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Abstract
Web applications can implement procedures for studying the speed of mental processes (mental chronometry) and can be
administered via web browsers on most commodity desktops, laptops, smartphones, and tablets. This approach to conducting
mental chronometry offers various opportunities, such as increased scale, ease of data collection, and access to specific samples.
However, validity and reliability may be threatened by less accurate timing than specialized software and hardware can offer. We
examined how accurately web applications time stimuli and register response times (RTs) on commodity touchscreen and
keyboard devices running a range of popular web browsers. Additionally, we explored the accuracy of a range of technical
innovations for timing stimuli, presenting stimuli, and estimating stimulus duration. The results offer some guidelines as to what
methods may be most accurate and what mental chronometry paradigms may suitably be administered via web applications. In
controlled circumstances, as can be realized in a lab setting, very accurate stimulus timing and moderately accurate RT mea-
surements could be achieved on both touchscreen and keyboard devices, though RTs were consistently overestimated. In
uncontrolled circumstances, such as researchers may encounter online, stimulus presentation may be less accurate, especially
when brief durations are requested (of up to 100 ms). Differences in RT overestimation between devices might not substantially
affect the reliability with which group differences can be found, but they may affect reliability for individual differences. In the
latter case, measurement via absolute RTs can be more affected than measurement via relative RTs (i.e., differences in a
participant’s RTs between conditions).

Keywords Timing Accuracy . Online research . Individual differences . Smartphones . Laptops . Javascript . Response time

Introduction

During the past decade, touchscreen devices (i.e., smartphones
and tablets) have surpassed keyboard devices (i.e., desktops and
laptops) to become the most frequently used devices for brows-
ing on the internet (StatCounter, 2016). Web browsers offer
platforms, based on widely supported open standards (such as
HTML, CSS, and JavaScript) for deploying web applications to
both touchscreen and keyboard devices. Hence, a research par-
adigm implemented as a web application can be deployed in the
lab as well as on any commodity device, while also having the

benefits of being based on open and durable standards. It has
become more common to employ web applications for ques-
tionnaire research, but less so for mental chronometry (i.e.,
study of the speed of mental processes). This is an important
limitation, because psychological research increasingly em-
ploys mental chronometry to indirectly assess psychological
constructs, which has been argued to help the validity of assess-
ments by reducing the influence of socially desirable answering
(De Houwer, Teige-Mocigemba, Spruyt, & Moors, 2009;
Greenwald, Poehlman, Uhlmann, & Banaji, 2009). If mental
chronometry can reliably be conducted on touchscreen devices,
this offers the opportunity to conduct such research on a wider
range of samples, such as the inhabitants of emerging econo-
mies (Pew Research Center, 2016), and in a wider range of
contexts, such as naturalistic settings (Torous, Friedman, &
Keshavan, 2014), than previously had been feasible.

One reason that assessments of mental chronometry on
commodity devices via web applications have been limited
is doubt about whether commodity devices have sufficiently
accurate timing capabilities (Plant & Quinlan, 2013; van
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Steenbergen & Bocanegra, 2016). A range of studies have
assessed the timing accuracy of web applications, but, to the
best of our knowledge, only with keyboard devices. We make
a general assessment of the technical capabilities of keyboard
and touchscreen devices for mental chronometry paradigms in
which a single static stimulus is presented to which a single
response is registered. Such paradigms may require that stim-
uli are accurately presented for a specified duration and re-
sponse times (RTs) are accurately measured. Factors that de-
termine what level of accuracy is achieved, include the capa-
bilities of the device, operating system (OS), web browser,
and methods for timing stimulus presentation and registering
responses. Factors that determine what level of accuracy is
required, include the demands of the particular paradigm un-
der consideration, the degree to which systematic differences
in accuracy across devices can be confounding variables, and
to what extent these can be compensated for by increasing the
number of trials or participants.

With regard to stimulus presentation, web applications may
occasionally realize shorter or longer durations than were re-
quested (Barnhoorn, Haasnoot, Bocanegra, & van Steenbergen,
2015; Garaizar & Reips, 2018; Garaizar, Vadillo, & López-de-
Ipiña, 2014a; Reimers & Stewart, 2015; Schmidt, 2001).
Computer screens refresh with a constant frequency and pre-
sentation durations are typically counted in frames. The most
common refresh rate is 60 Hz, so that a frame lasts about 16.67
ms. Timing errors can be expressed as the frame difference,
which is the number of frames realized minus the number of
frames requested (called missed frames by Garaizar, Vadillo, &
López-de-Ipiña, 2014a; Garaizar, Vadillo, López-De-Ipiña, &
Matute, 2014b). We presuppose that a frame difference of one
(e.g., 16.67 vs. 33.33 ms) is problematic for mental chronome-
try paradigms in which stimuli are presented very briefly or
very precisely, such as in Posner tasks (Posner, 1980), stop
signal tasks (Logan, Cowan, & Davis, 1984), and tasks using
very briefly presented masked stimuli (Marcel, 1983). For lon-
ger durations, such as 250 ms, frame differences may be less
problematic, as long as the realized duration does not differ too
greatly from the requested duration (e.g., 266.67 ms may be an
acceptable deviation, but 350 ms may not be).

With regard to RT measurement, research has indicated
a noisy overestimation of RTs, with the mean and vari-
ance of overestimations varying across devices and
browsers (Neath, Earle, Hallett, & Surprenant, 2011;
Reimers & Stewart, 2015). In simulation studies, nonsys-
tematic overestimation of RTs has generally been modeled
as uniform distributions ranging up to 18 ms (Damian,
2010), 70 ms (Reimers & Stewart, 2015), or 90 ms
(Brand & Bradley, 2012; Vadillo & Garaizar, 2016).
Such RT overestimation was generally found to have a
modest impact on a range of parameter estimation
methods and designs, especially when scoring a task by
subtracting RTs of a participant between two or more

conditions. Such subtracted scores will henceforth be re-
ferred to as relative RTs. However, systematic differences
in RT overestimation between devices may form a con-
found when device preference systematically varies with a
trait under study, measured via absolute RTs (Reimers &
Stewart, 2015). Devices may also quantize RTs into
supramillisecond resolutions (Reimers & Stewart, 2015).
Even in this case, simulations have revealed that resolu-
tions of up to 32 ms may have little impact on reliability
(Ulricht & Giray, 1989). An important limitation to these
studies is that they have generally examined the reliability
with which group differences can be found, but did not
explicitly address the reliability with which individual dif-
ferences can be found. Studies of individual differences
may require more reliable measures than studies of group
differences (Hedge, Powell, & Sumner, 2018).

Web applications offer different methods for timing
and presenting stimuli, as well as registering responses.
Recently, particular methods for optimizing timing accu-
racy have been introduced and examined. These include
three methods with which a stimulus can be presented,
based on man ipu l a t ing the (1 ) opac i ty or (2 )
background-color Cascading Style Sheet (CSS) properties
of a Hypertext Markup Language (HTML) element
(Garaizar & Reips, 2018), and (3) drawing to a canvas
element (Garaizar, Vadillo, & López-de-Ipiña, 2014a).
The onset and offset of stimuli can be timed via
requestAnimationFrame (rAF; Barnhoorn et al., 2015;
Garaizar & Reips, 2018; Garaizar, Vadillo, & López-de-
Ipiña, 2014a) for all three presentation methods listed
above. Additionally, opacity and background-position pre-
sentation methods can be timed via CSS animations
(Garaizar & Reips, 2018). Internal chronometry (i.e., mea-
suring stimulus presentation and response registration
using only the means available to the web application)
may be used to improve timing accuracy while a task is
being administered or to assess accuracy afterward
(Anwyl-Irvine, Massonnié, Fl i t ton, Kirkham, &
Evershed, 2019; Barnhoorn et al., 2015; Garaizar &
Reips, 2018).

In two experiments, we examined the accuracy of stim-
ulus presentation (Exp. 1) and the accuracy of RT mea-
surement (Exp. 2) via external chronometry (i.e., measur-
ing stimulus presentation via a brightness sensor and gen-
erating responses via a solenoid). Accuracy was examined
on ten combinations of devices and browsers, formed by
two touchscreen and two keyboard devices, each running
a different OS, and two or three browsers per device.
Technical capabilities were evaluated for two research set-
tings: a lab setting, in which the device and browser could
be controlled, and a web setting, in which they could not.
For the former setting, the most accurate devices and
browsers were evaluated, and for the latter, we evaluated
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variation across devices and browsers. In Experiment 1,
the accuracy of each of the presentation and timing
methods listed above was first assessed on the basis of
the proportion of trials in which the realized stimulus
duration was exactly the number of frames that was re-
quested. Next, the most accurate method was further ex-
amined in terms of the distribution of frame differences,
reporting on different methods if they produced notably
different patterns of results. We compared the accuracy
with which stimuli were presented for both brief and long
durations—across devices and browsers—in order to as-
sess the degree to which mental chronometry paradigms
may be affected that require very brief or precise stimulus
durations.

In Experiment 2 we assessed how accurately web applica-
tions can measure RTs across devices and browsers. RT over-
estimations were expected to vary substantially, both within
and between devices and browsers. To assess how well RT
overestimations represented simulation assumptions, we ex-
amined distributions across devices, paying particular atten-
tion to the presence of any quantization. As in Experiment 1,
only the most accurate method of timing and presenting stim-
uli was considered for further investigation; we have reported
on different methods if they produced notably different pat-
terns of results. Informed by the findings of Experiment 2, we
conducted a set of simulations to quantify the impact of the
accuracy of RT measurements on measurement reliability. In
contrast with prior modeling, our simulation did not examine
the reliability with which differences between groups or con-
ditions can be detected, but the reliability with which individ-
ual differences can be measured.

Summarizing, the present study describes how accurately
web applications on keyboard and touchscreen devices can
present stimuli and register the responses. For stimulus pre-
sentation, we examined the presence and magnitude of timing
errors in terms of frame differences. For RT measurement, we
examined the accuracy with which RTs are measured, the
distribution of RToverestimations, and how these might affect
the reliability with which individual differences can be mea-
sured. Exploratively, we examined a set of methods for im-
proving timing accuracy based on different approaches to
timing stimuli, presenting them, and measuring internal chro-
nometry, so as to assess the most accurate method on offer for
modern devices and browsers.

Method

Devices

Table 1 lists the characteristics of the devices used in the study.
We selected one laptop for each of two popular keyboard OSs
(MacOS and Windows) and one smartphone for each of two
popular touchscreen OSs (Android and iOS). Below, these
devices will be referred to via their OS. All four devices were
normally in use as commodity devices by colleagues of the
first author. We selected web browsers that were widely sup-
ported for each device: Chrome 71.0.3578.99 and Firefox
64.0.2/14.0 for all OSs, and Safari 12 for MacOS and iOS.
These browsers were selected for being relatively popular
(StatCounter, 2018), still being actively developed at the time
of the study, and each being based on a different browser
engine—namely Blink, Gecko, and WebKit, respectively. A
device variable not included in our experiments was device
load, because this seems to have onlyminor effects onmodern
devices (Barnhoorn et al., 2015; Pinet et al., 2016) and is
difficult to manipulate systematically (and reproducibly) on
touchscreen OSs.

Design

During the stimulus presentation experiment, stimuli were
presented for intervals of 16.67, 50, 100, 250, and 500 ms.
As each device had a refresh rate of 60 Hz, these intervals
corresponded to 1, 3, 6, 15, and 30 frames. The stimulus
was a white square on a black background. The presentation
experiment consisted of 120 sequences, in which each of the
five combinations of timing and presentation methods was
first prepared by adding the relevant HTML element to the
web page, followed by one trial with each of the five intervals,
followed by removing the HTML element. Each sequence
was administered in one unique order, out of the 120 possible
orders in which the five intervals could be arranged. Each
sequence and interval was demarcated by 400 ms of back-
ground, followed by 400 ms of an intertrial stimulus presented
via a separate HTML element, followed by 400 ms of back-
ground. Because the intertrial stimulus was reliably presented
for at least 200 ms across all devices, it could be used to match
the individual trials of each sequence in terms of both internal
and external measures. During the RT experiment, a stimulus

Table 1 Model, model year and month, model number, and operating system (OS) of each device

Model Year and Month Model Number OS

MacBook Pro October 2016 A1398, EMC 2910 MacOS 10.13.2

ASUS laptop February 2016 R301LA-FN218T Windows 10.0.17134.523

Samsung Galaxy S7 March 2016 SM-G935F Android 8.0.0

iPhone 6S September 2015 MKU62ZD/A iOS 12.1.2
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was presented until a response had been registered. For each
of the five presentation methods, a sequence of 300 RT inter-
vals was generated, consisting of each whole number of ms in
the range 150 to 449 in a pseudorandom order. Each interval
was distinguished by 1,200 ms of background and each se-
quence was demarcated by 5,000 ms of background.

Measures

Stimulus presentation and timing Three presentationmethods
were compared, in which stimulus onset and offset were real-
ized by (1) manipulation of the opacity CSS attribute of a DIV
element by changing it from 0 to 1 or from 1 to 0; (2) manip-
ulation of the background position of a DIVelement by having
a picture shift position such that a white or black part is pre-
sented; or (3) drawing a white or black rectangle on a canvas
element. Two timing methods were compared, in which the
stimulus onset and offset were (1) timed via CSS animations
that manipulated the appropriate CSS properties, or (2) timed
by having a call from rAF manipulate the appropriate CSS
properties or draw to a canvas element, after a fixed number
of frames. All manipulations were programmed via
JavaScript, using the jQuery 3.31 library. The HTML, CSS,
and JavaScript were configured according to the best practices
recommended in previous timing research (Garaizar & Reips,
2018): Pictures were preloaded, each HTML element was laid
out using absolute positioning in a separate layer, and the CSS
properties used for presenting stimuli were marked with the
will-change property.

Internal chronometry In Experiment 1, for all stimulus timing
methods, four internal estimates of stimulus duration were
compared. These measures, described further in the online
supplement, were based on rAF before created, rAF before
called, rAF after created, and rAF after called. For timing via
CSS animations, two additional estimates of stimulus duration
were added, based on animationstart/animationend created
and animationstart/animationend called. In Experiment 2,
RTwas internally measured as the time passed between stim-
ulus onset and a keyboard or touchscreen response. For the
moment of stimulus onset, the most accurate measure as found
in Experiment 1 was selected. For the moment of response,
two measures were compared, based on when a
KeyboardEvent and TouchEvent were created or called.

External chronometry The stimuli were detected via an optical
sensor aimed at the top left of the device screen, which sam-
pled luminance with a frequency of 3000 Hz. Sensors were
calibrated via an Agilent 54624A oscilloscope (see the study
protocol at the accompanying Open Science Foundation
[OSF] repository). The signals were recorded via a dedicated
computer running in-house-developed software (Molenkamp,
2019). Stimulus onset and offset were defined as brightness

increasing above and decreasing below 50% of maximum
screen brightness, respectively.

In Experiment 1, the realized stimulus duration was mea-
sured as the number of frames that passed between stimulus
onset and offset. During data preprocessing, a range of checks
were performed on the stimulus sensor data to verify whether
detection of the stimulus duration was accurate—for instance,
by verifying whether durations were quantized in multiples of
16.67 and whether the intertrial and intersequence intervals
had plausible durations. When a critical stimulus was not pre-
sented, a black screen of about 800 ms should occur (twice the
400 ms background), followed by an intertrial stimulus of
about 400 ms. See the analysis scripts at the accompanying
OSF repository for more details.

In Experiment 2, an Arduino Leonardo microcontroller re-
ceived a signal on stimulus onset, waited the number of mil-
liseconds specified by each RT interval, and then sent a signal
to trigger a solenoid. The solenoid was aimed at a touch-
sensitive HTML element positioned at the bottom right of
the screen of touchscreen devices and at the Q key of key-
board devices. After triggering, the solenoid consistently took
11 ms to go down and trigger a second optical sensor. The
second sensor was positioned just above the point at which the
solenoid would come in touch with the touchscreen or key-
board. The time between detecting a stimulus via the stimulus
sensor and the solenoid touching the touchscreen or keyboard
was considered the actual RT. Each interval between detecting
stimulus onset and triggering the solenoid was reduced by
11 ms to correct for the solenoid delay.

Procedure

For each combination of device, browser, and experiment, the
device was first prepared by installing updates to the OSs and
web browsers. The OSs of the MacOS and iOS devices were
not updated, as their owners expressed concerns with the sta-
bility of the most recent OS versions at the time of the study.
Screen brightness was set to maximum, and screensavers and
notifications were disabled. Next, for each browser, the
browser and experiment software were loaded, a minute was
waited (to allow background processes to reach a stationary
level), and the experiment was started. Per combination of
device and browser, Experiment 1 took about 80 min, and
Experiment 2 took about 40 min.

Results

Experiment 1

Accuracy per timing and presentation method Table 2 shows
the percentages of trials in which the realized duration was
exactly as requested (i.e., the frame difference was 0) for each
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combination of device, browser, timing, and presentation
method. To compare timing and presentation methods, we
performed two-proportion z tests on all pairs of percentages
collapsed across devices and browsers. A Holm–Bonferroni
multiple-comparison correction was applied, with a family-
wise alpha of .05, as was the case for all pairwise comparisons
reported below. All differences were statistically significant
except for rAF background versus rAF canvas; timing via
rAF was more accurate than timing via CSS, regardless of
the presentation method. When timed via rAF, presentation
was more accurate via opacity (81.0%) than via background
position (76.3%) or canvas (75.5%). When timed via CSS,
presentation was more accurate via background position
(23.7%) than via opacity (17.6%).

Accuracy per device and browserWe selected the most accu-
rate timing and presentation method (rAF opacity) and made
pairwise comparisons of all devices and browsers via two-
proportion z tests. All differences were statistically significant,
except for the following: between any of the iOS browsers and
Windows Chrome, between any of the Android browsers and
Windows Firefox, between any of the MacOS browsers, and
between Windows Firefox and either MacOS Firefox or
MacOS Safari. Hence, iOS could be considered very accurate,
Android moderately accurate, and MacOS not accurate. The
accuracy of Windows depended on the browser, with Chrome
being very accurate, but Firefox being moderately to not
accurate.

Accuracy of internal duration measuresWe examined to what
degree presentation duration could be estimated via internal
chronometry, using four rAF-based measures and two
animation-based measures. The distributions of rAF-based
measures were strongly quantized, with a resolution of 16.67

ms, whereas the distributions of the animation-basedmeasures
were moderately so. To examine how accurately internal chro-
nometry could predict realized duration, we quantized inter-
nally estimated durations into frames and calculated the per-
centage of trials in which the realized duration was exactly the
same as that estimated via internal measures (i.e., the frame
difference was 0). For all devices, browsers, timing, and pre-
sentation methods except for MacOS Safari, rAF-based were
more accurate than animation-based duration measures.
Collapsed across devices and browsers, each of the four
rAF-based measures was correct on 75.8% to 76.4% of trials,
whereas the animation-based measures were correct on only
34.8% to 34.9%. Two-proportion z tests on all pairs of per-
centages revealed significant differences between rAF-based
and animation-based measures, but not within the rAF-based
and animation-based measures. Since rAF-based measures
were more accurate than animation-based measures, these
were selected for further analysis. Because each of the four
rAF-based measures was similarly accurate, rAF before
created was selected for further analysis.

Table 3 shows the percentages of trials in which the frame
differences were 0 per device, browser, timing method, and
presentation method. When timing via rAF, estimating stimu-
lus durations via internal chronometry was approximately as
accurate as waiting a fixed number of frames was at achieving
accurate stimulus durations (all p values for the z tests on
percentages were ≥ .05). When timing via CSS, estimating
stimulus durations via internal chronometry was more accu-
rate than CSS animations were at achieving accurate stimulus
durations (all p values were < .001).

Magnitude of frame differences The distributions of frame
differences were consistent across presentation methods with-
in the rAF- and animation-based timing methods, but showed

Table 2 Percentages of trials in which the realized duration was exactly as requested, per device, browser, timing method, and presentation method

OS Web Browser CSS rAF

Background Opacity Background Canvas Opacity

Android Chrome 32.3 30.2 64.0 60.7 78.8

Android Firefox 8.2 8.3 42.5 64.7 82.7

iOS Chrome 0.0 0.0 100.0 100.0 100.0

iOS Firefox 0.0 0.2 100.0 99.8 100.0

iOS Safari 0.2 0.3 100.0 99.8 100.0

MacOS Chrome 55.7 50.0 59.3 55.0 51.5

MacOS Firefox 19.8 3.5 61.7 53.0 61.7

MacOS Safari 22.2 19.8 63.2 60.8 63.8

Windows Chrome 59.3 63.7 100.0 100.0 99.8

Windows Firefox 39.3 0.0 72.3 61.7 72.0

CSS, Cascading Style Sheet; rAF, requestAnimationFrame.
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pronounced differences between timing methods. Therefore,
we report on the most accurate presentation method for timing
via rAF (opacity) and for timing via CSS (background color).

There was variation in the sizes and signs of frame differences
across devices, browsers, presentation methods, and intervals
(Fig. 1). Both iOS and Windows realized almost all stimulus

Fig. 1 Stacked bar charts of the
frequency with which frame
differences ranged from -4 to 4
per device, browser, and duration
interval, for presentation via
background position with timing
via CSS animations, and
presentation via opacity with
timing via
requestAnimationFrame.

Table 3 Percentages of trials for which the realized duration was exactly the durationmeasured internally via rAF before created timestamps quantized
into frames

OS Web Browser CSS rAF

Background Opacity Background Canvas Opacity

Android Chrome 58.3 70.7 64.0 60.7 78.8

Android Firefox 53.5 80.7 45.5 64.5 82.5

iOS Chrome 93.2 97.5 100.0 100.0 100.0

iOS Firefox 94.5 95.2 100.0 99.8 100.0

iOS Safari 93.5 94.3 100.0 99.8 100.0

MacOS Chrome 56.3 50.2 59.5 55.0 51.5

MacOS Firefox 60.7 64.8 61.7 53.0 61.7

MacOS Safari 30.5 24.2 63.2 60.8 63.8

Windows Chrome 99.8 99.5 100.0 100.0 99.8

Windows Firefox 60.3 84.0 72.3 61.7 72.0

CSS, Cascading Style Sheet; rAF, requestAnimationFrame.
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durations within one frame of the requested duration, as were
stimuli timed via rAF onAndroid andMacOS Firefox. Timing
via CSS yielded realized durations that were almost all con-
sistently one frame longer than expected on iOS, as was the
case onMacOS Firefox andWindows Firefox for one-, three-,
and six-frame intervals. Finally, note that stimuli requested for
three- or six-frame intervals were frequently presented too
briefly on MacOS Chrome and MacOS Safari. In fact, the
majority of three-frame intervals were presented for only a
single frame.

Experiment 2

Mean RT overestimation For RT measurements, only trials
presenting stimuli via the most accurate timing method
(rAF) and presentation method (opacity) were analyzed. As
the timestamp for stimulus onset, the internal measure rAF
before created was used, and for the response, event created,
though the results were similar for other timestamps (all data
and analysis scripts are available via the accompanying OSF
website). RT overestimation was calculated as the difference
between the measured and realized RTs. Table 4 shows de-
scriptives of RT overestimations per device and browser. We
compared the sizes of the RToverestimations via Welch t tests
between all pairs of devices and browsers. All differences
were statistically significant, except between the iOS
browsers. Hence, there were substantial differences in mean
RToverestimation between devices and browsers, which were
particularly low for iOS and particularly high for MacOS
Safari.

Variance of RT overestimation We compared the variance of
RT overestimations via Levene’s tests between all pairs of
devices and browsers. Variances did not differ significantly
between Android, iOS, Windows Firefox, and MacOS
Safari. All other variances were statistically significant, expect

between MacOS Chrome and MacOS Safari. Hence,
Windows Chrome added the least random noise to the RT
measurement, MacOS Firefox added the most, and other de-
vices and browsers added moderate levels.

Distribution and quantization of RTmeasurements Inspection
of scatterplots of measured RT versus realized RT revealed
quantization on iOS with a resolution of 60 Hz. The distri-
butions of RT overestimations for most devices could be
described well as having a normal to uniform distribu-
tion, with a small number of outliers. However, Android
showed some degree of bimodality, whereas MacOS
Chrome and MacOS Firefox showed pronounced bimod-
al distributions (Fig. 2). Fitting a mixture of two normal
distributions via expectation maximization (Benaglia,
Chauveau, Hunter, & Young, 2009) on RT overestima-
tions in the most extreme case of bimodality (MacOS
Firefox) revealed two components, with mean (SD)
values of 60.0 (12.4) and 89.1 (2.4) ms.

Modeling To examine how the accuracy of RT measurements
may affect studies of individual differences, we conducted a
set of simulated experiments with 100 participants each. RTs
were drawn from an exponentially modified Gaussian distri-
bution. For each simulated participant, the mean of the
Gaussian component represented the trait score. The SD of
the Gaussian component was drawn from a uniform distribu-
tion between 25 and 75 ms, and the mean of the exponential
component was drawn from a uniform distribution between
50 and 100 ms. To model the accuracy with which devices
measured RTs, we added two types of device noise. For each
participant, a constant RT overestimation was modeled by
adding a constant value to RTs drawn from a uniform distri-
bution between 60 and 130. For each participant, a variable
bimodal RT overestimation was modeled by adding to their
RTs a value drawn from one of two Gaussian distributions
with equal probability. Each Gaussian distribution had an
SD drawn from a uniform distribution between 2 and 12 ms.
The mean of the first Gaussian distribution was 0, whereas the
mean of the second Gaussian distribution was drawn from a
uniform distribution from 0 to 30 ms.

Two types of experiments were simulated. The
absolute-RT experiment consisted of one condition, in
which the trait score of a participant was drawn from a
univariate Gaussian distribution with SDs that varied per
experiment. The trait score formed the mean component
of that participant’s RTs. The relative-RT experiment
consisted of two conditions, with half of the trials belong-
ing to each condition. Two trait scores were drawn from a
bivariate Gaussian distribution that was correlated .5
across participants, so both trait scores, as well as their
difference, had the same SD. Each trait score formed the
mean component of that participant’s RT for one of the

Table 4 Descriptives of RT overestimations (in milliseconds) per
device and browser, for stimuli that were timed via rAF and presented
via opacity

OS Web Browser Minimum Maximum Mean SD

Android Chrome 46.0 103.5 69.8 7.4

Android Firefox 44.9 131.4 66.1 7.5

iOS Chrome 48.3 109.0 57.9 6.7

iOS Firefox 48.0 98.0 58.0 7.5

iOS Safari 48.3 96.3 57.6 6.5

MacOS Chrome 50.1 124.7 95.4 8.1

MacOS Firefox 50.0 125.5 78.2 16.1

MacOS Safari 93.0 163.7 132.9 8.1

Windows Chrome 64.7 70.6 68.5 1.7

Windows Firefox 49.8 84.9 61.9 5.7
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two conditions. Each experiment was simulated both with
and without device noise, with trait SDs of 15, 25, and 50
ms, and with trial counts ranging from 10 to 300 in steps
of 10. For each of these combinations, 1,000 experiments
were simulated. We calculated reliability as the squared
Pearson correlation between trait score and mean RT for
the absolute-RT experiment, and between trait score dif-
ference and relative mean RT for the relative-RT
experiment.

Figure 3 shows the simulation results. Overall, reliabil-
ity increased with trial count. The absolute-RT experi-
ments had higher reliabilities than the relative-RT experi-
ments at lower trial counts, but the increase in reliability
with trial counts had a smaller slope that leveled off soon-
er. In the absolute-RT experiments, device noise decreased
reliability on average by .19, .21, and .12, for trait SDs of
15, 25, and 50 ms, respectively. In the relative-RT exper-
iments, device noise decreased reliability by .012 at most
across all trial counts and trait SDs. Without noise, the
relative-RT experiments were more reliable than the
absolute-RT experiments from 120 to 130 trials and be-
yond. With noise, the relative-RT experiments were more
reliable from 40 to 50 trials and beyond.

Discussion

We examined how accurately web applications on
touchscreen and keyboard devices present stimuli for speci-
fied durations in Experiment 1, and measured RTs in
Experiment 2. In a simulation, we examined how the accuracy
of RT measurements affected the reliability with which indi-
vidual differences could be measured. The results of each
experiment are discussed below, followed by a general assess-
ment of the technical capabilities of web applications for men-
tal chronometry.

With regard to stimulus presentation, we first compare the
results for different methods for timing and presenting stimuli,
followed by an assessment of timing accuracy across devices
and browsers. Timing via rAF was more accurate at realizing
precise stimulus duration thanwas timing via CSS animations.
In part, this was because iOS timed via CSS consistently pre-
sented stimuli for one frame longer than requested. In those
cases, requesting slightly shorter durations than was done in
this study could improve the accuracy of stimuli timed with
CSS animations. However, such consistency was not found
for all devices and browsers, so overall we recommend using
rAF for timing stimuli. We suspect that the inconsistencies in

Fig. 3 Simulation results for relative and absolute response times (RTs), with and without noise and with trait SDs of 15, 25, and 50 ms, for 10 to 300
trials. The lines represent mean reliability, whereas the error bars represent SDs.

Fig. 2 Distributions of response time (RT) overestimations on Android and MacOS.
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the behavior of CSS animations may be due to the standards
for CSS animations still being a working draft (World Wide
Web Consortium, 2018) at the time of this study.

When timing via rAF, presentation method had a relatively
small effect on accuracy, with opacity outperforming back-
ground position and canvas by up to five percentage points.
Because presentation methods were a relatively small factor in
timing accuracy, compared with timing methods, a researcher
might consider choosing a presentation method on the basis of
practical considerations. For instance, canvas may be more
suitable than opacity or background position when dynami-
cally generating stimuli. Also, note that a range of other pre-
sentation methods is supported by web browsers besides the
three methods considered here, such as Scalable Vector
Graphics and Web Graphics Library (WebGL; Garaizar,
Vadillo, & López-de-Ipiña, 2014a). Future research could es-
tablish whether the findings reported here generalize to those
presentation methods as well.

Internal chronometry measures of stimulus duration
were similarly accurate in estimating stimulus duration
as counting the number of frames was at realizing them.
This finding is different from prior research (Barnhoorn
et al., 2015; Garaizar & Reips, 2018), which may be due
to differences in study aims and designs. The present
study included a larger variety of devices and browsers
and was the first to simultaneously compare timing stim-
uli by counting frames with estimating stimulus duration
via internal measures. We found that for devices and
browsers for which stimulus timing by counting frames
was near perfect, internal measures of stimulus duration
[e.g., JavaScript’s window.performance.now() high-
resolution timer] were also near perfect. Conversely, for
devices and browsers for which timing was less accurate,
internal measures were less accurate as well. Hence, any
increase in accuracy attributed to internal duration mea-
sures in previous studies may have been because the cor-
responding devices and browsers were very accurate
already.

Although in the present study internal chronometry
could not provide any improvements in timing accuracy,
internal chronometry may provide more general estimates
of timing accuracy in a variety of other ways. For in-
stance, an approach based on the regularity with which
software events such as rAF occur (Eichstaedt, 2001)
may be useful. Also, internal measures can be important
for estimating the refresh rate of a device (Anwyl-Irvine
et al., 2019). Although it is beyond the scope of this
article, we hope to facilitate such approaches by making
all data of the present study available for reanalysis; the
URL to the OSF repository containing all materials is
listed at the end of this article. Additionally, internal chro-
nometry may identify extreme levels of JavaScript load. A
simple way of illustrating the latter is by having a

JavaScript application run a never-ending loop. So long
as this loop is executing, no other events will take place.

On the basis of the most accurate timing and presentation
method found in this study (rAF and opacity), we assessed the
accuracy with which keyboard and touchscreen devices can
time stimuli. Some devices and browsers, of both touchscreen
and keyboard type, achieved near-perfect timing: namely, iOS
with Chrome, Firefox, and Safari, as well as Windows with
Chrome. Hence, in settings where the device and browser can
be controlled, web applications can be as accurate as special-
ized software. Most devices and browsers achieved most pre-
sentation durations within one frame of the requested dura-
tion, though MacOS Chrome and Safari tended to present
durations of up to six frames (100 ms) too briefly. Hence,
when the device and browser cannot be controlled, the reli-
ability and validity of mental chronometry paradigms that
require brief presentations may be affected.

With regard to the accuracy of RT measurements, different
internal measures for RT gave similar results. Quantization of
RT into 60 Hz was found on one device, which may be ac-
ceptable (Ulricht & Giray, 1989). RT overestimation varied
across devices, similar to what was found in previous research
(Neath et al., 2011; Reimers & Stewart, 2015). The range of
mean RT overestimations was similar to or smaller than the
distributions assumed in various simulation studies with
between-group designs (Brand & Bradley, 2012; Reimers &
Stewart, 2015; Vadillo & Garaizar, 2016). The iOS device had
the lowest mean RToverestimations, whereas MacOS had the
highest. Windows in combination with Chrome had the
smallest variation of RT overestimation, whereas MacOS
again had the highest. In general, when the device that is
administering mental chronometry can be controlled, RTs
may be measured quite accurately, but not at the level that
specialized hardware and software, such as button boxes un-
der Linux, can provide (Stewart, 2006). For particular combi-
nations of devices and browsers, namely MacOS with
Chrome and Firefox, RT overestimations were bimodally dis-
tributed, with centers that could differ up to 30 ms. Given both
the similarity of these RT overestimations to results from pre-
vious empirical studies and the robustness reported in simula-
tion studies, we assume that the prior recommendations still
apply: A decrease in the reliability of finding group differ-
ences in RTs may be compensated for by increasing the num-
ber of participants by about 10% (Reimers & Stewart, 2015).

Prior simulations have quantified the impact of the ac-
curacy of RT measurements on the reliability of detecting
group differences. As far as we are aware, none have
quantified the impact on the reliability of measuring indi-
vidual differences. Our modeling work indicated that dif-
ferent factors may affect reliability, including the number
of trials and the variance of the trait that is measured. The
reliability of absolute RT measurements was affected by
device noise, but relative RT was hardly affected. This
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could be because between-device variation was larger
than within-device variation. For relative RT, between-
device variation is removed due to RTs being subtracted
between conditions within participants. A rather striking
result was that with higher numbers of trials, relative RT
was more reliable than absolute RT, even though traits in
the relative RT simulations were correlated .5. The former
may appear to go against the commonly held belief that
the difference between two positively correlated scores is
less reliable than each of these scores individually.
Although a comprehensive examination of this result is
beyond the scope of this article, here we may offer some
explanations. First, a classic result underlying the former-
ly mentioned belief is based on two observations per par-
ticipant (Lord & Novick, 1968), but aggregations across
larger numbers of observations may yield more reliable
difference scores (Miller & Ulrich, 2013). Second, we
modeled latent traits as mean and differences between
the mean components of ex-Gaussian RT distributions.
The distribution of absolute RTs was more skewed than
the distribution of relative RTs, so the mean absolute RT
was perhaps a less reliable estimator of the trait score than
the relative mean RT was of differences in trait scores.

However, in both group and individual difference re-
search, any confound between device type and study de-
sign could affect RT results more severely (Reimers &
Stewart, 2015). For instance, in a longitudinal study, par-
ticipants could upgrade their devices between observa-
tions. If newer devices have lower RT overestimations,
this could result in a spurious decrease in measured abso-
lute RTs over time. Another example of such a confound
is when participant traits covary with device preference.
Personality research found that Mac users are more open
to experience than PC users (Buchanan & Reips, 2001). If
Mac overestimates RTs more than PC does, as was found
in our sample of devices, this could result in a spurious
covariance between openness to experience and an
absolute-RT measure. Although more recent studies have
shown negligible differences in personality across a num-
ber of brands (Gotz, Stieger, & Reips, 2017), similar risks
apply to any trait for which covariation with device pref-
erence has not been studied. In the case of relative RTs,
risks are less severe. Nevertheless, differences between
devices with regard to the accuracy with which RT is
measured can cause differences in measurement reliabili-
ty, which in turn can cause violations of measurement
invariance.

In summary, in controlled settings, web applications may
time stimuli quite accurately and may register RTs sufficiently
accurately when a constant overestimation of RTs is accept-
able. In uncontrolled settings, web applications may time
stimuli insufficiently accurately for mental chronometry para-
digms that require brief stimulus presentations. Differences in

the degree to which devices overestimate RT may more se-
verely affect the reliability with which individual differences
are measured via absolute RT than via relative RT.

Web applications offer a means to deploy studies both in-
side and outside of the lab. Frameworks are being developed
that make it increasingly easier for researchers to deploy men-
tal chronometry paradigms as web applications (Anwyl-Irvine
et al., 2019; De Leeuw, 2015; Henninger, Shevchenko,
Mertens, Kieslich, & Hilbig, 2019; Murre, 2016). Studies of
timing accuracy suggest limits to what may be achieved, but
also introduce technical innovations for achieving higher ac-
curacy. The experiments reported in this article examined a
range of these technical innovations in order to offer some
guidelines on optimal methods. A sample of ten combinations
of devices and browsers was studied so that these guidelines
and the level of accuracy that can be achieved may be gener-
alized with some confidence.

The results in this study may be representative of web
browsers, as the three browsers selected in this study represent
a large majority of browsers used online (StatCounter, 2018).
However, the sample of four devices was quite small, as com-
pared to the variety of devices available to web applications.
This limitation may apply less to MacOS and iOS devices, as
their hardware is relatively homogeneous and more to
Android and Windows devices, as these come in a very wide
range of hardware of different make and quality. Additionally,
each included device was a relatively high-end model but was
3–4 years old at the time of the study. Because device tech-
nology progresses very rapidly, theymay not be representative
of newer generations of devices, nor of the budget
smartphones that are becoming commonplace in developing
countries (Purnell, 2019). Although previous studies reported
negligible effects of device load (Barnhoorn et al., 2015; Pinet
et al., 2016), so that device load was not included in the pres-
ent study, this may well be different for such budget
smartphones.

A study in a wider range of devices, preferably having
multiple samples per device, could replicate the systematic
differences found in this study. If replicated, the results could
be used to correct for timing inaccuracies and RT overestima-
tions by detecting participants’ device and browser. Note that
this undertaking would require significant efforts, given its
scale. Also, it would need to be repeated for each new gener-
ation of devices, as well as for significant OS and web browser
updates. The design of the present study, which could assess
timing accuracy at the level of individual trials, could be help-
ful. Bymaking all materials openly accessible online, we hope
to facilitate such efforts.

A solenoid was used for generating responses (similar to
Neath et al., 2011). A benefit of the solenoid used in this study
was that it provided a method for generating responses that
was suitable for both keyboard and touchscreen devices.
Responses were defined as the moment the solenoid came in
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touch with touchscreen or keyboard. Although this is indeed
the moment a touch response can be registered, a key needs to
be pressed first. Since the actual pressing of a key occurred
later than touching it, the registration of responses by the key-
boards was only possible to commence at a later point in time
than for the touchscreens. However, given the high consisten-
cy and speed with which the solenoid went down, we expect
this delay to have been 2 ms at most. Given that the RT over-
estimations we encountered were 57 ms or more, we deem the
solenoid-incurred delay to be negligible in light of our find-
ings. Alternatively, keyboard responses could be triggered by
disassembling a keyboard and hot-wiring key switches (Pinet
et al., 2016; Reimers & Stewart, 2015), and touchscreen re-
sponses could be triggered via an electrode (Schatz, Ybarra, &
Leitner, 2015).

Overall, touchscreen devices seem technically capable of
administering a substantial number of mental chronometry par-
adigms, when taking some limitations and best practices into
account. As smartphone ownership and internet connectivity are
becoming ubiquitous, this offers various opportunities for ad-
ministering mental chronometry on large scales and outside of
the lab. By implementing RT tasks as web applications, they are
based on durable and open standards, allowing a single imple-
mentation to be deployed on desktops, laptops, smartphones,
and tablets. We hope that this article helps answer doubts about
the timing accuracy of such an approach and provides some
insight into how the reliability of RT measurements can be
affected when millisecond accuracy cannot be achieved.
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