap DEGs identification

Functional characteristics
analysis

PPI network establishment

Hub genes identification

TCGA database validation CMap database
Functional characteristics

analysis

A total of four GEO datasets

DEGs among each GEO dataset

865 overlap DEGs of the four GEO datasets

GO and KEGG pathway enrichment analysis

STRING database and module analysis

KEGG pathway 
enrichment analysis

Expression and survival analysis Two potential drugs

 

Fig. 6   Workflow model of the present study.
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tissues  compared  with  those  in  normal  samples,  and
the  survival  rate  of  CRC  patients  was  positively
correlated with the expression of these genes. Besides,
several  small  molecules  with  potential  therapeutic
efficacy  were  identified  through  bioinformatics
analyses,  including  blebbistatin  and  sulconazole.
Blebbistatin has been reported to inhibit cell migration
and invasiveness of pancreatic adenocarcinoma[31], and
decrease  spreading  and  migration  of  breast  cancer
cells[33].  Moreover,  blebbistatin  has  shown  its
antitumorigenic  properties  in  HCC  cells[34].  Another
small  molecule,  sulconazole,  also  inhibited  the

proliferation and formation of breast cancer stem cells
through  blocking  the  NF-κB/IL-8  signaling
pathway[35].  Although  these  two  molecules  have
significant  antitumor  activity,  their  specific  roles  in
CRC development need to be further clarified.
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Table 1   Gene summaries of the four hub genes

Gene Summary
Microarray datasets [P-value, log2(fold change)]

GSE113513 GSE21510 GSE44076 GSE32323

HMMR

The  protein  encoded  by  this  gene  is  involved  in  cell
motility. It is expressed in breast tissue and together with
other  proteins,  it  forms  a  complex  with  BRCA1  and
BRCA2, thus is potentially associated with higher risk of
breast  cancer.  Alternatively spliced transcript  variants
encoding different isoforms have been noted for this gene.

6.82e−04, 1.11 3.84e−35, 3.22 5.32e−22, 1.20 2.63e−04, 1.63

PAICS

This  gene  encodes  a  bifunctional  enzyme  containing
phosphoribosylaminoimidazole carboxylase activity in its
N-terminal  region and phosphoribosylaminoimidazole
succinocarboxamide synthetase in its C-terminal region. It
catalyzes steps 6 and 7 of purine biosynthesis. The gene is
closely linked and divergently transcribed with a locus
that  encodes  an  enzyme  in  the  same  pathway,  and
transcription of the two genes is coordinately regulated.
The human genome contains several pseudogenes of this
gene.  Multiple  transcript  variants  encoding  different
isoforms have been found for this gene.

4.77e−08, 1.31 5.71e−47, 2.48 2.14e−55, 1.49 1.38e−06, 1.73

ETFDH

This gene encodes a component of the electron-transfer
system  in  mitochondria  and  is  essential  for  electron
transfer from a number of mitochondrial flavin-containing
dehydrogenases to the main respiratory chain. Mutations
in  this  gene  are  associated  with  glutaric  acidemia.
Alternatively  spliced  transcript  variants  that  encode
distinct isoforms have been observed.

1.78e−08, −1.47 1.67e−27, −1.92 1.80e−71, −1.85 3.14e−08, −1.78

SCG2

The  protein  encoded  by  this  gene  is  a  member  of  the
chromogranin/secretogranin  family  of  neuroendocrine
secretory proteins. Studies in rodents suggest that the full-
length  protein,  secretogranin  II,  is  involved  in  the
packaging  or  sorting  of  peptide  hormones  and
neuropeptides  into  secretory  vesicles.  The  full-length
protein  is  cleaved  to  produce  the  active  peptide
secretoneurin, which exerts chemotaxic effects on specific
cell types, and EM66, whose function is unknown.

2.37e−07, −2.50 1.13e−17, −1.86 4.83e−25, −1.90 2.91e−07, −2.28
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Table 2   The significant small active molecules that may reverse the DEGs of CRC predicted by CMap

CMap name Count Enrichment P-value CMap name Count Enrichment P-value

DL-thiorphan 2 −0.976 0.001 27 8-azaguanine 4 −0.644 0.038 11

Quinostatin 2 −0.878 0.029 90 Acepromazine 4 −0.640 0.040 08

1,4-chrysenequinone 2 −0.866 0.035 75 Doxazosin 4 −0.639 0.040 48

Menadione 2 −0.852 0.043 24 Mefloquine 5 −0.637 0.016 28

Blebbistatin 2 −0.844 0.048 59 Trifluridine 4 −0.637 0.041 87

trazodone 3 −0.813 0.013 20 Clomipramine 4 −0.636 0.042 51

Thioguanosine 4 −0.809 0.002 59 Trioxysalen 4 −0.633 0.044 24

Sulconazole 4 −0.805 0.002 82 Corbadrine 4 −0.629 0.046 73

0297417-0002B 3 −0.792 0.018 27 Etofenamate 4 −0.624 0.049 27

Etacrynic acid 3 −0.776 0.022 99 Phthalylsulfathiazole 5 −0.616 0.022 71

Latamoxef 3 −0.759 0.028 76 Oxetacaine 5 −0.610 0.025 23

GW-8510 4 −0.757 0.007 12 Amiodarone 5 −0.601 0.029 00

Triflusal 3 −0.755 0.030 11 Meticrane 5 −0.599 0.029 62

Piperidolate 3 −0.743 0.034 63 Vorinostat 12 −0.596 0.000 18

Daunorubicin 4 −0.733 0.010 19 Tranylcypromine 5 −0.592 0.032 64

Repaglinide 4 −0.727 0.011 42 Bromocriptine 5 −0.573 0.042 46

Camptothecin 3 −0.725 0.042 85 Zimeldine 5 −0.572 0.043 38

Norcyclobenzaprine 4 −0.723 0.012 02 Clemizole 5 −0.568 0.045 48

Ronidazole 3 −0.711 0.049 19 Astemizole 5 −0.567 0.046 14

Ellipticine 4 −0.708 0.015 14 Meclozine 5 −0.565 0.047 08

Gliclazide 4 −0.707 0.015 28 Procaine 5 −0.565 0.047 46

Phenoxybenzamine 4 −0.704 0.015 76 Cloperastine 6 −0.551 0.031 56

0175029-0000 6 −0.701 0.001 63 Famprofazone 6 −0.543 0.036 21

Tyloxapol 4 −0.694 0.018 52 Dipyridamole 6 −0.537 0.039 63

Skimmianine 4 −0.690 0.020 01 Promazine 6 −0.523 0.047 85

Bisacodyl 4 −0.690 0.020 03 Trifluoperazine 16 −0.504 0.000 20

Resveratrol 9 −0.684 0.000 04 Prochlorperazine 16 −0.434 0.002 99

Medrysone 6 −0.680 0.002 92 LY-294002 61 −0.428 0.000 00

Bepridil 4 −0.674 0.025 22 Trichostatin A 182 −0.425 0.000 00

Pyrvinium 6 −0.672 0.003 34 Fluphenazine 18 −0.406 0.003 80

Nortriptyline 4 −0.669 0.027 07 Thioridazine 20 −0.388 0.003 27

Apigenin 4 −0.667 0.027 65 Alpha-estradiol 16 −0.357 0.025 35

Methylergometrine 4 −0.664 0.028 71 Geldanamycin 15 −0.349 0.039 26

Bufexamac 4 −0.660 0.030 10 Sirolimus 44 −0.335 0.000 08

Prestwick-1084 4 −0.656 0.032 41 Chlorpromazine 19 −0.329 0.024 17

Deptropine 4 −0.651 0.034 95 Wortmannin 18 −0.314 0.046 91

Dextromethorphan 4 −0.647 0.036 86 Tanespimycin 62 −0.311 0.000 00

Protriptyline 4 −0.646 0.037 36 Fulvestrant 40 −0.225 0.029 99
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