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Abstract

Insect oviposition on plants frequently precedes herbivory. Accumulating evidence indicates that plants recognize insect
oviposition and elicit direct or indirect defenses to reduce the pressure of future herbivory. Most of the oviposition-
triggered plant defenses described thus far remove eggs or keep them away from the host plant or their desirable feeding
sites. Here, we report induction of antiherbivore defense by insect oviposition which targets newly hatched larvae, not the
eggs, in the system of tomato Solanum lycopersicum L., and tomato fruitworm moth Helicoverpa zea Boddie. When tomato
plants were oviposited by H. zeamoths, pin2, a highly inducible gene encoding protease inhibitor2, which is a representative
defense protein against herbivorous arthropods, was expressed at significantly higher level at the oviposition site than
surrounding tissues, and expression decreased with distance away from the site of oviposition. Moreover, more eggs
resulted in higher pin2 expression in leaves, and both fertilized and unfertilized eggs induced pin2 expression. Notably,
when quantified daily following deposition of eggs, pin2 expression at the oviposition site was highest just before the
emergence of larvae. Furthermore, H. zea oviposition primed the wound-induced increase of pin2 transcription and a burst
of jasmonic acid (JA); tomato plants previously exposed to H. zea oviposition showed significantly stronger induction of pin2
and higher production of JA upon subsequent simulated herbivory than without oviposition. Our results suggest that
tomato plants recognize H. zea oviposition as a signal of impending future herbivory and induce defenses to prepare for this
herbivory by newly hatched neonate larvae.
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Introduction

Upon herbivory, plants induce a variety of defenses that

developed via coevolution with herbivorous arthropods, especially

insects [1–3]. With intensive study during the past few decades, it

is now generally understood that upon insect herbivory plants

perceive insect-derived cues (e.g. continuous feeding damage,

herbivore-associated molecular patterns or HAMPs) and initiate

a set of defenses tailored to given herbivore species [3–6].

Compared to constitutive defenses, which are continuously

expressed irrespective of herbivory, induced defenses are consid-

ered more flexible and efficient [7,8].

Recently, increasing research interest has focused on the

deployment of plant defense traits prior to herbivory [9,10]. The

basic premise is that early-induced defenses could be even more

effective and adaptive than defenses induced after herbivores start

feeding. By perceiving reliable cues of impending herbivory and

initiating appropriate defenses in advance, plants may be able to

totally avoid or significantly reduce herbivory even before a full-

induced defense is activated [9,10]. Thus far, plants appear to

recognize at least three events as indicators of future herbivory.

First, some plants increase resistance against insects when

a neighboring plant suffers insect herbivory [11,12]. In this case,

plants appear to ‘‘eavesdrop’’ on volatile organic compounds

released by the neighboring plant under herbivory and elicit their

defenses. Moreover, the volatile-receiving plants showed priming

of defenses, meaning the receiver plants activated faster or

stronger defenses upon the anticipated herbivory [12–16]. Second,

insect footsteps can induce defensive responses in plants either by

caterpillars breaking cells when crochettes dig into leaves [17] or

when caterpillars or moths break trichomes [18]. Third, oviposi-

tion, one of the most common events preceding insect larval

herbivory, can induce a variety of direct and indirect defenses of

plants [19,20]. Mechanisms of oviposition-induced defenses in-

clude production of ovicides [21], a hypersensitive response or

necrosis leading to drying or dropping of eggs [22–24], excessive

growth of hard tissue (neoplasm) under the eggs to force neonates

to hatch outside and be exposed to harsh environment [24,25], egg

crushing [26], egg extrusion [27], and calling in egg or larval

parasitoids by the host plant [28–30].

While most of previous studies of oviposition-induced plant

defense have focused on defenses that remove or kill insect eggs
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from the host [19,20], there have been only two reports of the

effect of insect oviposition on the quality of the host plant as food

source and thus on the performance of emerging neonates. Pieris

brassicae L. oviposition on Arabidopsis thaliana L. appeared to

suppress antiherbivore defenses and the application of P. brassicae

egg extract resulted in improved growth of Spodoptera littolalis larvae

on the host plant [31]. More recently, preceding oviposition

treatment with pine sawfly (Diprion pini L.) was shown to reduce the

performance of the conspecifics on Scots pine (Pinus sylvestris L.)

branches, although pine sawfly oviposition on pine needles

involves mechanical damage by ovipositors and deposition of eggs

inside the wound [32].

In this study, we hypothesized that tomato plants recognize H.

zea oviposition as an indicator of future herbivory and induce or

prime defenses targeting neonates to hatch. To test the hypothesis,

we first investigated whether tomato plants reacted to H. zea

oviposition and elicited defensive responses at the oviposition site.

We examined hydrogen peroxide (H2O2) production on tomato

leaves under H. zea eggs, as reactive oxygen species including

H2O2 are often related to antiherbivore plant defenses [33,34].

Then, we measured the transcriptional level of pin2, a gene

encoding protease inhibitor2 (Pin2), at the oviposition site, assessed

the effect of H. zea oviposition on the induction of pin2 at the

oviposition site, and determined the spatial and temporal

dynamics of pin2 expression pattern. The level of pin2 expression

was selected as a defense index because the induction of pin2 by

mechanical wounding and arthropod herbivory is well understood

in tomato [6,35,36] and because Pin2 is a defensive protein that

targets insects under active feeding, not eggs. We also tested

whether H. zea oviposition primed antiherbivore defense of tomato

plants, i.e. whether oviposition-treated tomato showed intensified

defense induction upon subsequent herbivory by measuring pin2

expression and jasmonic acid (JA) concentration in tomato leaves.

JA is a plant hormone that orchestrates the induction of

antiherbivore defenses [37], and its concentrations in leaves are

a good marker of the plant defense level and were successfully used

to indicate priming in a previous report [9].

Results

Tomato perceives H. zea oviposition and induces
defensive responses at the oviposition site

Helicoverpa zea oviposition elicits H2O2 accumulation at

the oviposition site on tomato foliage. It has been proposed

that H2O2 plays a role as a second messenger between early

response genes (e.g. genes involved in the biosynthesis of JA) and

late response genes (e.g. genes whose products function as

defensive traits such as protease inhibitors) [33,36]. In addition,

accumulation of H2O2 and other reactive oxygen species at the

oviposition site was previously reported [34]. Production of H2O2

at the oviposition site was also detected in the interaction between

tomato and H. zea. When H. zea egg-laden tomato leaves were

stained with 3,39-diaminobenzidine (DAB) solution, H2O2 pro-

duction was clearly visualized right under the eggs (Figure 1A).

Pin2 is expressed at the H. zea oviposition site and the

level of expression decreased with distance from the

egg. Leaf tissue sampled at the H. zea oviposition site showed

significantly higher level of pin2 expression (Figure 1B; Non-

parametric GLM; Chi-square = 6.8182, p=0.009, n=5). The area

of pin2 expression was more extensive than expected. Transcrip-

tional levels of pin2 at 0, 10, and 20-mm away from eggs were

significantly higher than that of intact plants, and the intensity

Figure 1. Response of tomato leaves to H. zea eggs at the
oviposition site. (A) H2O2 production under eggs of H. zea was
visualized by DAB staining on an oviposition-treated tomato leaf. Left
panels, the upper surface of a leaf; right panels, the lower surface of
a leaf; upper panels, before DAB staining; down panels, after DAB
staining. (B) Induction of pin2 expression at the H. zea oviposition site.
Relative pin2 expression is presented in the graph. Data were analyzed
for significance with non-parametric Proc GLM (Mean 6 SE; ** above
bars indicate significant difference; Chi-square= 6.8182, p= 0.009, n= 5).
doi:10.1371/journal.pone.0037420.g001

Figure 2. Intensity of pin2 induction with distance from eggs.
Relative pin2 expression is presented in the graph. Data were analyzed
for significance with non-parametric Proc GLM and compared with
Tukey test (Mean6 SE; letters above bars indicate significant difference;
Chi-square= 14.4695, p= 0.0023, n=4 or 5).
doi:10.1371/journal.pone.0037420.g002
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decreased with distance from (Figure 2; Non-parametric GLM;

Chi-square = 14.4695, p=0.0023, n=4 or 5).

Pin2 expression at the oviposition site was highest just

before the emergence of neonates. To understand its

temporal dynamics following oviposition, we tracked levels of

pin2 expression at the oviposition site over three days after

oviposition and before the emergence of neonates (Figure 3). Pin2

expression after 1d was significantly higher at the oviposition site

than that of intact plants (Non-parametric GLM; Chi-

Square = 3.9382, p=0.0472, n=5). There was no difference in

levels of pin2 expression between the two groups on day 2 (Non-

parametric GLM; Chi-Square = 0.2400, p=0.6242, n=4 or 5).

However, levels of pin2 expression dramatically increased on day 3

(Non-parametric GLM; Chi-Square = 6.0000, p=0.0143, n=4 or

5), the final day before the emergence of neonates.

Unfertilized eggs induced pin2 as well. A considerable

portion of females of many insect species fail to mate in the field

[38]. Many female moths of H. zea caged with males were found

unmated, but they laid about half as many unfertilized eggs as

fertilized eggs deposited by mated females [39]. As only fertilized

eggs produce neonates and result in herbivory, we examined

whether tomato plants would respond to infertile eggs as well as

fertile ones. In this experiment, plants were caged with no moth,

with male moths only, with virgin female moths only, and with

male and female moths together. From now on, we will refer to the

female moths that were caged with male moths as ‘mated’ female

moths whether they are virgin or mated, although not all females

in the group of ‘mated female moths’ are mated. Virgin female

moths laid seemingly as many eggs on tomato plants as mated

females. Infertility of the eggs laid by virgin female moths was

confirmed as the eggs desiccated on tomato leaves in a few days,

while caterpillars hatched from the eggs from mated female moths.

No significant transcriptional difference in pin2 was observed

between intact plants and plants caged with male moths only. The

eggs from mated female moths induced pin2, consistent with the

results stated above. Interestingly, significant induction of pin2 was

elicited at the oviposition site of unfertilized eggs. Although the

mean of pin2 expression of tomato leaf tissue under unfertilized

eggs appeared lower than that of fertilized ones, the difference was

not statistically significant (Figure 4; Proc GLM; F3,15 = 22.99,

p,0.0001, n=4 or 5).

Induction of pin2 and accumulation of JA were primed
by H. zea oviposition for subsequent simulated H. zea
herbivory
Our results thus far strongly suggest that tomato plants perceive

H. zea eggs and elicit a defensive response. We further

hypothesized that H. zea oviposition may prime antiherbivore

defenses of tomato in anticipation of herbivory by neonates

hatching from eggs. To test this hypothesis, we exposed tomato

plants to egg-laying H. zea moths, and then mechanically wounded

the terminal leaflet and applied fresh oral secretion (OS; a mixture

of regurgitant and saliva) of H. zea larvae to simulate insect

herbivory. Compared to the typical pattern of pin2 expression,

which increases and then decreases within 24 hr after wounding,

tomato plants previously exposed to H. zea oviposition showed

much stronger induction of pin2 following mechanical wounding

(Figure 5; Non-parametric GLM; at 0 h, Chi-Square = 21.00,

p=0.0025, n=4; at 3 h, Chi-Square = 6.3240, p=0.0969, n=4 or

5; at 8 h, Chi-Square = 13.2857, n=5, p=0.0024; at 1 d, Chi-

Square = 14.3843, n=4 or 5, p=0.0024). Simple disruption of

glandular trichomes, which had been recently reported to induce

pin2 expression [18] did not prime pin2 expression (Figure S1).

In addition to gene expression data, we also investigated the

influence of insect oviposition on JA production after simulated

herbivory. We found that oviposition did not change the basal JA

levels in leaf tissue (Figure 6A; Proc GLM; F1,8 = 0.03, p=0.8600,

n=5). However, when plants were mechanically wounded and

treated with OS of H. zea 5th instars to simulate herbivory, JA

levels were significantly higher in oviposition-treated plants than in

intact plants (Figure 6B; Non-parametric Proc GLM; at 30 min,

Chi-Square = 11.2604, p=0.0036, n=5; at 1 hr, Chi-

Square = 11.18, p=0.0037, n=5; at 3 hr, Chi-Square = 9.7582,

p=0.0076, n=4 or 5). Enhanced level of pin2 expression and JA

burst strongly indicate that tomato defenses are primed by H. zea

oviposition.

Figure 3. Temporal fluctuation of transcriptional level of
tomato pin2 at the H. zea oviposition site. Relative pin2 expression
is presented in the graph. Data were collected for 3 days from the
oviposition treatment to the emergence of neonates and analyzed for
significance with non-parametric Proc GLM (Mean 6 SE; letters above
bars indicate significant difference; Day 1, Chi-Square = 3.9382,
p= 0.0472, n=5; Day 2, Chi-Square= 0.2400, p=0.6242, n= 4 or 5; Day
3, Chi-Square= 6.0000, p=0.0143, n= 4 or 5).
doi:10.1371/journal.pone.0037420.g003

Figure 4. Effect of the egg fertility on tomato pin2 expression at
the H. zea position site. Relative pin2 expression is presented in the
graph. Data were analyzed for significance with Proc GLM and
compared with Tukey test (Mean 6 SE; letters above bars indicate
significant difference; F3,15 = 22.99, p,0.0001, n= 4 or 5).
doi:10.1371/journal.pone.0037420.g004
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Discussion

Our results are consistent with the hypothesis that host plants

can perceive cues associated with oviposition and then induce and

prime defensive responses that can beeffective against soon-to-

emerge neonates. The response of tomato to H. zea oviposition was

comprehensively explored using a suite of defensive responses that

are reliable indicators of tomato defense against feeding by insect

herbivores. As Pin2, the end product of pin2, acts as a defensive

trait only after ingested into the insect digestive system, induction

or priming of pin2 by insect oviposition suggests tomato plants

recognized the eggs as a future danger and became prepared for

herbivory by the neonates, not the eggs. It was demonstrated that

the local production of H2O2 under H. zea eggs, the coincidence

between the distribution of eggs and transcriptional map of pin2 on

tomato leaves, and the coincidence between the time of the highest

pin2 expression and the larval hatching time. All of these results

indicate that the induction of tomato defense by H. zea oviposition

was caused not by other factors such as trichome disruption, but

by the eggs.

There have been two reports showing that insect oviposition can

influence the quality of the host plant as food source [31,32]. The

eggs of P. brassicae accumulated salicylic acid, a plant hormone

acting antagonistically against JA [37], at the oviposition site and

suppressed antiherbivore defenses in A. thaliana [31]. As a result,

Spodoptera littoralis Boidsduval caterpillars (but not P. brassicae larvae)

performed better on the A. thaliana previously treated with the

extract of P. brassicae eggs [31]. More recently, oviposition by pine

sawfly adults on the Scots pine was shown to reduce the

performance of the conspecific larvae, although the relevant

defense mechanism of the host plant was not elucidated [32]. In

the present study, we showed that insect oviposition can induce

defenses that are known to inhibit the growth of feeding insects

and that plant defenses can be primed by insect oviposition.

Besides egg deposition, there are other factors associated with

oviposition that may induce defensive responses from tomato. For

example, disruption of glandular trichomes by moth walking on

leaves has been found to induce tomato pin2 [18]. However, the

focused nature of our results just around the oviposition site

strongly suggests that cues associated with egg deposition or the

egg itself are at least the primary factor that tomato plants perceive

to trigger defense induction.

Hydrogen peroxide molecules were clearly visualized under

eggs laid singly on leaf surface (Figure 1A). Hydrogen peroxide

and other reactive oxygen species function as key cellular signaling

molecules [40], and in tomato H2O2 has been demonstrated to

mediate early defense response genes (e.g. genes involved in JA

Figure 5. Priming effect of H. zea oviposition on tomato pin2
expression. Effect of previous H. zea oviposition on the induction of
tomato pin2 upon following simulated herbivory was investigated.
Control, intact plants without oviposition treatment (closed circle);
Oviposition, plants treated only with oviposition (open circle); Wound-
ing, plants mechanically damaged and OS-applied without oviposition
treatment (closed triangle); Ovi+Wnd, plants treated with oviposition
followed by mechanical wounding and OS application (open triangle).
Without mechanical damage, there are only Control and Oviposition at
time 0 h. At times 8 h and 1 d, closed circles (control) are hidden behind
open circles (oviposition). Relative pin2 expression is presented in the
graph. Data were analyzed for significance with non-parametric Proc
GLM and compared with Tukey test (Mean 6 SE; letters next to spots
indicate significant difference; n.s., data not significantly different; at
0 h, Chi-Square= 21.00, p= 0.0025, n=4; at 3 h, Chi-Square = 6.3240,
p= 0.0969, n= 4 or 5; at 8 h, Chi-Square= 13.2857, n=5, p= 0.0024; at
1 d, Chi-Square = 14.3843, n=4 or 5, p=0.0024).
doi:10.1371/journal.pone.0037420.g005

Figure 6. Priming effect of H. zea oviposition on JA levels in
tomato leaves. (A) Effect of H. zea oviposition on basal JA levels. Data
were analyzed for significance with Proc GLM (Mean 6 SE; n.s., data not
significantly different; Proc GLM; F1,8 = 0.03, p= 0.8600, n= 5). (B) Effect
of previous H. zea oviposition on the induction of JA production by
mechanical wounding and application of H. zea OS. Data were analyzed
for significance with non-parametric Proc GLM and compared with
Tukey test (Mean6 SE; letters above bars indicate significant difference;
n.s., data not significantly different; at 30 min, Chi-Square= 11.2604,
p= 0.0036, n=5; at 1 hr, Chi-Square= 11.18, p=0.0037, n=5; at 3 hr,
Chi-Square = 9.7582, p= 0.0076, n= 4 or 5). Abbreviations: v, tomato
plants treated with H. zea oviposition; w, tomato plants treated with
mechanical wounding and application of H. zea OS; v/w, tomato plants
treated with H. zea oviposition followed by mechanical wounding and
application of H. zea OS.
doi:10.1371/journal.pone.0037420.g006
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biosynthesis) and late defense response genes such as pin2 [33,36].

Hydrogen peroxide production has also been detected beneath

eggs of the specialist lepidopteran P. brassicae on leaves of A. thaliana

[34], although in this case, H2O2 production appears a part of

elicitation of hypersensitive response and suppression of plant

antiherbivore defense by insect oviposition [31]. Another recent

paper documented H2O2 production, JA and JA-regulated wound

responses in tomato by the oviposition of Orius laevigatus [41]. Orius

oviposition accompanies mechanical damage because its eggs are

not laid, but thrusted into leaf tissue, which probably elicited

wound response in tomato.

The expression of pin2 was found upregulated in a broad area

on leaves around the egg deposition site, including 20-mm away

(Figure 2). The induced area was large enough that eggs laid a few

centimeters apart would activate pin2 transcription in a whole

tomato leaflet. The non-uniform expression of pin2 on leaves that

was highest at the oviposition site might be important as a defense

trait. After emerging, neonates wander searching for suitable

feeding sites within or between host plants [42]. Neonates of H. zea

will hatch where pin2 expression is highest and move away to find

more desirable feeding sites. Because predation is one of the main

mortality factors for neonates [42] and larval movement increases

predation risk [43], increased expression of pin2 at the oviposition

sites might contribute to elevated predation risk of neonates.

Assessment of the movement of neonates on oviposition-treated

tomato plants will provide a more detailed understanding of

uneven expression of pin2 around the oviposition site.

Our results suggest that pin2 expression coincided with the

emergence of neonates (Figure. 3). Although pin2 is considered one

of late response genes induced between 4 to 24 hr following

herbivory [36], the observed pin2 expression three days after

oviposition is well beyond the ordinary time frame of pin2

expression induced by mechanical wounding or insect herbivory.

This delayed culmination of defense suggests that the induction of

defense may be synchronized to the time of emergence of

neonates. In this way, plants may be able to produce defensive

compounds without wasting resources by premature expression of

defense traits. Plants might be able to trace air temperature, which

is most important for hatching time [44,45], or perceive egg-

derived HAMPs that indicate larvae are about to emerge.

Synchronicity of defense gene induction following insect oviposi-

tion with larval emergence was recently reported [32]. The

transcription of sesquiterpene synthase genes of Scots pine (P.

sylvestris L.) was found to be the most intense 14 d following pine

sawfly (D. pini L.) oviposition on pine branches, just prior to

emergence of pine sawfly larvae.

Notably, unfertilized eggs also induced tomato pin2 expression

(Figure 4). Many females of insects fail to mate in the field [38]. A

large portion of H. zea females were also found unmated even after

spending two nights individually with a male, and virgin female

moths laid unfertilized eggs for unknown reasons [39]. Brussels

sprouts (Brassica oleracea L. var. gemmifera) respond to an antiaph-

rodisiac of its herbivorous butterfly, P. brassicae [46] and this

compound is delivered from males to females with seminal fluid

during copulation and reduces the interest of females in further

mating [47]. Brussels sprouts may recognize insect oviposition

through detection of this compound on leaves and may be able to

even distinguish between fertilized and unfertilized eggs to save

resources. However, our results indicate that tomato plants

respond to eggs irrespective of egg fertility. It is interesting that

tomato responded to infertile eggs, which would not lead to any

feeding damage on the host plant in the future. We conjecture that

in the interactions between tomato and H. zea, unfertilized eggs

laid together with fertilized eggs might increase the ‘‘alertness’’ on

the host plant. This is the first report of the induction of plant

defensive response by deposition of unfertilized eggs.

Our results indicate that insect oviposition can prime plant

defenses (Figures 5, 6). Generally, induced defense is considered

more advantageous with priming [8]. Priming may reduce the

possibility of development of a strategy to suppress plant defensive

traits by herbivorous arthropods [48], and the cost of priming is

considered relatively low [49]. Priming by oviposition should

benefit plants with induction of more powerful defense upon

anticipated herbivory as well as with minimized waste of resources

if eggs fail to hatch or if they are removed by predators. Due to the

advantages of priming and the frequency of oviposition by

herbivorous insects on the host plant in the field [20], priming

of defenses by insect oviposition might be a common but

overlooked defense strategy of plants against future herbivory by

neonates. Indeed, suppression of antiherbivore defenses by insect

oviposition found recently in Arabidopsis [31] might be a counter-

ploy by insects against this defensive strategy induced by insect

oviposition. Interestingly, priming of plant defenses by insect

oviposition was predicted [9].

In summary, we presented a series of results that indicate eggs

deposited on tomato foliage by adult H. zea moths elicited a suite

of defensive responses, including accumulation of H2O2, expres-

sion of pin2, a defense gene aiming actively feeding insects, and

elevated levels of the defense hormone JA. Moreover, the spatial

and temporal patterns of pin2 expression at the oviposition site

were also determined. Our results indicate that oviposition primed

plant defense for impending herbivory. Taken together, the results

presented here suggest that, upon H. zea oviposition, tomato plants

perceive insect eggs and induce defense directed towards larvae

that will soon hatch and inflict damage on plant tissue. A former

study showed egg-induced plant effects on larval performance, but

did not detect the chemical or molecular causes of these effects

[32]; in contrast, the present study detected egg-induced changes

of JA-levels and transcript levels of a plant defense gene, but did

not yet prove that these changes affect herbivore performance. In

the future, it will be valuable to examine whether induction of

defenses targeting neonates by insect oviposition is common in the

field and how effective oviposition-induced defenses are. Charac-

terization of potential elicitors of plant defenses may be useful for

pest control as well as understanding of molecular mechanisms of

oviposition-induced defense.

Materials and Methods

Plants and Insects
Seeds of tomato (Solanum lycopersicum L. cv. Better Boy) were

purchased commercially. Plants were fertilized once with Osmo-

cote Plus (15-9-12, Scotts, Marysville, OH, USA) 7–10 days after

seedlings were transferred to individual pots with Pro-Mix potting

soil (Premier Horticulture, Quakertown, PA, USA). Plants were

grown in the greenhouse at the Pennsylvania State University

(University Park, PA) on a cycle of 16-h day: 8-h night at 24–28uC.
Tomato plants between the 4- to 5-leaf stages were used for

oviposition treatment.

Eggs, larvae, and adults of H. zea were kept in an incubator on

a cycle of 16-h day: 8-h night at 26uC. The eggs of H. zea were

supplied from BioServ (Frenchtown, NJ, USA), and larvae were

reared on artificial diet [50] in a 30-mL diet cup. The ingredients

of artificial diet were purchased from BioServ (Frenchtown, NJ,

USA) and Sigma-Aldrich (St. Louis, MO, USA). After pupation,

each pupa was transferred to a new diet cup until the emergence of

adults.

Enhance Plant Wound Response by Insect Oviposition
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Oviposition Treatment
Five to six tomato plants were caged with 20–30 females and

10–15 males of 1–3 day old H. zea moths in a cage

(W6L6H=75663688 cm) for 1.5–2 days with two scotophases

in the experiments for Figures 1, 2, 5, and 6. Each moth in a cup

was provided with several squirts of 10% sugar solution for 2–4 hr.

Moths laid different numbers of eggs per plant from dozens to

hundreds, and plants with at least 5 eggs on the distal leaflet of the

4th compound leaf were used for further treatments.

In the experiment for Figure 3 where pin2 expression at the

oviposition site was traced for 3 days, moths were kept in a mating

jar for 24 hr with 10% sugar solution on the bottom and squirted

on the wall before they were released into cages with tomato plants

inside in order to reduce the time of oviposition treatment to 1

day. In the experiment for Figure 4 to see the effect of mating on

the pin2 expression, three groups of moths of 30 virgin females, 20

virgin females with 10 virgin males, and 30 virgin males, were kept

in separate mating jars with sugar solution as stated above for

24 hr, then each group of moths was released into a cage with 6

tomato plants inside.

H2O2 Detection by DAB Staining
H.zea oviposition-treated tomato leaves were excised and the

petioles had been dipped overnight in 1 mg mL21 solution

(pH 3.8) of 3,39-diaminobenzidine (DAB) under light at the room

temperature. Then, chlorophyll of leaves was removed in double-

boiling ethanol and H2O2 production was visualized as brown

spots. Leaves were photographed before and after dechlorophylli-

zation [33].

Collection of Leaf Tissue
Each leaf tissue sample was collected from an individual plant.

In the experiments where pin2 expression was measured at the

oviposition site (results for Figures 1b, 2, 3, and 4), 15–20 egg-laid

leaf disks of 5-mm diameter were punched off, eggs on leaf disks

were removed, leaf disks were put in a 2-mL tube with a metal

milling ball, frozen in liquid nitrogen, and stored at 280uC until

RNA extraction. Leaf disks were sampled from the distal leaflet,

and if necessary also from the medial and proximal leaflets, of the

4th compound leaf. For priming tests with pin2 (Figures 5 and S1),

50–100 mg of leaf tissue from the distal leaflet of the 4th

compound leaf was taken after eggs were removed, frozen with

a milling ball in liquid nitrogen, and stored at 280uC until RNA

extraction.

RNA Extraction and Quantitative Real-Time Polymerase
Chain Reaction (qRT-PCR)
RNA extraction was executed as previously described [18]. Leaf

tissue sampled as described above was powdered with a metal

milling ball in a 2 mL sample tube using GenoGrinder 2000 (Spex

SamplePrep, Metuchen, NJ, USA) at 1200 strokes per min, and

RNA was extracted with an RNeasy Plus Mini-kit (Qiagen,

Valencia, CA, USA) following the manufacturer’s instruction.

cDNA was synthesized from 1 mg of RNA with High Capacity

cDNA Reverse Transcription Kit (Applied Biosystems, Foster

City, CA, USA) and was used as template for qRT-PCR after 10

times dilution. The sequences of the forward and reverse primers

of pin2 (Gene Bank Accession number K03291) for qRT-PCR

were 59-GGA TTT AGC GGA CTT CCT TCT G- 39 and 59-

ATG CCA AGG CTT GTA CTA GAG AAT G- 39, respectively.

PCR product was amplified with Power SYBR Green PCR

Master Mix (Applied Biosystems, Foster City, CA, USA) and the

relative expression of pin2 was analyzed with 7500 Fast Real-Time

PCR System (Applied Biosystems, Foster City, CA, USA). Tomato

ubiquitin gene was used as a reference gene (Gene Bank Accession

number X58253) and the sequences of the forward and reverse

primers were 59-GCC AAG ATC CAG GAC AAG GA-39 and 59-

GCT GCT TTC CGG CGA AA-39, respectively [51].

Test of priming by oviposition and trichome disruption
To test whether expression of tomato pin2 is primed by H. zea

oviposition (Figure S1), the terminal leaflet of the 4th compound

leaf of tomato plants treated with H. zea oviposition was damaged

by rolling a pattern wheel 25-mm long twice paralleled with the

mid vein, and 20 mL of 5-time diluted OS collected fresh from the

5th instar larvae of H. zea was applied on the wound immediately.

Leaf tissue was collected 0, 3, 8, and 24 hr after wounding

treatment for RNA extraction and qRT-PCR.

To test the possibility of priming by trichome disruption, a distal

leaflet of the 4th compound leaf was gently rubbed with a latex-

gloved finger to break down leaf glandular trichomes. Twenty four

hr after disruption of trichomes, the leaflet was wounded and

applied with 5 mL of H. zea OS to mimic H. zea herbivory as

described above. Leaf tissue was sampled after another 24 hr for

RNA and qRT-PCR. The level of pin2 transcription was

compared among intact plants, trichome-disrupted plants, wound-

ed plants, and plants treated with both trichome breakdown and

herbivory mimicry.

Quantification of JA
The amount of JA was quantified based on the method

described by Tooker and De Moraes [52]. After H. zea oviposition

and wounding treatment and the eggs were gently removed,

100 mg of leaf tissue was sampled under liquid nitrogen into

a FastPrep tubes (Qbiogene, Carlsbad, CA, USA) containing 1 g

of Zirmil beads (1.1 mm; Saint-Gobain ZirPro, Mountainside, NJ,

USA), 400 mL of extraction buffer (1-PrOH:-

H2O:HCl = 2:1:0.002, v/v), and 100 ng of dihydrojasmonic acid

(diH-JA) as an internal standard. DiH-JA was obtained by alkaline

hydrolysis of methyl dihydrojasmonate (Bedoukian Research Inc.,

Danbury, CT, USA). Leaf tissue was sampled 0, 30, 60, and

180 min after treatment with wounding and H. zea OS treatment

and stored at 280uC until necessary.

Plant leaf tissue was shredded in FastPrep FP120 (Thermo-

Savant, Holbrook, NY) for 40 sec at 5.5 unit speed at the room

temperature. After 1 mL of CH2Cl2 was added, FastPrep tubes

were shaken against in FastPrep FP120 for 40 sec at 5.5 unit speed

at the room temperature. After centrifugation at 10,000 g for

1 min (Heraeus Biofuge Pico, Thermo Fisher Scientific, Waltham,

MA), the organic layer was transferred to a 4-mL screw-capped

glass vial with a glass syringe (Hamilton Company, Reno, NV) and

dried up under gentle air flow at the room temperature. JA in the

dried samples were methylesterificated into methyl jasmonate (MJ)

with 2.3 mL of trimethylsilyl diazomethane (TMS-CH2N2; 2M in

hexane; Sigma-Aldrich, St. Louis, MO, USA) in 100 ml of

MeOH/diethyl ether (1:9, v/v) for 25 min at the room

temperature. The remaining TMS-CH2N2 was neutralized by

addition of 2.3 mL of hexane/AcOH (88:12, v/v) for additional

25 min at the room temperature. MJ was evaporated at 200uC
into a SuperQ (80/100 mesh; Alltech, Deerfield, IL) trap for 2 min

and recovered with 150 mL of CH2Cl2 into a glass insert in a GC

vial for GC-MS analysis.

MJ was chemically ionized with isobutene and analyzed on the

selected ion monitoring mode by GC/MS (6890 Plus/5973N,

Agilent, Santa Clara, CA) equipped with HP-1MS column (length

30 m, inner diameter 0.25 mm, film thickness 0.25 mm; Agilent,

Santa Clara, CA). The injection port was maintained at 250uC
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and the oven temperature was kept on 40uC for 1 min, increased

by the rate of 15uC min21, and maintained at 250uC for 7 min.

Statistics
All the data were subject to Grubb’s test to statistically remove

outliers (p,0.05; Graphpad Software). When log transformed data

satisfied the assumptions of normality and equal variances,

significant difference of data was determined with Proc GLM,

and when the assumptions were not satisfied, non-parametric

GLM was used instead. Multiple comparison of data was carried

out with Tukey test (SAS 9.3, SAS Inc.).

Supporting Information

Figure S1 Effect of trichome disruption on the level of
pin2 expression upon subsequent mechanical wounding
and applicaton of H. zea OS. Trichome disruption did not

influence the level of pin2 expression upon subsequent simulated

herbivory. Data were analyzed for significance with non-para-

metric Proc GLM and compared with Tukey test (Mean 6 SE;

Chi-Square = 17.3945, p=0.006, N=5 or 6; letters above bars

indicate significant difference).

(DOCX)

Acknowledgments

JK thanks Seung Ho Chung, Michelle Peiffer (Penn State Entomology) and

Dr. Dussourd (University of Central Arkansas) for valuable advice, and

Nick Sloff for preparing figures.

Author Contributions

Conceived and designed the experiments: JK GWF. Performed the

experiments: JK JFT. Analyzed the data: JK JFT GWF. Contributed

reagents/materials/analysis tools: JFT DSL CMD GWF. Wrote the paper:

JK JFT DSL CMD GWF.

References

1. Futuyma DJ, Agrawal AA (2009) Macroevolution and the biological diversity of

plants and herbivores. Proc Natl Acad Sci U S A 106: 18054–18061.

2. Zhu-Salzman K, Luthe DS, Felton GW (2008) Arthropod-inducible proteins:

broad spectrum defenses against multiple herbivores. Plant Physiol 146:

852–858.

3. Howe GA, Jander G (2008) Plant immunity to insect herbivores. Annu Rev

Plant Biol 59: 41–66.

4. Farmer EF, Dubugnon L (2009) Detritivorous crustaceans become herbivores on

jasmonate-deficient plants. Proc Natl Acad Sci U S A 106: 935–940.

5. Wasternack C, Stenzel I, Bause B, Hause G, Kutter C, et al. (2006) The wound

response in tomato – role of jasmonic acid. J Plant Physiol 163: 297–306.

6. Felton GW, Tumlinson JH (2008) Plant-insect dialogs: complex interactions at

the plant-insect interface. Curr Opin Plant Biol 11: 457–463.

7. Agrawal A, Karban R (1999) Why induced defenses may be favored over

constitutive strategies in plants. In: Tollrian R, Harvell CD, eds. The ecology

and evolution of inducible defenses. Princeton: Princeton University Press. pp

45–61.

8. Karban R (2011) The ecology and evolution of induced resistance against

herbivores. Funct Ecol 25: 339–347.

9. Hilker M, Meiners T (2010) How do plants ‘‘notice’’ attack by herbivorous

arthropods? Biol Rev 85: 267–280.

10. Kim J, Quaghebeur H, Felton GW (2011) Reiterative and interruptive signaling

in induced plant resistance to chewing insects. Phytochemistry 72 (2011) 1624–

1634.

11. Heil M, Karban R (2009) Explaining evolution of plant communication by

airborne signals. Trend Ecol Evol 25: 137–144.

12. Karban R, Maron J (2002) The fitness consequences of interspecific

eavesdropping between plants. Ecology 83: 1209–1213.

13. Engelberth J, Alborn HT, Schmelz EA, Tumlinson JH (2004) Airborne signals

prime plants against insect herbivore attack. Proc Natl Acad Sci U S A 101:

1781–1785.

14. Ton J, D’Alessandro M, Jourdie V, Jakab G, Karlen D, et al. (2007) Priming by

airborne signals boosts direct and indirect resistance in maize. Plant J 49: 16–26.

15. Heil M, Silva Bueno JC (2007) Within-plant signaling by volatiles leads to

induction and priming of an indirect plant defense in nature. Proc Natl Acad

Sci U S A 104: 5467–5472.

16. Frost CJ, Mescher MC, Carlson JE, De Moraes CM (2008) Plant defense

priming against herbivores: getting ready for a different battle. Plant Physiol 146:

818–824.

17. Bown AW, Hall DE, MacGregor KB (2002) Insect footsteps on leaves stimulate

the accumulation of 4-aminobutyrate and can be visualized through increased

chlorophyll fluorescence and superoxide production. Plant Physiol 129:

1430–1434.

18. Peiffer M, Tooker JF, Luthe DS, Felton GW (2009) Plants on early alert:

glandular trichomes as sensors for insect herbivores. New Phytol 184: 644–656.

19. Hilker M, Meiners T (2006) Early herbivore alert: insect eggs induce plant

defense. J Chem Ecol 32: 1379–1397.

20. Hilker M, Meiners T (2011) Plants and insect eggs: how do they affect each

other? Phytochemistry 72: 1612–1625.

21. Seino Y, Suzuki Y, Sogawa K (1996) Anovicidal substance produced by rice

plants in response to oviposition by the whitebacked planthopper, Sogatella
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36. Fowler JH, Narvaéz-Vásquez J, Aromdee DN, Pautot V, Holzer FM, et al.

(2009) Leucine aminopeptidase regulates defense and wound signaling in tomato

downstream of jasmonic acid. Plant Cell 21: 1239–1251.

37. Pieterse CMJ, Leon-Reyes A, Van der Ent S, Van Wees SCM (2009)

Networking by small-molecule hormones in plant immunity. Nature Chem Biol

5: 308–316.

38. Rhainds M (2010) Female mating failures in insects. Entomol Exp Appl 136:

211–226.

39. Adler PH, Willey MB, Bowen MR (1991) Temporal oviposition patterns of

Heliothis zea and Spodoptera ornithogalli. Entomol Exp Appl 58: 159–164.

40. Mittler R, Vanderauwera S, Suzuki N, Miller G, Tognetti VB, et al. (2011) ROS

signaling: the new wave? Trend Plant Sci 16: 300–309.
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