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Brain-computer interface (BCI) multi-modal fusion has the potential to generate multiple

commands in a highly reliable manner by alleviating the drawbacks associated with

single modality. In the present work, a hybrid EEG-fNIRS BCI system—achieved

through a fusion of concurrently recorded electroencephalography (EEG) and functional

near-infrared spectroscopy (fNIRS) signals—is used to overcome the limitations of

uni-modality and to achieve higher tasks classification. Although the hybrid approach

enhances the performance of the system, the improvements are still modest due to the

lack of availability of computational approaches to fuse the two modalities. To overcome

this, a novel approach is proposed using Multi-resolution singular value decomposition

(MSVD) to achieve system- and feature-based fusion. The two approaches based up

different features set are compared using the KNN and Tree classifiers. The results

obtained through multiple datasets show that the proposed approach can effectively

fuse both modalities with improvement in the classification accuracy.

Keywords: hybrid BCI, fNIRS, EEG, multi-resolution singular value decomposition, multi-modal fusion, channel

selection, classification

1. INTRODUCTION

The brain-computer interface (BCI) provides an interlink between the brain and external
devices (Vidal, 1973; Wolpaw et al., 2002). The information received from the brain in the form
of physiological/magnetic/metabolic signals is decoded and interpreted to determine the user
intentions, and is later utilized for various purposes, such as rehabilitation (Do et al., 2013; Khan
R. A. et al., 2018); control of robots (Doud et al., 2011; Bozinovski, 2016; Khan A. H. et al., 2018;
Rosca et al., 2018; Duan et al., 2019) and of prosthetics (Buch et al., 2018; Yanagisawa et al., 2019);
and neurogaming (Paszkiel, 2016, 2020; Vasiljevic and de Miranda, 2020). Among the existing
non-invasive acquisition methods, arguably EEG (Wolpaw et al., 2002; Pfurtscheller et al., 2006;
Choi, 2013; Abiri et al., 2019) and fNIRS (Ferrari et al., 1985; Delpy et al., 1988; Coyle et al.,
2004, 2007; Fazli et al., 2012; Naseer and Keum-Shik, 2015; Yin et al., 2015) are considered the
most explored. EEG is the physiological method, with low spatial and high temporal resolution,
that measures the brain activity in the form of electrical impulses (volts) using the electrodes
placed at specific positions on the scalp. On the other hand, fNIRS, based upon metabolic signals,
measures the level of oxygenation and de-oxygenation in the blood with high spatial and low
temporal resolution. Due to low temporal resolution, fNIRSmay require several seconds tomonitor
the blood levels (Khan and Hong, 2017). The time involved in monitoring causes a delay in
generating execution commands. For the fNIRS, this duration is almost 9 times that of EEG (Khan
and Hong, 2017). Additionally, in comparison to EEG, fNIRS is considered more robust against
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electromyogram artifacts and electrical noises (Blankertz et al.,
2010; Ahn and Jun, 2015, 2017). The limitations of both
modalities led to a multi-modal system, known as the hybrid
EEG-fNIRS BCI, that has the ability to overcome the drawbacks
of uni-modal systems and to improve the performance.

The hybrid EEG-fNIRS BCI has attracted the attention of
many researchers due to its mobility, cost-effectiveness, and
enhanced information content (compared to the uni-modal).
Since the EEG obtains information from the physiological
signals, and fNIRS uses metabolic signals to detect the
hemodynamic, there is no significant interference between the
two modalities. This further helps to obtain an enhanced BCI
performance. The first notable study that concurrently recorded
EEG-fNIRS data to perform motor imagery tasks was done
by Fazli et al. (2012). The authors reported an improvement in
the classification accuracy by 5% on average when compared to
the single modality. After the promising results obtained by Fazli
et al. (2012), more researchers tried to utilize the hybrid BCI,
either to increase the classification accuracy and/or to generate
more control commands (Khan et al., 2014; Koo et al., 2015;
Aghajani et al., 2017; Ge et al., 2017; Shin et al., 2018a). The most
explored areas where the hybrid BCI is utilized include mental
stress (Al-Shargie et al., 2016; Aghajani et al., 2017) and gait
rehabilitation (Berger et al., 2019), among many others (Putze
et al., 2014; Zama et al., 2019). Though the hybrid EEG-fNIRS
BCI has been able to upheld its supremacy against single modality
both in terms of accuracy and stability, there are still some
challenges related to the integration of both modalities.

Data-fusion in multi-modality is a challenging problem since
the brain imaging data is different in nature, thus making the
analysis more difficult. Most of the previous studies focused
on feature-based fusion through concatenating EEG and fNIRS
features (Putze et al., 2014; Hong et al., 2018; Shin et al., 2018a),
and by providing them the support of other power tools. Joint
independent component analysis (jICA), which was previously
used for integrating EEG and fMRI (Calhoun and Adali, 2008),
was used to perform the fusion of EEG and fNIRS features (Al-
Shargie et al., 2016). Some researchers also used deep learning-
based feature fusion approaches, such as tensor fusion and
pth-order polynomial fusion (Chiarelli et al., 2018; Sun et al.,
2020). These multi-modal fusion approaches have been able to
improve the accuracy, but at the cost of increasing computational
complexity and decreasing stability. In Yin et al. (2015), the
authors introduced a features combination and optimization
approach using joint mutual information (JMI), and the study
decoded the motor imagery of the force and speed of hand
clenching. The feature optimization method, JMI, was developed
with the intention to remove unessential information that may
reduce classification accuracy. The authors reported achieving an
improved performance of up to 5% when compared to previous
studies. In 2017, Al-Shargie et al. (2017) proposed a canonical
correlation analysis (CCA) to perform feature-based fusion. The
aim was to investigate the effects of mental stress on prefrontal
cortex (PFC) based upon simultaneously recorded EEG and
fNIRS signals. CCA is a statistical method that maximizes the
correlation between the features of brain signals recorded by each
modality EEG-fNIRS.

Though the improvements achieved by jICA, JMI, and CCA
were satisfactory, the fusion was applied on the feature level,
where the two modalities were processed separately. Therefore,
a true system-level fusion is needed in order to capture the
maximum benefits of the hybrid BCI, maximize the correlation
between each modality, and reduce the computational
complexity. In this study, we propose a novel hybrid BCI fusion
approach using Multi-resolution singular value decomposition
(MSVD) to perform a feature-based and system-based fusion for
both EEG and fNIRS by employing selected channels from each
hemisphere. The MSVD has previously been utilized primarily
for image analysis, fusion (Kakarala and Ogunbona, 2001; Ashin
et al., 2005; Naidu, 2011) and pattern recognition (Lung, 2002).
To our knowledge, the present study is the first attempt to
perform a hybrid EEG-fNIRS BCI fusion at the system level
using MSVD. This approach not only helps to improve the
classification accuracy, but also to reduce the dimensionality and
the computational complexity. To evaluate the performance,
the proposed approach is tested for two datasets: Buccino
dataset (Buccino et al., 2016) and dataset from Technical
University Berlin (TU Berlin) (Shin et al., 2018b).

2. MATERIALS AND METHODS

2.1. Datasource and Experimental
Paradigm
The proposed approach has the tendency to work with datasets
of different nature. To prove its effectiveness, it is tested on two
simultaneously recorded EEG-fNIRS data for motor execution
and cognitive tasks. Both datasets have been widely used by the
research community in the recent past as they can be openly
accessed (Congedo et al., 2017; Saadati et al., 2020).

2.1.1. Buccino dataset
The publicly available dataset obtained from an online repository
(http://dx.doi.org/10.6084/m9.figshare.1619640 and http://dx.
doi.org/10.6084/m9.figshare.1619641) was provided by Buccino
et al. (2016). The raw data from EEG and fNIRS was concurrently
recorded for four motor execution tasks– right and left arm;
right and left hand–against the rest. Fifteen healthy subjects, aged
between 23 and 54, were involved in the experiments that lasted
an hour. A screen was installed nearly 100 cm away from the
subjects on which visual instructions were displayed; the subjects
were asked to follow the instructions without any intentional
delay. The total duration of each experiment was segmented into
rest and activity periods; each trial started with a rest for 6 s
followed by another 6 s of movements.

2.1.2. TU Berlin Dataset
The second open-access dataset considered in this study was
from TU Berlin (Shin et al., 2018b), where 26 healthy persons
participated in the experiment ranging between 17 and 33
years of age. A 24in LCD monitor was placed in front of the
participants, approximately at a distance of 1.2 m. They were
instructed to place their middle and index fingers on the numeric
keypad attached to the armrest of the chair. The EEG and
NIRS signals were recorded simultaneously for three cognitive
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tasks over a period of approx. 3.5 h: n-back (0-, 2-, and 3-
back), discrimination/selection response task (DSR), and word
generation (WG). In this study, we considered only the n-back
tasks where a series of nine tasks were performed by each
participant. At the start of each series, a type of task is displayed
on the screen for 2 s, followed by the actual task period of 40
s, and then 20 s rest period. The participants responded to the
screen instructions by either pressing the target key (number
7) or non-target key (number 8) with their right index finger
and right middle finger. More details about the dataset can be
obtained from Shin et al. (2018b) and (http://doc.ml.tu-berlin.de/
simultaneous_EEG_NIRS/).

2.2. Data Acquisition
2.2.1. Buccino Dataset
The EEG system (microEEG, BioSignal Group, US) was used
to record the signals through twenty-one channels, sampled at
a rate of 250 Hz. The fNIRS system, NIRScout 8-16 (NIRx
Medizintechnik GmbH, Berlin, Germany) equipped with 12
sources and 12 electrodes on 34 channels was used to acquire
signals at a sampling frequency of 10.42 Hz. The EEG electrodes
and fNIRS probes were mounted on an extended EEG cap
(actiCAP 128, Brain Products GmbH, Germany) according to the
international 10-20 system.

2.2.2. TU Berlin Dataset
A multi-channel BrainAmp EEG amplifier (Brain Products
GmbH, Gilching, Germany) working at a sampling rate of 1,000
Hz was used to store the raw EEG data. The fNIRS system,
NIRScout (NIRx Medizintechnik GmbH, Berlin, Germany),
combined with thirty-six channels was used to record data
at a sampling rate of 10.4 Hz. Thirty EEG electrodes, and
sixteen pairs of NIRS sources and detectors, were mounted on
a cap (EASYCAP GmbH, Herrsching am Ammersee, Germany)
according to the international 10-5 system.

2.3. Data Pre-processing
2.3.1. Buccino Dataset
The initial trial was segmented out prior to the motor execution
tasks. The raw fNIRS data obtained at a sampling frequency of
10.42 Hz was decomposed into Oxy-haemoglobin and Deoxy-
haemoglobin concentration changes (HbO and HbR) through
the Modified Beer-Lambert law (Cope et al., 1988; Baker et al.,
2014). Later, the concentration signals were filtered with a 4th
order IIR Butterworth filter between 0.01 and 0.2 Hz. The EEG
signals were also filtered with a 4th order IIR Butterworth filter
between 1 and 50 Hz to remove artifacts.

2.3.2. TU Berlin Dataset
The raw NIRS data were transformed to HbO and HbR using the
Modified Beer-Lambert law, and down-sampled to 10 Hz. The
obtained data was filtered (6th order zero-phase Butterworth)
with 0.2 Hz cut-off frequency to remove systemic physiological
noises. The raw EEG data were down-sampled to 200 Hz
and band-pass filtered (6th order zero-phase Butterworth)
between 1 and 40 Hz. Additionally, the second-order blind

identification method was applied to the filtered data to eliminate
ocular artifacts.

The filtered EEG and fNIRS data were baseline-corrected by
subtracting the mean and dividing by the standard deviation.
For both datasets, the EEG data were downsized through an
average moving window of 1 s to ascertain consistency and
synchronization. Additionally, we selected HbO as the main
feature for the fNIRS signal as the concentration change is
more observable in HbO and can produce higher accuracy when
compared to HbR and total haemoglobin (HbT) (Aihara et al.,
2012; Morioka et al., 2014; Buccino et al., 2016).

2.4. Channel Selection
The criteria of channel selection is based upon the correlation
coefficient, ρ, determined between the filtered data of each
modality. Some researchers have investigated the utilization of
the Pearson correlation coefficient to solve practical problems in
medical industry (Yildiz and BERGIL, 2015; Akoglu, 2018). Our
previous study in this context (Hasan et al., 2020) demonstrated
that this approach can be effectively utilized to select optimal
channels for EEG and fNIRS.

2.5. Feature Extraction
2.5.1. Discrete Wavelet Transform (DWT)
The DWT of a signal X[n], as shown in Figure 1, is obtained
through a series of low- and high-pass filter pairs, named as
quadrature mirror filters. As the frequency bandwidth is reduced
to half, the filtered signal can be down-sampled by two according
to the Nyquist’s rule. The reduced output from the low- and
high-pass filter branches are regarded as approximation (Ai)
and detail (Di) coefficients, where i represents the level of
the transform. The same procedure can be repeated multiple
times to improve the frequency resolution by considering the
coefficients from the previous level as an input. The tree structure
is also known as a filter bank. After each decomposition, the
time resolution is halved through down-sampling, whereas the
frequency resolution is doubled through filtering. Based upon the
work of Subasi (2007), the authors in Li et al. (2017) reported that
the approximation coefficient from the output of the last DWT
layer is the main carrier of the signal’s power. They suggested
the use of a 4-layer “Symlet” wavelet network to obtain higher
classification accuracy.
Decomposition Level

For DWT, the mother wavelet transform directly impacts the
calculation of the approximation and detail coefficients (Mallat,
1989), thereby affecting overall accuracy. The most commonly
used families are biorthogonal, reverse biorthogonal, daubechies,
symlets, coiflets, discrete meyer, and haar (Faust et al., 2015). In
this study, from the family of symelts, sym4 is selected having a
filter size of eight as a mother wavelet.

The number of decomposition levels of DWT is associated
with the input signal and mother wavelet. With more depth
of decomposition, a detailed description of the signal can be
obtained, but it may produce features redundancy leading to
the lower accuracy and higher computational cost. The highest

level L of the decomposition is determined as floor
(

log2

(

N
F−1

))

,
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FIGURE 1 | A four-level filter bank; h[n] is the high pass filter, g[n] is the low pass filter.

whereN is the size of the input signal and F is the mother wavelet
filter size (eight in our case) (Wu et al., 2000). Chen et al. (2017)
reported that beyond a certain level, not much improvement can
be observed in the accuracy. Even in some cases, the accuracy
even dropped with the increase in the decomposition level.
Hence, more levels of decomposition do not necessarily mean
improved accuracy, but definitely adding to the computational
cost. For our case, we obtained the maximum accuracy with four
levels of decomposition.

2.5.2. Statistical Features
In addition to DWT, six different statistical features are extracted
using spatial averaging of selected channels. The considered
features set are: mean (M), peak (P), skewness (SK), kurtosis
(KR), standard deviation (SD), and variance (VAR). The selection
of these features is based upon the existing literature, where
there is also a comparison between the performance of individual
features and their combinations (Hong et al., 2017; Khan R. A.
et al., 2018; Hasan et al., 2020). The extracted features set are
re-scaled between 0 and 1, using:

Xnew =
Xi −min (Xi)

max (Xi) −min (Xi)
(1)

After processing the extracted features using Equation (1), the
normalized feature vectors are obtained as Mnew, Pnew, SKnew,
KRnew, SDnew, and VARnew. To avoid ambiguity and for the sake
of easiness, the normalized features are still represented using the
same variables, but without the subscript.

3. DATA-FUSION

3.1. Multi-Resolution Singular Value
Decomposition (MSVD)
The motivation behind the proposed approach is to build a
framework for multi-modal fusion using MSVD. Similar to
DWT, an input signal is processed through high- and low-pass
finite impulse response (FIR) filters at the first stage, followed
by down-sampling. In the following stage, the approximation
coefficient from the previous level is bifurcated to achieve
decomposition (Naidu, 2011). The same procedure is repeated to
obtain d level decomposition, where the FIR filters are replaced
with the MSVD.

Let X ∈ R
n′×m′

contains the statistical features of the input
signal or the fused signal, where

(

n′,m′
)

are constrained as an
even number due to the decomposition process.

By introducing new variables (n,m) as
(

n′

2 ,
m′

2

)

, the data matrix,

A ∈ R4×nm, is built upon the matrix X as:

A =
[

V1 V2 · · · Vm

]

(2)

where each Vi contains two adjacent columns of X, and is defined
as follows:

Vi =
[

υ1 υ2 . . . υn
]

(3)
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FIGURE 2 | A three-level multi-resolution decomposition structure.

Each individual vector υi contains a feature set of four elements
of X, and is formulated as:

υi =
[

υUL
i υUR

i υLL
i υLR

i

]T
(4)

where UL, UR, LL, and LR represents upper-left, upper-right,
lower-left, and lower-right elements, respectively.
Afterwards, the singular value decomposition is applied on the
generated data matrix A as:

A = USVT (5)

where the columns of U contain left singular vectors, S holds
singular values as diagonal entries, and rows of VT have the right
singular vectors. The singular vectors are chosen to satisfy:

UTA = SVT (6)

A scatter matrix, T ∈ R4×nm, is defined using Equation (6) as:

T = UTA (7)

The vectors
{

Et1,Et2,Et3,Et4
}

specify the rows of T, where each Eti ∈
R
1×nm. These vectors are reshaped to generate corresponding

matrices {Ŵ1,Ŵ2,Ŵ3,Ŵ4}, where each Ŵi ∈ R
n×m. A split matrix

ϕ ∈ R
n′×m′

is introduced as:

ϕ =

[

ϕUL ϕUR

ϕLL ϕLR

]

=

[

Ŵ1 Ŵ2

Ŵ3 Ŵ4

]

(8)

Figure 2 shows the structure of the split matrix with three
decomposition levels. In case of a multiple input signals, a
split matrix using MSVD is obtained for an individual input.

For instance, two input signals S1 and S2, having the same
dimensions, are decomposed into L (l =1,2,..., L) levels using
MSVD (Figure 3). After the generation of the split matrix, fusion
has to be performed. To do so, it is necessary to store detail

component vectors ϕ
{UR,LL,LR}
l

and singular-vector matrix Ul for
l =1,2,..., L, whereas it is sufficient to store the approximation

component vector only at the coarest level L i.e., ϕ
{UL}
L . The fusion

rules mentioned in Figure 3 are used to fuse the signals from
multi-sources. At each decomposition level l, the largest absolute
detail component vector is selected since it assumed to carry the
main power of the signals. Similarly, the average of the singular-
vector matrix is computed at each level. At the coarest level (l =
L), the average of the approximation coefficients is calculated.

It can be observed that based upon the information from the
split matrix, a decision is made. Once the fusion rules are applied
in order to merge all the information into a single modality, an
inverse process is applied to obtain the fused matrix.

The scatter matrix T is reconstructed based upon the
information from the split matrix since the steps are reversible.
The sub-matrices of the split matrix ϕ are reshaped from
R
n×m → R

1×nm to redefine scatter matrix T:

T =









Et1
Et2
Et3
Et4









(9)

Using Equation (9), a data matrix A is obtained as:

A = UT (10)

The structure of the data matrix is defined as:

Each column vector ai contains four elements and is used to
define a fused feature matrix X as:

X =















a1 am+1 . . . am(n−2)+1 am(n−1)+1

a2 am+2 . . . am(n−2)+2 am(n−1)+2

...
...

. . .
...

...
am−1 a2m−1 . . . am(n−1)−1 amn−1

am a2m . . . am(n−1) amn















(11)

where

ai =

[

a (1, i) a (2, i)
a (3, i) a (4, i)

]

(12)

3.2. Feature-Based Fusion
EEG-fNIRS correlation analysis helped to reveal the intrinsic
relationship between both modalities. To maximize the accuracy
and to increase the number of the generated commands,
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FIGURE 3 | MSVD fusion scheme.

statistical and optimization-based feature extraction methods
are among the most commonly used. However, most of the
previous studies focused on the feature-based level fusion by
simply concatenating EEG and fNIRS features

[

fEEG : fFNIRS
]

.
In this paper, we proposed the utilization of the MSVD to
perform EEG-fNIRS feature-based fusion. For the given datasets,
the details about the pre-processing steps, such as filtering
and windowing are provided in section 2.3. Based upon the
correlation coefficient, six optimal channels are selected from
both modalities. Six statistical features from the fNIRS and six
normalizedDWT features (one from each channel) from the EEG
are extracted (Figure 4A). Afterwards, MSVD decomposes the
features set into sub-bands through filtering, and the output of
each filter is dismantled by a factor of two to complete the first
level of decomposition. Afterwards, the fusion rulesmentioned in
Figure 3 are applied, followed by the classification to determine
the specific tasks.

3.3. System-Based Fusion
Figure 4B is a schematic representation of the proposed system-
based fusion using MSVD for a hybrid BCI system. To our
knowledge, none of the previous studies have so far applied
fusion at the system-level, mainly due to the complexity and
lack of computational approaches. The pre-processed signals
(filtered, down-sampled) are used to extract the desirable number
of channels using the correlation coefficient (Hasan et al., 2020).
Six channels are selected from both modalities and processed
using MSVD to perform system-based fusion. Multiple features
are extracted from the fused signal: DWT, statistical, and a
combination of DWT and statistical. Later, the extracted features
are fed to the classifier to determine the specific tasks.

4. RESULTS

This section mainly evaluates the performance of the two fusion
schemes, feature- and system-based fusion, by utilizing Buccino
and TU Berlin datasets. To reduce the computational complexity,
a reduced number of channels of both modalities are utilized for
the classification. On Buccino dataset, the computational time,

recorded as the temporal distance between the filtration and
feature extraction, is highlighted in Table 1 for EEG and fNIRS
based upon all channels and the reduced number of channels.
The analysis made is based upon the sampled data of 1 s, obtained
through both modalities. The response time is reduced by 40 and
50% for EEG and fNIRS, respectively.

4.1. Classification
For EEG and fNIRS, the classification accuracies using the KNN
and Tree classifiers are evaluated for four different motor tasks
against the rest based upon Buccino dataset; whereas, hybrid
EEG-fNIRS analysis is made for both Buccino and TU Berlin
datasets, using the same classifiers. The KNN classifier proximate
the nearest observation points from the training data into a
single class. It is preferred due to its simplicity, easiness to
implement and high classification performance (Bablani et al.,
2018). The Tree classifier constructs the decision tree with
branches and node(s) based on the extracted features. At each
node, either a single feature or several features contribute
to minimizing the entropy label of the class (Aydemir and
Kayikcioglu, 2014). To evaluate the classifiers’ performance, a 10-
fold cross-validation scheme is applied to the feature vectors of
EEG, fNIRS, and EEG-fNIRS.

4.2. EEG
The average classification accuracies in Table 2 are obtained
using the KNN and Tree classifiers for the eight selected subjects
based upon Buccino dataset. The four approximation coefficients
obtained using four-level DWT are defined as the EEG features. It
is noted that the Tree classifier, when compared to KNN, has only
been able to producemoderate results. The classification accuracy
of more than 80% is achieved using the last approximation
coefficient A4, when processed through KNN. This phenomenon
is observed as DWT helps decompose the EEG signals into
four layers, and the last approximation coefficient is assumed
to hold the most effective event-related potential (ERP) of the
brain activity. The DWT decomposition also helped to reduce the
dimensionality of the system.
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FIGURE 4 | Hybrid BCI system using (A) Feature-based fusion. (B) System-based fusion.

4.3. fNIRS
Table 3 shows the KNN and Tree classification results obtained
for the eight subjects (Buccino dataset) using fNIRS-only
features. A feature set, consisting of fifteen feature vectors, is
developed from a combination of the six statistical features. In
this study, it is revealed that the combination of mean and
skewness produces the highest average classification accuracies
for both KNN and Tree. It is concluded that, similar to EEG,
fNIRS has not been able to produce any satisfactory results.

4.4. Hybrid EEG-fNIRS
The performance of the hybrid EEG-fNIRS based upon feature-
and system-based fusion is evaluated using accuracy, specificity,
and area under curve (AUC). The most commonly used
performance measures, such as precision, recall, and F1-score are
not useful for the multi-classification, as they produces the same
results. Hence, for the purpose, AUC is employed, its value ranges
between 0 and 100%. The closer the value is to 100%, the better is
the classification performance of the model.

4.4.1. Feature-Based Fusion
For feature-based fusion, based upon the selected channels from
both modalities, the six statistical features from the fNIRS, and

TABLE 1 | Impact of channels selection on the computational time for both EEG

and fNIRS.

Number of channels EEG (s) fNIRS (s)

All channels 0.1639 0.1405

6 channels 0.0935 0.0724

DWT’s last layer approximation coefficients from the EEG are
used as the main features. The number of selected channels
from both modalities is kept the same. A combined feature set
of EEG-fNIRS is processed through MSVD. Table 4 illustrates
the classification performance measures obtained for the eight
subjects using feature-based fusion.
Buccino Dataset

The proposed method delivered promising performance for the
motor execution tasks. Table 4 shows consistent accuracy above
85% across all subjects using the KNN. Considering all the
subjects, the average classification accuracies of 90.25 and 74.98%
are obtained through the KNN and Tree classifiers, respectively.
It can be observed that the KNN has been able to outperform
the Tree classifier for feature-based fusion. It is also noticeable
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TABLE 2 | Average classification accuracies for the eight subjects using the EEG.

Features set
EEG

KNN (%) Tree (%)

A1 44.45 50.62

A2 59.96 53.10

A3 70.83 60.55

A4 82.36 71.32

TABLE 3 | Average classification accuracies for the eight subjects using the fNIRS.

Features set fNIRS

KNN (%) Tree (%)

M, P 64.80 69.82

M, SK 70.97 73.63

M, KR 68.85 71.81

M, SD 69.62 71.66

M, VAR 68.08 71.66

P, SK 70.36 73.27

P, KR 66.42 71.32

P, SD 67.58 71.13

P, VAR 67.28 71.10

SK, KR 56.66 64.52

SK, SD 65.00 69.16

SK, VAR 64.11 69.13

KR, SD 63.81 68.36

KR, VAR 62.98 68.38

SD, VAR 46.91 56.61

that there is a variation among individual subject’s performance,
causing a direct effect on the overall accuracy. There can be many
possible reasons for this phenomenon: it could be due to the
subject’s experiencing such tasks first hand or loss of interest at
some stage during the process. This can be corrected by properly
training the subjects before performing the experiments, as well
as by shortening the duration of the experiments. Regarding the
individual’s performance, the best performing subjects are S5
and S7, who achieved the highest accuracies of 97.0 and 95.8%
through KNN.
TU Berlin Dataset

The n-back tasks classification results using the KNN and Tree
classifiers are presented in Table 4. For all the subjects, highest
classification accuracy is achieved by the KNN. The highest
accuracies (%) attained for the eight subjects are 94.4, 72.4,
92.1, 91.0, 95.5, 76.4, 79.9, and 81.9. The average classification
accuracies obtained using the KNN and Tree classifiers are
85.45 and 77.91%, respectively. It is re-observed that due to the
individual’s performance, there has been a significant drop in the
overall accuracy, despite the fact that four subjects have been able
to achieve an accuracy of 91% or above (KNN). Although, the
results are reported for a single feature set (DWT-statistical), the
proposed method can be further tested with other combinations
to yield the highest accuracies.

4.4.2. System-Based Fusion
System-based fusion presents many advantages as compared
to feature-based fusion; it is less time-consuming since we are
analyzing the fused signals instead of processing each signal
separately, and then fusing them. It is also more robust toward
cross-data set variations of the components, which can be used
for generating group-level inferences in different ways. The
processed EEG-fNIRS data obtained from the selected channels
is fused using MSVD system-based Fusion.
Buccino dataset

Table 5 summarizes the classification accuracies obtained using
a combined features set (DWT, statistical, DWT-statistical)
through the KNN and Tree classifiers for the eight subjects.
Among three features set, DWT is able to produce the highest
accuracy of 98.9% (KNN) followed by DWT-statistical which
attained 94.43% (Tree) at most. Moreover, consistent best
accuracies (%) were 97.0, 98.9, 98.9, 98.6, 93.6, 98.3, 98.2, 98.9
for eight subjects, respectively, as obtained using the KNN. Based
upon the performance, S2, S3 and, S8 can be considered as the
best-performing subjects.
TU Berlin Dataset

In Table 5, performance measures based upon the classification
results are shown. The highest and the lowest accuracies of
99.7 and 40.9% are obtained using DWT and the six statistical
features, respectively. The huge difference between the best-
performing and worst-performing subjects causes the significant
drop in the overall accuracy. Therefore, extreme caution must
be taken to exclude the non-favorable features and subjects. For
eight subjects, KNN in comparison to Tree has been able to
produce the highest accuracies (%) of 99.5, 99.7, 99.5, 80.1, 96.6,
99.4, 99.3, and 99.3.

5. DISCUSSION AND CONCLUSION

A hybrid EEG-fNIRS BCI enables the assessment of brain
activities from different perspectives; hence, a broader range
of information is obtained. Additionally, it also compensates
for the weaknesses of individual modalities. The performance
of the hybrid EEG-fNIRS is compared against EEG-only and
fNIRS-only for the eight subjects. The results supported the
argument that the hybrid EEG-fNIRS should be preferred over
the individual modalities. The obtained classification accuracy
for the hybrid system is higher than EEG-only and fNIRS-only
for all subjects. The reduced number of channels from both
modalities are utilized to obtain the results. The selected channels
are based upon the ranking of the correlation coefficient; the
six highest ranked channels of both modalities are selected. As
shown in Table 1, the response time is improved by 40% for both
modalities without affecting the accuracy.

In this study, we presented an MSVD approach for bi-
modalities data-fusion. The proposed approach is investigated
for both feature- and system-based fusion of EEG-fNIRS, with
the intention to improve the system’s performance and to reduce
dimensionality. TheMSVD-based data-fusion works on the same
principle as DWT; at each level, the signals are filtered and
dismantled by a factor of two to decompose the data into their
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TABLE 4 | Classification performance of the hybrid EEG-fNIRS for the eight subjects using the (Tree,KNN), based upon feature-based fusion.

S1/S2/S3/S4 S5/S6/S7/S8

Accuracy (%) Specificity (%) AUC (%) Accuracy (%) Specificity (%) AUC (%)

Buccino (72.1,93.6) (80.0,93.6) (81.0,94.0) (78.9,97.0) (93.4,97.0) (86.0,97.0)

TU Berlin (87.4,94.4) (88.8,94.7) (90.0,95.0) (83.4,95.5) (91.7,97.0) (93.0,98.0)

Buccino (73.2,85.7) (81.0,85.0) (82.0,89.0) (70.9,85.0) (78.0,87.3) (85.0,89.0)

TU Berlin (71.0,72.4) (77.5,74.0) (81.0,76.0) (68.6,76.4) (76.1,79.0) (80.0,83.0)

Buccino (79.1,92.4) (81.3,92.0) (83.0,92.0) (77.7,95.8) (81.0,98.0) (88.0,98.0)

TU Berlin (84.8,92.1) (86.8,93.2) (91.0,94.0) (72.4,79.9) (78.4,83.5) (87.0,86.0)

Buccino (77.1,86.1) (85.3,89.0) (87.0,91.0) (70.9,86.4) (72.1,85.0) (74.0,85.0)

TU Berlin (77.0,91.0) (81.3,91.9) (87.0,93.0) (78.7,81.9) (82.5,84.7) (91.0,90.0)

TABLE 5 | Classification performance of the hybrid EEG-fNIRS for the eight subjects using the (Tree,KNN), based upon system-based fusion.

S1/S2/S3/S4 S5/S6/S7/S8

Features set Accuracy (%) Specificity (%) AUC (%) Accuracy (%) Specificity (%) AUC (%)

Buccino Six Statistical and DWT (81.1,65.1) (94.1,89.6) (93.0,80.0) (82.1,63.5) (92.0,69.0) (94.0,72.0)

Six Statistical (50.1,41.6) (85.7,83.7) (57.0,52.0) (53.0,44.3) (58.3,52.1) (61.0,59.0)

DWT (83.1,97.0) (94.7,99.0) (93.0,97.0) (83.8,93.6) (88.2,98.1) (94.0,99.0)

TU Berlin Six Statistical and DWT (95.6,83.4) (95.7,84.6) (96.0,81.0) (96.1,79.5) (98.5,82.0) (99.0,89.0)

Six Statistical (62.4,59.7) (66.0,71.3) (68.0,60.0) (46.1,45.5) (62.0,60.0) (66.0,63.0)

DWT (96.7,99.5) (96.7,99.9) (97.0,100) (96.5,96.6) (98.7,99.0) (99.0,100)

Buccino Six Statistical and DWT (93.8,90.6) (98.0,96.9) (95.0,92.0) (91.7,79.6) (96.3,81.2) (98.0,82.0)

Six Statistical (59.8,53.0) (61.0,54.2) (71.0,65.0) (54.5,51.7) (62.0,59.2) (62.0,61.0)

DWT (94.3,98.9) (95.1,99.0) (95.0,99.0) (92.4,98.3) (98.0,99.0) (98.0,99.0)

TU Berlin Six Statistical and DWT (94.6,80.7) (94.9,83.9) (95.0,84.0) (95.6,82.6) (97.0,88.0) (98.0,89.0)

Six Statistical (51.3,50.2) (61.2,58.0) (63.0,59.0) (54.6,56.0) (65.0,56.0) (67.0,73.0)

DWT (95.9,99.7) (96.9,99.8) (97.0,100) (95.9,99.4) (97.7,99.8) (98.0,100)

Buccino Six Statistical and DWT (94.4,87.4) (95.9,90.9) (94.0,84.0) (91.8,77.1) (93.9,79.0) (94.0,86.0)

Six Statistical (73.8,71.2) (81.5,79.8) (58.0,54.0) (54.9,47.4) (60.0,55.0) (61.0,56.0)

DWT (95.0,98.9) (96.3,99.2) (95.0,99.0) (92.4,98.2) (95.0,98.0) (95.0,98.0)

TU Berlin Six Statistical and DWT (96.2,81.8) (97.8,84.0) (98.0,86.0) (93.4,84.7) (98.0,88.0) (98.0,90.0)

Six Statistical (56.4,54.5) (59.0,62.0) (70.0,65.0) (59.1,56.8) (75.0,60.0) (79.0,71.0)

DWT (96.0,99.5) (97.0,99.0) (98.0,100) (96.9,99.3) (98.8,99.9) (99.0,100)

Buccino Six Statistical and DWT (89.3,85.0) (94.9,90.0) (94.0,91.0) (91.2,78.1) (94.7,79.0) (95.0,86.0)

Six Statistical (56.3,52.6) (62.0,56.0) (63.0,57.0) (55.2,50.7) (62.0,55.9) (63.0,56.0)

DWT (92.0,98.6) (96.2,99.0) (96.0,99.0) (91.9,98.9) (96.0,99.0) (96.0,100)

TU Berlin Six Statistical and DWT (77.7,79.5) (85.0,83.0) (87.0,84.0) (94.0,76.8) (96.5,76.0) (97.0,83.0)

Six Statistical (63.3,63.5) (66.4,64.0) (76.0,71.0) (40.9,40.9) (59.0,52.0) (61.0,57.0)

DWT (79.6,80.1) (85.0,81.0) (88.0,82.0) (95.5,99.3) (97.0,99.6) (98.0,100)

latent components. From the classification performance results in
Tables 4, 5, it is apparent that the system-based fusion dominated
the feature-based fusion for the all the subjects from both datasets
using the Tree classifier. Contrarily, KNN has performed better
for the feature-based fusion rather than the system-based fusion
in most cases. Overall, the results show that MSVD is a powerful
tool that naturally allows for the analysis and fusion of multiple

data sets. Being quite simple from the computational perspective,
it could be well-suited for real-time applications as well.

The analysis and results are obtained from offline data, but
the proposed approach is implementable for a real-time setup.
Instead of processing all the channels from both modalities,
only the most optimized channels using a correlation coefficient
can be applied for feature extraction. It is shown in Hasan
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et al. (2020) that it helps to reduce the computational burden
while maintaining the classification accuracy. The selection
of channels for the individual subjects can be added as an
initialization step. The computation of SVD for a large matrix
can be time-consuming; hence, limits the real-time application.
For a rectangular matrix, instead of computing the SVD
of a matrix A as in Equation (5), we can form a square
matrix i.e., ATA for a thin matrix, and AAT for a fat matrix
to compute the SVD. The computation of SVD for these
square matrices is considered efficient; therefore, suitable for
online systems.

The features selection does have direct impact on the
classification accuracy; thus, care must be taken in this regard.
It is desirable that those features must be extracted, who truly
represent the data and are as compact as possible. In Table 5,
three different feature sets–DWT features, six statistical features,
and a combination of DWT-statistical–are extracted to evaluate
the performance of the system-based fusion for a hybrid EEG-
fNIRS. In contrast to the feature-based fusion approach, the
features are extracted from the fused EEG-fNIRS signal in the
system-based fusion. Thus, for both fusion schemes, different
behaviors can be expected. On Buccino dataset, the results show
that the features set pertaining to the DWT-statistical, statistical,
and DWT, in case of the KNN (Tree) classifiers, have 78.3%
(89.4%), 51.6% (57.2%), and 97.8% (90.61%) average accuracies
for all the subjects, respectively. On TU Berlin dataset, the
average accuracies obtained for all the subjects, using the KNN
(Tree) classifiers, for features set related to DWT-statistical,
statistical, and DWT are 81.12% (92.9%), 53.38% (54.26%), and
96.67% (94.12%), respectively. These numbers reveal that by
using the last layer’s approximation coefficient of DWT, the
highest accuracy is achieved; whereas, the lowest accuracy is
obtained using the six statistical features. For DWT-statistical
and statistical features, Tree classifier yielded the highest average
accuracies; whereas, KNN achieved the highest accuracy for
DWT features.

System-based fusion using MSVD enables the processing of
fused EEG-fNIRS signals, rather than processing each modality
separately for feature extraction and fusing them later. One of
the concerns of this study, when it comes to system-based fusion,
is the requirement of the same number of channels for both
modalities, thus making channel selection compulsory. As such,
future work will explore the possibility of system-based fusion
when there is a mismatch between the number of channels for
both modalities.

The second limitation of our study is the manual selection
of features for the classification. The manual extraction of the
features is a cumbersome process and has a direct impact on
the classification accuracy. With the selection of optimal features,
effective pre-processing, and various classification techniques,
this accuracy can be improved (Khan R. A. et al., 2018; Hasan

et al., 2020). However, it is not guaranteed that the optimal
feature for one task will be able to produce desirable results for
the other tasks. Therefore, this process has to be repeated for
individual tasks, and this consumes a lot of time. Recently, deep

learning techniques, such as convolution neural network (CNN)
and recurrent neural network (RNN) have been utilized for
automatic feature extraction, pre-processing, and classification
(Zhang et al., 2017; Yang et al., 2018; Tayeb et al., 2019). The
obtained results have been promising when compared to the
conventional classifiers (Trakoolwilaiwan et al., 2017; Chiarelli
et al., 2018; Kumar et al., 2019; Asgher et al., 2020; Ghonchi et al.,
2020). Considering the improvement in accuracy obtained using
deep learning techniques, even in light of the limited amount of
data and fewer pre-processing requirements, this improvement
motivates us to work upon the combination of such techniques
with MSVD in the future.

In conclusion, the present work proposed a novel hybrid
EEG-fNIRS fusion approach for the classification. The primary
goal is to improve the classification accuracy and to reduce
the computational complexity of the hybrid EEG-fNIRS BCI.
In order to achieve this, an MSVD approach is proposed for
feature-based fusion and system-based fusion. To validate the
effectiveness of the proposed approach, eight different subjects
were considered and multiple trials were performed. As is
evident from the results, our hybrid system significantly reduces
the computational burden while achieving higher classification
accuracy. The authors anticipate and hope that the proposed
fusion approach will lead to more effective applications of BCI.
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