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The tumor microenvironment plays a critical role in cancer development, progression, and control. The molecular and cellular
nature of the tumor immune microenvironment influences disease outcome by altering the balance of suppressive versus cytotoxic
responses in the vicinity of the tumor. Recent developments in systems biology have improved our understanding of the complex
interactions between tumors and their immunological microenvironment in various human cancers. Effective tumor surveillance
by the host immune system protects against disease, but chronic inflammation and tumor “immunoediting” have also been
implicated in disease development and progression. Accordingly, reactivation and maintenance of appropriate antitumor responses
within the tumor microenvironment correlate with a good prognosis in cancer patients. Improved understanding of the factors
that shape the tumor microenvironment will be critical for the development of effective future strategies for disease management.
The manipulation of these microenvironmental factors is already emerging as a promising tool for novel cancer treatments. In this
paper, we summarize the various roles of the tumor microenvironment in cancer, focusing on immunological mediators of tumor
progression and control, as well as the significant challenges for future therapies.

1. Introduction

The tumor microenvironment consists of cancer cells, stro-
mal tissue, and extracellular matrix. The immune system is
an important determinant of the tumor microenvironment.
Indeed, the complex interplay between cancer cells and the
host immune response has been extensively investigated in
the past few decades. Several immunological deficiencies
have been linked with enhanced tumor development in
mouse models as well as in humans [1, 2]. The higher
incidence of cancers in transplant patients receiving long-
term immunosuppressive treatment is well documented [3–
5]. Similarly, mice with compromised immune functions due
to genetic modifications develop more tumors [6–9]. It is
now well recognized that effective tumor surveillance by the
immune system is critical to maintain homeostasis in the
host.

Despite exerting a key role in host protection, tumor
surveillance by the immune system may eventually fail.

As described in the three “Es” of cancer immunoediting,
tumor cells are initially eliminated by the immune system
before becoming clinically detectable. This is then followed
by an equilibrium phase, where a selection process for less
immunogenic tumor variants take place until the tumors
finally “escape” the immune surveillance [10, 11]. On the
other hand, the persistent inflammation associated with
chronic infections may also encourage new tumor forma-
tion [12]. Colorectal, hepatocellular, cervical, and gastric
carcinomas are strongly associated with underlying chronic
inflammatory responses [13, 14]. Expression of various
immunological gene products during ongoing inflammation
thus appears to create a favorable microenvironment for
tumor growth and progression [10, 14].

Interestingly, recent large scale genomics studies con-
ducted in cancer patients have revealed that the profile
of the tumor microenvironment, and in particular the
acute inflammation of host tissues, is linked with a bet-
ter patient prognosis [15–17]. The tumor often benefits
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from an immunocompromised microenvironment in which
regulatory immune components predominate. In contrast,
patients who maintain active, proinflammatory immune
responses within the tumor microenvironment achieve bet-
ter outcomes [18, 19]. In the current paper, we focus on
the role of host immune components in shaping the tumor
microenvironment and the subsequent impact on disease
progression.

2. Characteristics of the Tumor
Microenvironment

The tumor microenvironment is made up of several impor-
tant components including the tumor parenchyma cells,
fibroblasts, mesenchymal cells, blood, and lymph vessels, as
well as tumor infiltrating immune cells, chemokines, and
cytokines [20]. These numerous and varied constituents
fulfill the definition of a complex system, whereby the
interactions between the components are multilevel, multi-
scale, and consist of nonlinear dynamics [21]. Each of these
components can make important contributions to tumor
development and progression.

Among these nonimmune components, tumor-
associated fibroblasts are responsible for the formation
and remodeling of the extracellular matrix and constitute
a source of growth factor which promotes the growth of
carcinoma cells [22]. The formation of new blood vessels
is critical for tumor progression as the mass grows bigger
[23], while existing blood and lymphatic vessels may act
as routes for local invasion and distant metastasis [24, 25].
Many studies have shown that the density of blood vessels
and the production of factors that stimulate blood vessel
formation, including vascular endothelial growth factor
(VEGF), platelet-derived growth factor (PDGF), and matrix
metalloproteinases (MMPs), contribute to the spread of
tumor cells and predict poor patient survival [24]. Other
host cell lineages including mesenchymal stem cells not only
form new carcinoma cells, but are also able to differentiate
into the various cell types required to drive angiogenesis
during cancer progression [26].

On the other hand, the immune components of
tumor microenvironment have gained attention in the
recent decades for their critical role in tumorigenesis and
tumor control. Tumor-infiltrating immune cells including
myeloid-derived suppressor cells (MDSC), tumor-associated
macrophages (TAM), and cytotoxic lymphocytes are critical
determinants of cancer outcomes. Many studies have shown
that increased densities of MDSC and TAM promote tumor
progression via multiple suppressive mechanisms [27, 28].
In contrast, the presence of cytotoxic lymphocytes within
the tumor microenvironment is associated with a good
prognosis in numerous cancers [15, 18, 29].

Other immune components of the tumor microenvi-
ronment, including chemokines and cytokines, may also
alter the local balance of proregulatory and antitumor
immune responses [30, 31]. Danger signals such as heat-
shock proteins, nucleic acids, and HMGB1 released from

transformed, dying, or dead tumor cells in the microenvi-
ronment are sensed by innate immunity components such
as the toll-like receptors (TLRs) and can activate antitumor
immune responses [32, 33].

3. The Role of the Immune Microenvironment
in Tumor Control during the Initial
Elimination/Equilibrium Phase

From many studies over the past decades, it is clear that the
immune system plays a critical role in surveillance against
tumor development. Immunodeficient mice defective in
interferon (IFN)-γ, perforin, T cell, or NK cell functions
develop tumors spontaneously [6–9]. For instance, the
role of perforin in T and NK-cell-mediated cytotoxicity
against injected tumor cells has been clearly established
using for example perforin-deficient mice [9] but their
exact role against established tumors is debated [34]. In
humans, higher incidence of tumors can be observed in
individuals with compromised immune systems (i.e., AIDS
patients) [35] and in transplant recipients receiving long-
term immunosuppressive therapy [3–5]. Transmission of
donor melanoma to organ recipients by transplantation has
also been reported [36].

Multiple lineages of immune cells are involved in anti-
tumor responses. It has long been established that NK cells
are able to kill tumor cells in various cancer models [37, 38].
Similarly, cytotoxic T lymphocytes can detect “abnormal”
tumor antigens expressed on carcinoma cells and target
those cells for destruction [39]. Antigen-presenting cells,
and dendritic cells in particular, process and present tumor-
derived antigens in the context of MHC class I molecules
to activate CD8+ T cells via a mechanism known as cross-
presentation [40]. Apart from direct killing of carcinoma
cells, the activated CD8+ T cells may also inhibit angiogenesis
by secreting IFN-γ [41]. B cell activation and differentiation
into antibody-producing plasma cells as well as T- and B-
cell memory are each important components of long lasting
immune surveillance in cancer vaccines [42].

The period during which tumor cells are constantly being
killed and controlled by the immune system is referred
to as the “equilibrium phase.” The tumor can stay dor-
mant for long periods of time until the microenvironment
becomes permissive for growth [43]. This tumor dormancy
is effectively recapitulated in our spontaneous melanoma
mouse model wherein tumor cells disseminate early but
remain dormant at remote metastatic sites [44]. Dormancy
is partly controlled by cytotoxic CD8+ T cells, since depletion
of CD8+ T cells results in faster outgrowth of visceral
metastases [44]. However, the continuous control of tumor
cells exerts a selective pressure which eventually favors the
more aggressive tumor cells. For example, these tumor cell
variants may mutate surface antigens in order to become
less immunogenic via a process termed “immunoediting.”
The equilibrium phase will thus eventually reach a state of
exhaustion when the more aggressive and less immunogenic
tumor cells are able to “escape” immune surveillance.
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4. The Role of the Immune
Microenvironment in Promoting Tumor
Development and Progression:
The “Escape” Phase

Tumor development and progression are influenced by
modifications to tumor parenchymal cells or their microen-
vironment. One important mechanism of escape from
immune surveillance is the selection of poorly immuno-
genic tumor cells [45]. Alternatively, modification of the
microenvironment may also result in the acquisition of
a “procancer” profile that encourages tumor outgrowth.
These procancer modifications include the expression of
antiapoptotic molecules which prevent tumor cell death
[46]; growth factors which encourage tumor outgrowth
[47], and immunosuppressive mediators such as VEGF,
transforming growth factor-β (TGF-β), interleukin (IL)-
10, indoleamine 2,3-dioxygenase (IDO), and programmed
cell death-ligand 1 (PD-L1) which suppress antitumor
immunity [48, 49]. Toll-like receptor (TLR) pathways such
as TLR4 activation on tumor cells have also been shown
to directly stimulate tumor growth [50]. Furthermore, as
a result of imbalances between pro- and antiangiogenic
factors, the microvasculature formed within the tumor
microenvironment is often leaky and dysfunctional [51],
which can limit T-cell infiltration and drug diffusion into
the tumor. The tumor microenvironment is further shaped
by resident leukocytes and the ongoing recruitment of
different immune cell subsets. For example, the recruitment
of regulatory T cells (Treg) and myeloid-derived suppressor
cells (MDSC) contributes to immunosuppression within the
tumor microenvironment [27, 52]. MDSC for instance act
on multiple levels to inhibit naı̈ve T-cell proliferation and
differentiation, to block T effector cell functions, and to
induce Tregs via the expression of IL-10 and TGF-β [27].
TAM (with a unique M2-like phenotype) have similarly
been shown to correlate with poor prognosis in various
cancers due to their immunosuppressive and angiogenic or
lymphangiogenic properties [28]. The contribution of other
leukocyte subsets to shaping the tumor microenvironment
is less clear. While the role for Th17 cells in cancer is
rather controversial [53], investigators have reported that
these cells are associated with a poor prognosis in colorectal
cancer [29]. Previous reports have even implicated B cells
in enhanced tumor metastasis [54, 55]. On the other hand,
the tumor microenvironment has been reported to prevent
dendritic cell maturation hence making them incapable of
functioning as effective antigen-presenting cells (APC) to
trigger antitumor immunity [56].

Inflammation has been implicated in the development of
cancers since the seminal observation made by Virchow in
1863 [13, 14] that chronic inflammation creates a microen-
vironment conducive to tumorigenesis. The inflammation
associated with chronic infections such as Helicobacter pylori
or hepatitis B virus promotes the respective development of
gastric and liver cancers [57, 58]. Chronic inflammation-
associated mechanisms of tumorigenesis include cellu-
lar transformation, proliferation, invasion, angiogenesis,

chemoresistance, metastasis, and inhibition of apoptosis
[13, 59]. Proinflammatory cytokines such as IL-6, IL-1α, and
IL-8, as well as various chemokines, are known to favor
tumor growth and progression [13, 14]. The inappropri-
ately named tumor necrosis factor (TNF)-α has also been
linked to several aspects of tumorigenesis including cellular
transformation, proliferation, invasion, and metastasis [13].
The role of IL-6 and STAT-3 as antiapoptotic factors in
various cancers is also well recognized [60]. Chemokines
such as CXCL1 and CXCL8 are able to enhance tumor cell
proliferation [61]; CXCL5 and CXCL12 attract neutrophils
and MDSC [62], while CXCL12 promotes the migration of
tumor cells that express the cognate receptor CXCR4 [63].
Many of these immunological mediators are regulated by
transcription factor NF-κB, which is constitutively active
in many cancers and is inducible by various carcinogens
including viruses [13, 64].

Tumor metastasis is the primary cause of cancer-related
death [65]. Epithelial-to-mesenchymal transition (EMT) of
cancer cells is associated with enhanced cell migration,
local invasion, and distant metastasis, while expression of
EMT markers correlates with poor prognosis [66]. EMT is
a common process in early embryogenesis and carcinoma
progression [67]. During EMT, the carcinoma cells undergo
morphological changes that confer enhanced motility and
reduced intercellular adhesion which enable local invasion
and distant metastasis [68]. Our recent study in a sponta-
neous melanoma model showed that tumor recruitment of
MDSC promotes EMT [69]. In particular, we found that
granulocytic (G)-MDSC induce EMT in vitro and in vivo via
multiple pathways that involve TGF-β1, epidermal growth
factor (EGF), and hepatocyte growth factor (HGF) [69].
Other immune cells such as activated CD8+ T cells [70] and
macrophages [71] have also been shown to stimulate EMT
in tumor-bearing mice. Together, these data emphasize the
intimate relationship between host immune responses and
the microenvironment in shaping tumor development and
progression.

5. The Role of the Immune Microenvironment
in Controlling Tumor Progression of
Established Tumors

Even as the immune system fails to control tumor formation,
the immune response within the microenvironment of estab-
lished tumors remains an important factor in determining
the outcome of cancer. Regression of established liver tumors
by induction of CD8+ T-cell responses with peptide-based
immunotherapy was reported in several mouse models [72,
73]. Recent genomics studies in various human tumors
including breast cancer have identified immunological
parameters as important determinants of disease outcome
[16, 17, 19]. Several studies have underlined the importance
of the tumor microenvironment on the clinical evolution of
HCC [19, 74]. Our studies revealed an association between
the expression of intratumoral proinflammatory genes and
superior patient survival [15, 19]. In 172 HCC patients,
we demonstrated that a 14-gene immunological signature is
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predictive of patient survival, especially at the early stages of
the disease [15]. These 14 immune genes encode chemokines
CXCL10, CCL5, and CCL2; cytokines IFNG, TNF, and
IL6; pattern recognition receptors TLR3 and TLR4; T cell
markers CD8A and TBX21, and NK cell marker NCR3. In
this study, we showed that IFN-γ and TLR3 ligand-induced
intra-tumor chemokine expression promotes infiltration
by cytotoxic T cells and NK cells to enhance tumor cell
apoptosis and reduce tumor cell proliferation [15]. The
immune microenvironment of noncancerous hepatic tissues
has also been shown to impact on the development of venous
metastases in HCC patients [75].

A proinflammatory phenotype combined with tumor
infiltration by cytotoxic lymphocytes is associated with a bet-
ter prognosis in various cancers [15, 18]. Tumor infiltration
by T cells has now been linked with favorable prognosis in
colorectal cancer [76], melanoma [77], breast cancer [78],
ovarian cancer [79], and lung cancer [80]. Recent studies
in liver and breast cancers have identified an important
correlation between the densities and distribution of T and
B cells with a favorable prognosis [81, 82]. Our own study in
HCC revealed a correlation between superior patient survival
and the intratumor densities of T cells and NK cells [15].

It is important to appreciate that tumor infiltration by
cytotoxic lymphocytes is often orchestrated by chemokines
expressed within the tumor microenvironment. In HCC,
we demonstrated that stimulation with cytokines in
conjunction with TLR activation can promote inflammation
and chemokine production in tumors [15]. Chemokine-
mediated tumor infiltration by cytotoxic lymphocytes has
also been demonstrated by other investigators [83, 84].
In a cutaneous melanoma model, we further showed that
chemotherapy could induce intra-tumor expression of
chemokines that favored T-cell infiltration and tumor
control [85]. In contrast, several studies have highlighted
the key role played by chemokines during metastasis,
particularly among tumor cells that express chemokines
receptors CXCR3 and CXCR4 [86, 87]. The role of the
proinflammatory microenvironment in tumor control
therefore appears to be context dependent and will require
further detailed investigation.

6. Challenges in Tumor Immunotherapy

Given the complex roles of the immunological microenvi-
ronment in tumor immunity (Figure 1), developing methods
for targeting the relevant effector molecules or pathways for
cancer treatment remains challenging. Indeed, the limited
success of cancer immunotherapy to date can primarily be
attributed to three main factors: (1) poor host responses
towards tumor antigens, (2) low infiltration of effector cells
into solid tumors, and (3) the intrinsically immunosup-
pressive tumor microenvironment. Tipping the balance of
immune responses from tumor protection towards tumor
rejection seems to be key for effective cancer immunotherapy
[88–90]. Manipulation of the tumor microenvironment
will therefore be an important consideration for achieving
optimal antitumor responses with future treatments.

Several cases of spontaneous regression associated with
specific antitumor immune responses have been reported in
various cancers [91–93]. Efforts to activate local adaptive
immune responses in tumors have met with some success,
and cell-based therapies such as adoptive T-cell transfer have
shown convincing signs of efficacy in treating metastatic
melanoma patients [94]. Recent developments in cancer
immunotherapies have now also begun to explore the use
of NK cells [95, 96]. In particular, strategies that employ
tumor-specific monoclonal antibodies (mAbs) and mAb-
cytokine fusion proteins (immunocytokines, ICs) designed
to augment NK-mediated killing have shown promising
results in preclinical and some clinical settings [97].

Cancer vaccines aim to induce immune responses against
tumor-associated antigens and several such vaccines are
currently under development to treat various cancers [98,
99]. The first FDA-approved therapeutic cancer vaccine
Provenge (Sipuleucel-T) provides modest but significant
benefits in castrate-resistant prostate cancer [100]. However,
the low immunogenicity of most tumor antigens represents
a major difficulty in developing potent cancer vaccines.
Intensive research will be needed to improve the specificity
and effectiveness of these cancer vaccines. Furthermore,
the immunosuppressive tumor microenvironment limits the
effectiveness of the antitumor immune responses induced by
these cancer vaccines [99]. Therefore, manipulation of the
tumor microenvironment either by enhancing the antitumor
activity or blocking the immunosuppressive pathways is
among the strategies pursued for more effective tumor
therapy.

Critical to accurately assessing efficacy of therapeutic
cancer vaccines is to define appropriate clinical endpoints.
The phase III evaluation of Provenge in castrate-resistant
advanced prostate cancer revealed a significantly improved
overall survival benefit without a significant improvement
in progression-free survival (PFS). This implies that while
tumor kinetics may have been favorably retarded by vaccine-
induced antigen-specific immunity, the tumor growth may
not have been rendered stable or regressed. Hence it will be
a challenge to select objective response rates or even PFS as
accurate measures of therapeutic cancer vaccine outcomes.

Alternatively, vaccines that aim to control the inflam-
mation induced by chronic infections may serve as effective
tumor prevention measures [101, 102]. One such example
is the hepatitis B vaccination which has successfully reduced
the incidence of liver cancer in Taiwan since being introduced
in 1984 [103]. Vaccines against oncogenic human papilloma
viruses (HPV) achieved similar success in preventing cervical
cancer [104, 105]. Other cancer immunotherapies have
included immunostimulatory cytokines such as IL-2 and
IFN-α [106, 107], as well as antibodies against tumor
antigens [108–110], for use as adjuvants in combination
with chemotherapy or cancer vaccines. The use of toll-
like receptor (TLR) ligands can trigger effective innate
immune responses within tumors [111–113]. Some success
has also been achieved with the application of TLR7 agonists
in the treatment of skin carcinoma [113, 114]. The host
response to endogenous danger signals could be yet another
target for therapies that activate and maintain effective
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Figure 1: Multiple roles of the immune microenvironment during tumor development. The immune system initially eliminates tumor cells
via cytotoxic T cell and NK cell killing mechanisms (immune surveillance). This is achieved with the help of antigen-presenting cells (APC)
such as the dendritic cells, antibodies expressed by B cells, and inflammatory cytokines including IFN-γ and IL-2 which activate the local
immune response. However, with the progressive accumulation of tumor cell mutations and modifications to the microenvironment, the
tumor cells can eventually “escape” from immune surveillance. Multiple lineages of immune cells including myeloid-derived suppressor cells
(MDSC), tumor-associated macrophages (TAM), and regulatory T cells (Treg), as well as various immune mediators such as TNF-α, IL-6,
CXCL-1, CXCL-5, VEGF, and MMP, are responsible for shaping a favorable microenvironment for tumor growth. Recent findings also show
that the immune response continues to play an important role in established tumors via mechanisms that involve cytotoxic T cells and NK
cells, as well as IFN-γ, CCL5, CXCL10, and toll-like receptors.

antitumor immunity [32, 115]. As intra-tumor expres-
sion of chemokines correlates with enhanced lymphocyte
infiltration, transfection of chemokine cDNAs in murine
tumor cells has shown promising tumor rejection in these
preclinical models [116].

These recent advances in immunotherapy confirm that
boosting the activity of tumor-infiltrating lymphocytes,
which are reported to be exhausted in many cancers [117,
118], will be key to the development of the most effective
treatments. Such strategies may include the blockade of
immunosuppressive pathways including PD/PDL [119, 120],
CTLA-4 [121, 122] and Cox 2 [123, 124], Treg depletion
prior to vaccination [125, 126], or perhaps activation of
the TLR pathway [112, 127]. For example, Ipilimumab, an
antibody against CTLA-4, a key negative regulator of T
cell responses, was recently approved by the FDA for the
treatment of metastatic melanoma [121, 122]. Interestingly,
the landmark clinical Phase III study of Ipilumumab in

advanced melanoma also did not show a progression-free
survival benefit even as the elusive significant overall survival
benefit was achieved. These interventions enhance the effec-
tiveness of therapies by pushing the immunological balance
towards antitumor responses within the microenvironment
of cancers [89, 90, 128].

Some cancer drugs that were initially developed to induce
carcinoma cell death were later found to act on the tumor
microenvironment. One such example is Imatinib mesylate
(Gleevec), a tyrosine kinase inhibitor which was developed
to inhibit tyrosine kinase BCR-ABL in chronic myeloid
leukemia (CML). Gleevec was recently approved for the
treatment of gastrointestinal stromal tumors (GIST) which
exhibit a c-kit tyrosine kinase mutation. However, it was later
shown that clinical responses to Imatinib correlated with the
inhibition of immunosuppressive enzyme IDO and hence
enhanced levels of T cell activation [129]. Interestingly, the
class of small molecules that inhibit mTOR has recently been
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shown to exert antitumor activity by stimulating homeostatic
proliferation of memory CD8+ T cells [130].

Cytotoxic or genotoxic agents which induce cellular
stress or DNA damage could release danger signals that are
sensed by toll-like receptors and activate innate immune
responses [131]. Chemotherapeutic drugs have also been
found to activate the immune system despite the prevailing
view that these agents induce immunosuppressive effects.
For example, low doses of cyclophosphamide inhibit Treg,
and gemcitabine or 5-fluorouracil eliminate MDSC [132].
Cyclophosphamide, paclitaxel, doxorubicin, and vinblastine
given at regular intervals normalize the tumor-associated
vasculature, thereby facilitating the delivery of drugs and
recruitment of T lymphocytes [133]. Gemcitabine can
activate both the adaptive and humoral immunity to elicit
meaningful antitumor responses in animal models [134].
In melanoma patients responding to dacarbazine, we also
found that chemotherapy is able to induce intra-tumor
expression of T cell and NK cell-attracting chemokines
CXCL9, CXCL10, and CCL5, which was associated with
improved survival [85]. It will be important therefore to
develop future cancer drugs in the context of potential effects
on the tumor microenvironment.

7. Conclusions

The immunological conditions in the tumor microenviron-
ment are now well recognized to be a critical determining
factor in tumor prevention, development, and progression.
Considerable evidence has been provided by studies in
various different cancers that the status of the tumor
microenvironment is well correlated with disease outcome.
The presence of particular immune cell types or molecules
determines whether a pro- or antitumor immune response
predominates within the microenvironment. The concept of
switching the immune response from a tumor-promoting
profile to a tumor-destructive profile is now widely regarded
as key to the future success of cancer immunotherapies.
The manipulation of immunological parameters which
shape the tumor microenvironment may suffice to tip
the balance of host responses towards effective immunity.
Better understanding of the roles of immune cells and
molecules in the tumor microenvironment will therefore
be essential for the development of more effective novel
treatments.
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