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Abstract
Background: Recent studies have shown genetic variation is the basis of the genome-wide disease
association research. However, due to the high cost on genotyping large number of single
nucleotide polymorphisms (SNPs), it is essential to choose a small subset of informative SNPs
(tagSNPs), which are able to capture most variation in a population, to represent the rest SNPs.
Several methods have been proposed to find the minimum set of tagSNPs, but most of them still
have some disadvantages such as information loss and block-partition limit.

Results: This paper proposes a new hybrid method named CGTS which combines the ideas of the
clustering and the graph algorithms to select tagSNPs on genotype data. This method aims to
maximize the number of the discarding nontagSNPs in the given set. CGTS integrates the
information of the LD association and the genotype diversity using the site graphs, discards
redundant SNPs using the algorithm based on these graph structures. The clustering algorithm is
used to reduce the running time of CGTS. The efficiency of the algorithm and quality of solutions
are evaluated on biological data and the comparisons with three popular selecting methods are
shown in the paper.

Conclusion: Our theoretical analysis and experimental results show that our algorithm CGTS is
not only more efficient than other methods but also can be get higher accuracy in tagSNP selection.

Background
Recent studies show that the abundance of single nucle-
otide polymorphisms (SNPs) and haplotypes can provide
the most complete information for genome-wide associa-
tion studies. Through the analysis of SNPs and haplo-
types, most of the genetic variations among different
people can be discovered. However, due to the excessive
SNPs, which are about 10 million in the human genome

[1-3], it is costly to genotyping and studying all SNPs in a
candidate region for a large number of individuals. Thus
the SNP selecting strategy is proposed to find only a subset
of SNPs, which are called tagSNPs or tagging SNPs, to rep-
resent the whole SNP set. These tagSNPs have high linkage
disequilibrium (LD) values with the rest SNPs [4], and the
genetic variation information they have are enough to
support the further study, such like disease association
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gene identification and population variation finding
[5,6].

Several computational methods have been proposed to
solve the tagSNP selecting problem. One common
approach is based on the haplotype blocks partitions.
These methods delimit the human genome into a set of
discrete blocks, where only a small set of common haplo-
types exist. These methods search the minimum subsets of
tagSNPs from each block. The selected tagSNPs can distin-
guish each pair of common haplotypes in the block [7], or
at least most of them [8-11]. However, there is no general
solution on how the blocks are formed. And the lack of
the inter-block association degrades the selection accu-
racy. The LD based methods use the pairwise associations
of SNPs. TagSNPs are selected from the site clusters which
consist of SNPs with strong LD association (measured by
the pairwise LD value r2) between each other [12-15].
These tagSNPs can represent associated SNPs in long dis-
tance without the block restriction, but may lose some
important information contained in the rest SNPs and fail
to distinguish all haplotypes in a LD cluster. Bafna. et
al.[16] proposed a somewhat different approach, which
assumes tagSNPs can reconstruct the remaining SNPs of
an unknown sample with high accuracy. TagSNPs are
selected by the measure called informativeness, which
quantifies how well the unselected SNPs are predicted and
the complete haplotypes are reconstructed through the
selected SNPs [17-19]. These methods do not need prior
block partitioning or limited haplotype diversity, but their
performances are limited by the restrictions such as the
fixed number of tagSNPs and the definitions of the inform-
ativeness.

In this paper, we present a new method based on cluster-
ing and graph, which is called CGTS, to select tagSNPs.
Unlike the previous methods, our method integrates the
information of the LD association and the genotype diver-
sity using the site graphs without the information loss and
the limit of block partition. Graph based algorithm uses
the genotype information to discard the redundant SNPs,
and does not need to define block or fix on the tagSNP
number. To avoid high computational complexity of
graph algorithm for large data, the clustering algorithm is
proposed to process the genotype data. Compared to
three existing popular methods, our method can give bet-
ter performance in the experiments.

Results and discussion
Implementation and data
We implemented our clustering and graph based tagSNP
selection algorithm (CGTS) in C ++ and run the program
on a PC with a 1.4 GHz CPU and 512 MB memory. A gen-
otype phasing algorithm: PHASE [20] is used on the gen-

otype data to obtain the haplotypes for other methods
such as HapBlock and STAMPA compared in experiments.

Five public biological data were used for evaluation. These
data include: the Hapmap data set of human chromo-
some 21 which has 20163 SNPs for 90 European persons
[21]; the IBD 5q31 data set which have genotypes for 103
SNPs [8] from an inflammatory bowel disease study of
father-mother-child trios, and we only used the children's
data; three encode regions ENm013, ENr112 and ENr113
from HapMap [21], The number of SNPs genotyped in
each region is 361, 412 and 515. All missing and ambigu-
ous alleles are deleted from the test data.

Evaluation method
The evaluation method is based on the accuracy of non-
tagging SNP prediction by the tagSNPs. The prediction
accuracy is determined by cross-validation [22]. The data
set is divided into ten subsets. The algorithm is run on the
nine subsets to select a minimum set of tagSNPs. The nine
subsets and the tagSNPs in the remaining set are used to
predict the non-tagging SNPs in the remaining set.

The prediction of non-tagging SNPs is based on the
assumption that given the genotype values of two SNPs,
the probabilities of the values at any intermediate SNPs
do not change by knowing the values of additional distal
ones [18]. It means that for each non-tagging SNP p, the
value of p in given genotype sequence can be identified by
the value of two closest tagSNPs in the same sequence.
Formally, this assumption can be stated as:

For an unidentified p:

where a, b are the two closest tagSNPs of p. gi, x is the allele
value of SNP x in genotype i. q is the tagSNP which is dif-
ferent from a, b.

The prediction precision of one subset is calculated by fol-
lowing equation:

Pi = Nc/Na (3)

Nc is the number of correctly predicted alleles and Na is the
number of all predicted alleles.
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The accuracy of the algorithm can be computed as:

Experimental results for trade-off test
In this subsection, we discuss the trade-off between effi-
ciency and solutions of CGTS. CGTS uses a K nearest
neighbour (KNN) clustering algorithm to partition the
large SNP set and improve the efficiency of tagSNP selec-
tion. Different values of clustering size k result in different
accuracy of the tagSNP selection. By increasing k, the solu-
tions of CGTS can be improved but the efficiency may be
sacrificed. The efficiency of CGTS is measured by the run-
ning time of CGTS with different k. The solution
improved by different k is measured by the improved ratio
of algorithm. The improved ratio is calculated by (N50-

Nk)/N50*100%, where Nk is the number of tagSNPs found
by CGTS with clustering size k and 50 is the minimum
value of k in CGTS. When k < 50, the information of SNP
cluster is insufficient to find real tagSNPs.

The trade-off tests use the data of human chromosome 21.
The 20163 SNPs are firstly divided into four subsets
according to their physical distances. Each subset contains
5000 SNPs (the last has 5163 SNPs). CGTS run on four
subsets separately and the final tagSNPs are the union of
all results on these subsets.

Figure 1a, 1b plot the selected tagSNP number and the
improved ratio of tagSNP number with respect to k. The x-
axis stands for k and the y-axis stands for the selected tag-
SNP number and the improved ratio of CGTS on chromo-
some 21 dataset. The change of running time with
increasing k is plotted on figure 1c. The x-axis stands for k
and the y-axis stands for the total running time of CGTS
on chromosome 21 dataset. The accuracy decrease is also

P P /di

i

d

=
=
∑

1
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Performances of CGTS on different kFigure 1
Performances of CGTS on different k.
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plotted in figure 1d. The x-axis stands for k and the y-axis
stands for the accuracy of CGTS on chromosome 21 data-
set.

It can be observed that the improved ratio grows rapidly
following the increase of k until k = 200, after that a more
slow improvement is observed. It can be explained by the
reduced LD association between SNPs and the stability of
information contained by SNP cluster. The elapsed time
also increases as k becomes large. It is because the sites in
the graph increase and more sites need to be investigated
with the selecting algorithm to obtain the tagSNPs. On the
other hand, the accuracy of CGTS decreases as k becomes
large. One intuitive reason is that the CGTS discards some
real tagSNPs in the selecting step. Following the increase
of k, the graphs in selecting step become larger and noisy
sites also become more in the graph. These noisy sites
decrease the LD associations in the graphs and the geno-
type diversity information they have may interfere with
the tagSNP selection. Some real tagSNPs are discarded due
to this interference and pseudo-tagSNPs may be put into
the result.

As a result, the parameter k of CGTS is best set to around
200 to obtain the best improvement in solutions, which
still keeps the running time and accuracy within a reason-
able period.

Experimental results on biological data
We compare our algorithm with three recent algorithms
for tagSNP selection that are widely used: HapBlock [9],
MLR-tagging [23], STAMPA [18] These three softwares
represent three common methods for tagSNP selection.
HapBlock bases on the block-partition, uses dynamic pro-
gramming and EM subroutine to get the tagSNPs for each
blocks. MLR-tagging uses a multiple linear regression

approach and selects tagSNPs based on LD associations.
STAMPA uses the SNP prediction accuracy for other SNPs
to select tagSNPs. HapBlock and the training step of
STAMPA use the haplotype data as input. MLR-tagging
and STAMPA need to fix on the tagSNP number. There-
fore, to compare the performance of our method to these
methods, the tagSNP number of MLR and STAMPA are
same as the tagSNP number obtained by our algorithm.

The comparison results of the three methods on the
ENm013, ENr112, ENr113 and 5q31 are shown in Table
1 and figure 2. HapBlock gave no solution for ENr113 due
to the memory overload.

CGTS can perform better than HapBlock in prediction
accuracy, get smaller tagSNP sets and use shorter times. It
is because that there is no need to conduct block partition
and the LD associations among SNPs are taken into con-
sideration. CGTS is more accurate than MLR-tagging and
STAMPA with the same number of selected tagSNPs.
When the SNP size of the input data is increasing,
STAMPA is asymptotically faster but CGTS is more accu-
rate with an acceptable running time. It is due to the
increasing iteration number of CGTS. Appropriate choos-
ing of k can reduce the running time of CGTS. And we
chose the k = 250 because the CGTS can obtain better
improvement in solutions but still keep the running time
and accuracy within a reasonable period on the given bio-
logical data.

Conclusion
We investigate a novel hybrid method for SNP-tagging,
which is called CGTS. The efficiency and solutions of SNP-
tagging are improved by the combination of graph algo-
rithm and site clustering in CGTS. As shown in the exper-
imental results, our algorithm is able to get higher

Performances of four selection methodsFigure 2
Performances of four selection methods.
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prediction accuracy than other approaches with the same
size of tagSNPs, and outperforms these approaches in
terms of the tagSNP size. Computational time required by
CGTS is quite reasonable and can be tailored to available
computing resources as needed. The key component of
CGTS is the SNP graph model which integrates the infor-
mation of the LD association and the genotype diversity.
This model makes the SNP-tagging problem transform to
a graph pruning problem. Using this model can avoid the
information loss of SNPs. Our method does no need to fix
the tagSNP number. The tagSNPs are not restricted to any
bounded location, and can easily be applied to cover the
whole chromosome. In the algorithm, multiple tagSNPs
are used to represent each untagged SNPs, which further
reduce the number of selected tagSNPs. Another advan-
tage of CGTS is that it is amenable to further computa-
tional improvements. For example, parallel programming
could be used to search tagSNPs in separate precincts, and
further speed up the computation. In addition, CGTS can
also be used on multi-allelic genotype data and haplotype
data.

Methods
SNP graph construction
We are given n genotype sequences, each genotype consist
of m SNPs. If we assume there are no missing data in the
sequences, the n sequences can form a n*m matrix M
where rows are sequences and columns are SNPs, M[i, j] ∈

{0,1,2}, where 0 and 1 are homozygous types which rep-
resent the major and minor alleles, and 2 indicates the
heterozygous type. A set G of genotype sequences distrib-
utes in the genome region of given populations follow a
functions P(gi). P(gi) is the frequency of gi, where gi is a
genotype in G. Like the haplotype, genotype sequences
only have a few common patterns in a given genome
region and these patterns can be distinguished by the tag-
SNPs. According to the observation made by several bio-
logical studies [12,14], tagSNPs usually have strong LD
associations with other relative SNPs, except some special
tagSNPs which have no association with other sites. We
can represent each genotype by a vector Ti ∈ {0, 1, 2}t,
where t is the size of tagSNP set in the genotype, and Ti
belongs to i-th genotype. Thus, the tagSNPs at least have
two important attributes: (1) Ti can identify common pat-
terns of given genotype set, and the frequency of Ti: P(Ti)
equals to the related P(gi); (2) Each tagSNP has the strong
LD value with its relative site set. Our goal is to find a min-
imum size set ST of tagSNPs for given genotype set, and
these tagSNPs satisfy the two attributes described above.
Formally, for a given set G and its matrix M, our objective
is to find a set of tagSNPs ST with minimum size, and for
each pair of common genotype pattern Pi and Pj in the G,
these is a tagSNP si ∈ ST such that M[k, i] ≠ M[k, j]. In addi-
tion, the average LD value of si with its relative sites is
highest in the related site set.

Table 1: The comparison of the four methods

Datasets Hap-Block MLR STAMPA CGTS

Number of tagSNPs 5q31 17 8 8 8

ENm013 15 12 12 12

ENr112 33 20 20 20

ENr113 ~ 22 22 22

Prediction accuracy 5q31 0.887 0.912 0.909 0.922

ENm013 0.757 0.932 0.901 0.941

ENr112 0.819 0.947 0.911 0.949

ENr113 ~ 0.963 0.913 0.972

Run time(s) 5q31 19100 18 122 14

ENm013 9207 121 85 117

ENr112 4405 303 108 156

ENr113 ~ 394 133 239
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To achieve this goal, the main problem is how to represent
the two features of tagSNPs and associate them to find the
real tagSNPs. For a given genotype set G, all SNPs are dis-
tributed randomly as discrete sites in the space. If these
sites are connected according to the genotype diversity
information and the length of edge is set based on the LD
value of two sites, the SNPs can form a graph. Through the
analysis of several biological data, we discovered that the
genetic-relative sites are bunched up in the graph and
there are usually more sites around the real tagSNPs than
the others except some special tagSNPs which have no
association with any sites. That means it is feasible to con-
struct a site graph to describe the SNP attributes and use a
graph algorithm on it to find tagSNPs.

For a given genotype set G, the SNP set is S (|S| = m), and
the LD value matrix is R. Each SNP has some information
of the genotype diversity. Therefore, for each site si, we

define a diversity set Xi = { } to represent geno-

type diversity information for SNP site si.  = {xr| xr = r,

r ∈ [1, n]}, for j = 0,1,2, n is the size of the input genotype
set size, r is the sequence number of a genotype in given

set, xr ∈  means the r-th genotype have the value j at i-

th SNP. If Xi has two Φ subsets, which means the SNP has

only one value at all genotypes, we assume this site has no
diversity information, and delete it before the graph con-
struction. If two diversity sets Xa = Xb, we assume these two

sites have the same diversity information, and these sites
can combine to one site in the graph for their similar
information. However, it is too complex to combine the
whole SNP diversity sets and their LD associations in one

graph. Thus, the Xi is divided to three subsets ,

and three graphs are constructed for S. In each graph, only
the information of one subset is represented. The selec-
tion results for three graphs are combined to get the final

tagSNPs. For a given S and the diversity subset  for each

si, j ∈ {0, 1, 2}, the site graph Gj(V, E) can be constructed

as following steps:

(1) The site set V: each site vi of V represents a SNP si of S.

Each vi corresponds to the diversity subset  of si. Each vi

has a site weight wsi defined by the number of the sites

similar to si. For two SNPs sa and sb, sa is similar to sb in

graph Gj when . wsi is computed from two sets:

the sites satisfy Xa = Xb and the sites satisfy Xa ≠ Xb and

.

(2) The edge set E: tagSNPs can identify all or at least most
of the common genotype patterns. The diversity informa-
tion is represented by Xi. The associated SNPs have their Xi

overlap with each other. The overlapping of Xi causes the

redundancy. TagSNPs are selected to delete these redun-
dancies. The directed edges between vi are identified to

describe these overlapping relationships.  and  are

diversity subsets of sites a, b. If , there is a directed

edge e from a to b. If , there is a directed edge e

from b to a. If , , , there is bi-

directed edge e between a and b. If , there is no
edge between them.

(3) The edge weight set W: for edge e between sites a and
b, the edge weight wab = R [a, b]. R[a, b] is the LD value r2

of the SNP a and the SNP b. The LD value r2 is usually cho-
sen to evaluate the correlation between two SNPs [24,25],
and can be computed as follow:

Dij = xij - pipj (7)

In these equations, pi denotes the frequency of i-th allele
for SNP a, pj denotes the frequency of j-th allele for SNP b.
m = n = 1, when the data are bi-allele haplotypes; m = n =
2 for the bi-allele genotype data. xij is the frequency of
observing i-th allele for SNP a and j-th allele for SNP b
together in the same genotype (haplotype) sequence.Dmax
is the maximum value of LD between the i-th allele for
SNP a and j-th allele for SNP b. A r2 value of 1 indicates the
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highest LD while 0 indicates no LD. The site graphs of a
simple genotype data are shown in figure 3.

TagSNP selection

In this section we present our selection algorithm. The
algorithm is based on the observation that the SNPs with
same genotype diversity information and high correlation
are congregated into a subgraph through the construction
of SNP graphs. The SNPs which have high probability to
be tagSNPs usually have a subgraph with higher density.
In order to reduce the space and time complexity, we are
interested in discarding the redundant sites instead of
finding the tagSNPs. Therefore, for each site graph Gj(V,

E), the site which has the subgraph of the maximum den-
sity and the highest correlation is the top-priority site for
tagSNP selection algorithm. For a given SNP set S and its

site graph Gj(V, E) for diversity subset , the algorithm

details are described as follow:

(1) Subgraph finding: in the graph Gj, a set of subgraphs
N(vi) is defined to represent a neighbourhood for each site
vi. It is induced by every vertex which has a directed edge
from vi to it or has an bi-directed edge between vi and it,
including vi itself. In order to find the top-priority site and
the relative subgraph, the measures for subgraph density
and site correlations information are defined as follow:

For each N(vi)(VI, EI), the subgraph density is:

λ = ||EI||/||VI|| (9)

where ||EI|| is the edge set size of the N(vi) and ||VI|| is the
vertex set size of the N(vi). The information entropy of the
subgraph is defined to describe the correlations informa-
tion of each N(vi) as:

where c is the number of sites in N(vi) which is equal to
||VI||, d is the edge size of N(vi) which is equal to ||EI||, γ
is the normalization factor, wsi is the weight for site vi in
the subgraph, wij is the weight of edge eij for the site vi and
vj in the subgraph. A high value of EP means high LD rela-
tions among the sites in the subgraph.

The top-priority site measure function is T(λ, EP):

T(λ, EP) = θλ + EP (11)

θ is the normalization factor, and the top-priority site is
the vi which has the maximum T value.

(2) TagSNP candidate selection: for each chosen subgraph
in the given Gj, the tagSNP candidates are selected by eval-
uating the information overlapping among the sites. A site
which is not the candidate is deleted from the graph. The
selection algorithm is described in figure 4 and figure 5

(3) Final tagSNP identification: after the tagSNP candidate
set TCj for each Gj are obtained, the final tagSNPs are iden-
tified by a voting mechanism. For a SNP si, a score func-
tion is defined as:

The SNPs which have the highest score are decided to be
real tagSNPs. The example of tagSNP selection is given in
figure 6. The SNP data are the data used in the SNP graph
construction section.

SNPs clustering
When the size of site graph is larger, the efficiency of our
graph algorithm decreases, due to the time-consuming
graph construction and tagSNP searching in low-relative
SNPs. It is observed that the correlation between SNPs
tends to decay as the physical distance increases
[8,11,16,26]. That means there are many SNPs have no
correlation or less correlation among them and the graph
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An example of SNP graphsFigure 3
An example of SNP graphs. The dashed represents the 
bi-directed edge in the graph.

        1  2  3  4  5  6  7  8 

1       0  0  0  2  2  0  0  2 
2       0  0  0  0  0  1  0  2 
3       0  0  2  1  1  1  0  2 
4       0  0  2  0  0  1  0  0 
5       0  0  0  1  1  0  0  2 
6       0  0  2  0  0  2  0  0 
7       0  0  0  1  1  0  0  2 
8       0  0  2  2  2  2  0  2 
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construction and tagSNP searching are unnecessary.
Therefore, a clustering algorithm based on KNN is
adopted to reduce the complexity of time and space for
the input SNP set. The SNP groups which have higher cor-
relation value are selected to construct graph, while the
SNPs which have little correlation among them will not

appear in the same graph. Due to the correlation decay,
the SNP set is firstly divided into several subsets which
have SNP number less than 5000. The KNN clustering
algorithm is run on these subsets respectively.

TagSNP candidate selection algorithmFigure 4
TagSNP candidate selection algorithm.

ALGORITHM TagSNP candidate selection (TCS) 

Input: Gj (V, E)
Output: TagSNP candidates set TCj 

1. While V still have unmarked sites 

2. do  

3.   Find a subgraph N(vi) that ))(()( �,EPTmaxargvN
Vv

i
i�

� and vi is unmarked; 

4.   if ;           //Xa
j is the diversity set of site which has edge connect to vi�

d

a

j
a

j
vi XX

1�
�

5.      Delete vi and the edges connected to it from graph Gj;    

// Xvi
j of vi can be represented by its related subgraph 

6.   End if 

7.   if ;�
d

a

j
a

j
vi XX

1�
�

8.      Xs=Divide({X1
j, ,Xd

j}, Xvi
j); 

9.      if , , ;ss Xx � j
vis Xx � �Xx j

vis ��

10.        Delete vi and the edges connected to it from graph Gj;

// Xvi
j of vi can be represented by its related subgraph 

11.     End if 

12.  End if 

13.  if vi is not deleted from graph; 

14.     vi is marked in the graph Gj as a tagSNP candidate; 

15.  End if 

16.  Mark the sites which have no edge connected to in the graph Gj as a tagSNP candidate; 

17. End While 

18. Put all marked sites in the TCj;
Page 8 of 11
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Divide function for TagSNP candidate selection algorithmFigure 5
Divide function for TagSNP candidate selection algorithm.

 Function Divide 
Input: X={X1

j,X2
j, ,Xd

j}, Xvi
j 

Output: Divide set Xs

1. X1= { Xi
j | Xi

j � Xvi
j }, X2=X/ X1; 

2. while X1 is not empty 
3. do 
4.   Get a Xa

j from X1; 
5.   for each Xb

j�X2; 
6.      if Xa

j Xb
j � ; 

7.         X’ = Xb
j /( Xa

j Xb
j); 

8.         X1= X1/ Xa
j; 

9.         delete Xb
j from X2, put X’ into X2; 

10.      End if 
11.   End for 
12. End while 
13. while X2 is not empty 
14. do 
15.    Get a Xa

j from X2, X2=X2/ Xa
j; 

16.    Y={yi| yi�X2, Xa
j yi � }; 

17.    if Y � ; 
18.       put Xa

j into Divide set Xs; 
19.    End if 
20.    if Y � ; 
21.       if Xa

j= Xa
j y1 yi; 

22.            put Xa
j into Divide set Xs; 

23.       End if 
24.       else 
25.           for each Xb

j�X2; 
26.             if Xa

j Xb
j � ; 

27.                Xb1
j = Xa

j Xb
j; Xb2

j= Xb
j / Xb1

j; Xa’ = Xa
j / Xb1

j 
28.                delete Xb

j from X2 ,put Xb1
j, Xb2

j , Xa’ into X2; 
29.             End if 
30.           End for 
31.       End else 
32.    End if 
33. End while 
34. Combine the same elements in X2; 
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In the KNN clustering algorithm, parameter k is an integer
less than the number of SNPs in the input SNP set S, the
correlation between two SNPs is represented by the LD
value r2 calculated through equation (5). In this algo-
rithm, r2 is directly related to the distance of two sites. r2 =
1, the distance of two SNP sites is 0, and the two SNPs are
considered identical and only one of them is retained. r2 =
0, the distance of two sites is ∞. dk

i is the LD value of SNP
si and its k-th nearest neighbour. In each iteration, the SNP
which has the highest dk

i and its k nearest neighbours are
deleted from S and selected to construct the SNP graphs
for tagSNP selection. The obtained tagSNPs are put into
the S and a new iteration is started. The obtained tagSNPs
of each subset are combined to get the final set of tagSNPs.

The choice of k in the KNN algorithm controls the maxi-
mum information of the SNP set and the maximum size
of site graphs. In general, different values of k result in dif-
ferent accuracy of the tagSNP selection. The bigger k, the
smaller tagSNPs may be obtained, the more running time
and space are cost. In the tagSNP selection, there are two
possible ways to select k. (1) Select k so that the LD value
between a chose SNP and its k-nearest neighbour is greater
some threshold. (2) Select k to achieve desired prediction
accuracy via cross-validation. The accuracy evaluation is
given in more detail in the evaluation section. The trade-
off test of k is discussed in result section.

Complexity analysis
For a SNP subset which has the site set size n andcontains
m genotype sequences, the running time for LD value
computing is O(m). Thus, the total running time of the
clustering step is O(n2m). For each cluster which has (k+1)

SNPs, constructing site graphs takes O(k2). Finding sub-
graph needs O(k). Selecting tagSNP candidates from a
subgraph which has t sites (0 <t ≤ k + 1) takes O(t2). Iden-
tifying the final tagSNPs needs O(k). The total running
time of tagSNP selection is O(k2+ kt2+k). Since t ≤ k+1, the
total running time for whole algorithm is O(n2m + k3n/k)
= O(n(nm + k2)) with taking into the account of the itera-
tion number. In practice, the site set size n usuallyless than
5000 and k is controlled in interval [50, 500], the running
time is less than expectation.

Abbreviations
SNPs: single nucleotide polymorphisms; LD: linkage dis-
equilibrium; KNN: K nearest neighbour.
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