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Abstract

Pattern discovery and subspace clustering play a central role in the biological domain, sup-

porting for instance putative regulatory module discovery from omics data for both descriptive

and predictive ends. In the presence of target variables (e.g. phenotypes), regulatory pat-

terns should further satisfy delineate discriminative power properties, well-established in the

presence of categorical outcomes, yet largely disregarded for numerical outcomes, such as

risk profiles and quantitative phenotypes. DISA (Discriminative and Informative Subspace

Assessment), a Python software package, is proposed to evaluate patterns in the presence

of numerical outcomes using well-established measures together with a novel principle able

to statistically assess the correlation gain of the subspace against the overall space. Results

confirm the possibility to soundly extend discriminative criteria towards numerical outcomes

without the drawbacks well-associated with discretization procedures. Results from four

case studies confirm the validity and relevance of the proposed methods, further unveiling

critical directions for research on biotechnology and biomedicine. Availability: DISA is freely

available at https://github.com/JupitersMight/DISA under the MIT license.

Introduction

The discovery of discriminative patterns has proven essential to support predictive and

descriptive tasks [1–6]. More specifically in gene expression data, discriminative patterns play

an essential role to discover outcome-specific regulatory modules for knowledge acquisition,

biomarking phenotypes of interest [7], or serve as the basis for drug targeting (e.g. cancer)

after rigorous validation [8]. Discriminative pattern mining also plays a role in unraveling

complex interactions in biological processes such as the condition-specific interplay among

transcription factors in organisms [9]. In this context, patterns help mapping regulatory inter-

actions, forming regulatory networks, that provide a vital information to better understand the

evolution of the genes, as well as unique regulatory cascades elicited in response to stimuli, dis-

ease progression or drug action [10]. These discriminative properties towards an outcome of
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interest can either be incorporated in the pattern discovery process [11, 12], or assessed after

extracting classic informative patterns. In both cases, one or multiple interestingness measures,

such as confidence [13], statistical significance [14] (probability of pattern occurrence against

expectations) and/or discriminative power views [15, 16], are combined into pattern-centric

models to aid medical decisions and study regulatory responses to events of interest [12, 17].

Although it is crucial to incorporate these discriminative criteria in the discovery task, exist-

ing contributions are generally focused on nominal outcomes [18, 19]. Nonetheless, many

phenotypes of interest, such as molecular and physiological features, as well as risk scales or

drug dosages, are quantitative variables in nature. In metabolic engineering the levels of pro-

duction and/or degradation of certain organic compounds are continuous outcomes of inter-

est [20, 21]. In such cases, to assess the ability of the underlying patterns to discriminate

specific outcomes of interest, related work usually resorts to one of three following approaches:

1) distribution-based methods [22, 23], which explore properties of the distribution of contin-

uous data, providing standard statistical measures on the distribution of the pattern-associated

outcomes. In this context, Aumann and Lindell [23] consider measures such as the mean, with

the possible alternatives of variance or median, to describe numerical distributions. An exam-

ple of the aforementioned is an association rule like “sex = female!mean wage = $7.90 p/hr”,

where they guarantee the rule’s discriminative properties by using classical measures, lift and

confidence, and further ensure the validity of the outcome of interest by applying a Z-test; 2)

discretization-based methods [24], which categorise the outcome variable in order to apply

classic discriminative criteria in the discovery task. Well-known discretization methods cate-

gorise data based on frequency, user-inputted ranges, or more complex approaches such as the

ones proposed by Alexandre et al. [25] where numerical variables are fitted and categorised

according to a continuous distribution. While not the same as discretization, fuzzy-logic-based

approaches can also be used in the presence of quantitative [26–28], and continuous variables

[29], to extract informative patterns; and 3) optimization-based methods [30], which consider

stochastic searches that follow the idea of natural selection and genetics (e.g., particle swarm

optimization methods). Particles produced and modified along the evolution process are the

targeted discriminative patterns, where both the pattern and the bounded range of relevant

outcomes are optimized during the search [30]. While classic discriminative views are only

prepared for nominal outcomes, these three classes of approaches are unable to establish an

objective assessment of whether a given pattern is able or not to significantly discriminate a

specific range of numerical outcomes.

To address these limitations, this work proposes a methodology to rigorously assess associa-

tion rules with expressive patterns in the antecedent and numerical outcomes in the conse-

quent, thus avoiding the discovery of spurious association rules (false positives). To this end,

we introduce a novel distribution-based approach that inspects the differences between the

distribution of a numerical outcome for all observations and a given pattern. To the best of our

knowledge, there are no software packages able to assess association rules with robustness in

the presence of numerical outcomes [31, 32]. Ergo, we propose DISA (Discriminative and

Informative Subspace Analysis), a software package in Python to assess patterns with numeri-

cal outputs by statistically testing the correlation gain of the pattern against the overall data,

identifying discriminative ranges of numerical outcomes tailored to each pattern.

Background

Multivariate data can be structured in the form of a matrix A = (X, Y), with a set of observa-

tions X = {x1, . . ., xN}, variables Y = {y1, . . ., yM}, and elements aij 2 R observed for observation

xi and variable yj. One way to extract patterns from this data structure is through the use of
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biclustering algorithms [33, 34]. The biclustering task aims to identify a set of biclusters

B ¼ ðB1; ::;BkÞ, where each bicluster B = (I, J) is an n ×m subspace (subset of observations I =

{i1,.., in}� X and subset of variables J = {j1,.., jm}� Y), that satisfy specific criteria:

• homogeneity—commonly guaranteed through the use of a merit function, such as the vari-

ance of the values in a bicluster [33], guiding the formation of biclusters in greedy, exhaus-

tive, and stochastic/parametric searches determining their coherence, quality and structure;

• statistical significance—in addition to homogeneity criteria, guarantees that the probability

of a bicluster’s occurrence (against a null model) deviates from expectations [14];

• dissimilarity—criteria further placed to guarantee the absence of redundant biclusters (num-

ber, shape, and positioning) [35].

The bicluster pattern φJ is the set of expected values in the absence of adjustments and

noise. A bicluster pattern is:

• constant overall if for all i 2 I and j 2 J, aij = μ + ηij, where μ is the typical value and ηij is the

observed noise;

• constant on columns, i.e. pattern on rows, if aij = μj + ηij, where μj represents the expected

value in column yj;

• additive if for all i 2 I and j 2 J, aij = μj+ γi + ηij where μj represents the expected value in col-

umn yj and γi the adjustment for observation xi;

• multiplicative if for all i 2 I and j 2 J, aij = μj × γi + ηij where μj represents the expected value

in column yj and γi the adjustment for observation xi;

• order-preserving on variables if there is a permutation of J under which the sequence of val-

ues in every row is strictly increasing. Likewise, order-preserving on observations if there is a

permutation of I under which the sequence of values in every columns is strictly increasing.

Fig 1 applies the aforementioned concepts.

The coverage F of the bicluster pattern φJ, defined as F(φJ), is the number of observations

containing the bicluster pattern φJ. The same logic can be applied to a nominal outcome of

Fig 1. Example of class-conditional subspaces with varying homogeneity. The constant (on columns) subspace has pattern (value expectations) φJ1
=

{μ1 = 1.1, μ2 = 0.45, μ3=0.9}, the additive pattern φJ1
= {μ1 = 1.1, μ2 = 0.45} and {γ1 = 0.6, γ2 = 0, γ3 = 0}, and the order-preserving subspace satisfies the

y2�y3�y1 permutation on 3 observations.

https://doi.org/10.1371/journal.pone.0276253.g001
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interest c, where c can take any value in the class variable (e.g., yout in Fig 1). The coverage of

the outcome, defined as F(c), is the number of observations with the outcome of interest.

Association rules describe a link between two events. An association rule is formed by two

sides, the left-hand side (antecedent) and the right-hand side (consequent). In this case, an

association rule can take the form φJ! c, where a pattern in the antecedent discriminates an

outcome of interest in the consequent. The coverage of the association rule, F(φJ! c), is given

by the number of observations where both the pattern φJ and the outcome c co-occur.

Through the use of interestingness measures, an association rule can be assessed with

respects to its’ interestingness, statistical significance, usefulness, information gain, discrimina-

tive power, amongst others [15]. Two well-established interestingness measures are the confi-
dence, F(φJ! c)/F(φJ), measuring the probability of c occurring when φJ occurs, and, the lift,
(F(φJ! c)/(F(φJ) × F(c)) × N, that further considers the probability of the consequent to

assess the dependence between the consequent and antecedent.

A simple extension of the interestingness measures to accommodate continuous output

variables is through the use of an numerical interval of interest. In the context of this extension,

the coverage of the outcome F(c) can now be rewritten as F([v1, v2]), where v1 represents the

lower bound of the interval and v2 the upper bound, and the coverage of the association rule as

F(φJ! [v1, v2]). Understandably, the outcomes conditioned to a pattern of interest can be

described by a probability density function (pdf). In this context, mapping the outcomes into a

simple numerical range is generally inadequate as the pdf of pattern-conditional outcomes is

often non-uniform and its discriminative properties can only be determined against the

remaining observations.

Methods

Proposed approach

The proposed methodology allows for a robust analysis of the discriminative properties of a

pattern in the presence of numerical outcome variables without imposing predefined rigid

boundaries. Given a pattern φJ, we first compare the underlying distributions of the outcome

variable of interest, z, for the overall observations, p(zjX), and the pattern coverage, p(zjF(φB)),

in order to extract numeric ranges, that compose the consequent, φJ !
S

i½v
ðiÞ
1 ; v

ðiÞ
2 �. Observa-

tions with the targeted pattern have higher likelihood to have numerical outcomes in

the extracted range. Both empirical and theoretical distributions are allowed for this calculus.

If instead of considering the underlying distributions to extract a range of values, we consid-

ered just the minimum and maximum values within the pattern, the likelihood of the target

pattern having high values of discriminative properties would be lessened due to: 1) presence

of outliers that make the interval more relaxed, and 2) the possibility of the interval being to

rigid and excluding nearby values outside after and before the maximum and minimum

values.

To illustrate these concepts, Fig 2 provides an example with two theoretical distributions

approximated from the overall and pattern-conditional targets, respectively. By estimating the

relative frequency of each of the distributions, two points of intersection v1 and v2 can be cal-

culated, composing an interval that can be potentially discriminated by observations with the

given pattern.

Once ranges of outcomes of interest are identified, classic interestingness measures for asso-

ciation rules can be extended to handle these consequents. Considering the previously intro-

duced lift function—a paradigmatic function to assess the discriminative power of an
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association rule –, it can now be rewritten,

liftðφJ ! ½v1; v2�Þ ¼
PðφJ \ ½v1; v2�Þ

PðφJÞ � Pð½v1; v2�Þ
¼

FðφJ ! ½v1; v2�Þ

FðφJÞ � Fð½v1; v2�Þ
:� N ð1Þ

Note that the coverage of the outcome of interest is now defined as the interval created by

the intersection points of the distributions. Instead of a predefined restrictive category range,

intervals disclose outcomes of interest that are dynamically inferred for a given pattern in

order to better assess its discriminative profile.

Consider now an example with two random empirical distributions originating more than

two points of intersections, illustrated in Fig 3.

In this example, observations with a the selected pattern, have higher likelihood to show

outcomes in the two inferred ranges. With two intervals, [v1, v2] and [v3, v4], we can further

assess the discriminative power of the pattern with regards to each interval, as well as both

Fig 2. Intersection of two theoretical distributions. The yellow line represents the outcome variable, which follows a gamma distribution; The blue

line represents the pattern-conditional outcome variable, which follows a χ2 distribution. In this example, the two points of intersection between the

distributions form an interval, [v1, v2]. Observations with the targeted pattern have higher likelihood to have numerical outcomes in the extracted range.

https://doi.org/10.1371/journal.pone.0276253.g002

PLOS ONE DISA tool: Discriminative and informative subspace assessment with categorical and numerical outcomes

PLOS ONE | https://doi.org/10.1371/journal.pone.0276253 October 19, 2022 5 / 19

https://doi.org/10.1371/journal.pone.0276253.g002
https://doi.org/10.1371/journal.pone.0276253


intervals,

lift2ðφJ ! ½v1; v2�Þ ¼
FðφJ ! ½v1; v2�Þ

FðφJÞ � Fð½v1; v2�Þ
� N ð2Þ

lift3ðφJ ! ½v3; v4�Þ ¼
FðφJ ! ½v3; v4�Þ

FðφJÞ � Fð½v3; v4�Þ
� N ð3Þ

lift1ðφJ ! ð½v1; v2� [ ½v3; v4�ÞÞ ¼
FðφJ ! ð½v1; v2� [ ½v3; v4�ÞÞ

FðφJÞ � Fð½v1; v2� [ ½v3; v4�Þ
� N ð4Þ

Different discriminative criteria can be considered in the presence of consequents given by

multiple ranges. Considering the lift as the illustrative case, the discriminated outcomes can be

Fig 3. Two empirical distributions represented with relative frequency bins. The blue line represents the outcome variable, and the yellow line the

pattern-conditional outcome variable. In this example, four points of intersection between the distributions form two intervals with ranges [v1, v2] and

[v3, v4].

https://doi.org/10.1371/journal.pone.0276253.g003
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given by the numerical interval that maximises the lift function,

argmaxcifliftðφJ ! ciÞg; ð5Þ

where, for the given example, ci 2 {([v1, v2][[v3, v4]), [v1, v2], [v3, v4]}. All numerical intervals

where lift satisfies a minimum threshold θ,

fci j liftðφJ ! ciÞ: � yg: ð6Þ

Both are valid options and allow for a robust analysis of the numerical outcome. The first

approach retrieves the numerical interval, or combination of numerical intervals, with highest

discriminative power. The second filters out uninformative/non-discriminative numerical

intervals, allowing for a more comprehensive analysis of each pattern.

DISA implements the presented methodology and is given in Algorithm 1.

Algorithm 1: DISA tool
Input: data_matrix, class_vector, pattern_list, distribution
Output: list of statistics per pattern
statistics = [];
for p in pattern_list do
if class_vector is continuous then
if distribution == “empirical” then
intervals = intersection(empirical_pdf(class_vector), empiri-

cal_pdf(p));
end
if distribution == “gaussian” then
intervals = intersection(gaussian_pdf(class_vector), gaus-

sian_pdf(p));
end
if distribution == “min_max” then
intervals = [p.min(), p.max()];

end
if distribution == “average” then
m = p.mean();
std = p.std();
intervals = [m-std, m+std];

end
temp_class_vector = discretize(intervals);
pattern_properties = properties(data_matrix, p,

temp_class_vector);
else
pattern_properties = properties(data_matrix, p, class_vector);

end
statistics.append(objective_functions(pattern_properties))

end
return statistics;

When analysing the subspace in the presence of a continuous output variable DISA imple-

ments four different setups: 1) MinMax, where the cut-off points, [v1, v2], correspond to the

minimum and maximum pattern-conditional outcomes, respectively; 2) Average, where v1

and v2 are the bounds formed by considering the standard deviation from the average, μ − σ
and μ+ σ, respectively, where μ (σ) is the average (standard deviation) of the pattern-condi-

tional outcomes; 3) Gaussian, where we assume that both the output variable and the pat-

tern-conditional outcomes follow a normal distribution. In this case, v1 and v2 correspond to

the intersection points between the gaussians where the range [v1, v2] represents the most

probable values of interest that the pattern discriminates. Fig 4 provides a in-depth example

with three distinct patterns; 4) Empirical, where we assume they follow their own unique
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empirical distribution, instead of assuming that both the outcome variable and the pattern-

conditioned outcomes follow a well-known theoretical continuous distribution. In this case, v1

and v2 might not be the only points of intersection. We assume there can be any number

between one and n points of intersection. Fig 3 provides an example with four points of inter-

section, creating two ranges of intervals of interest. However, it is important to note that the

number of intervals created is not necessarily correlated with the number of points of intersec-

tion. When the relative frequency of the pattern-outcome starts, or finishes, above the relative

frequency of the output variable, the number of intervals changes. In Fig 5 we present three

cases where the aforesaid happens.

To calculate the intersection points in linear time, O(N), where N represents the number of

observations in the output variable, DISA executes the following steps: i) calculate the relative

Fig 4. An illustrative in-depth example. Consider a dataset with observations X={x1,.., x9}, variables Y={y1,.., y4, class}, and a set of three association

rules. By intercepting the output variable pdf with the pdfs of each rules’ consequent, we obtain the following intervals: a) [0.80, 1.70], b) [1.18, 1.61],

and c) [1.02, 2.59]. With this, discriminative power statistics, such as lift, can be computed. In this case lift is equal to: a) 2.27, b) 3.03, and c) 2.27.

https://doi.org/10.1371/journal.pone.0276253.g004
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frequency of each unique value for both the overall and pattern-conditioned outcomes, ii) ele-

ment-wise subtraction between the arrays, iii) extract the element-wise indication of the sign

of each number on the resulting array, iv) calculate the discrete difference along the sign vector

(value at position i+1 minus value at position i), and finally v) find the indices of elements that

are non-zero, grouped by element.

Consider a practical example where outputs = [1, 3, 4, 5, 7] and pattern-conditioned outputs
= [3, 4, 5]. Accordingly, i) relative frequency conversion yields outputs = [0.2, 0.2, 0.2, 0.2, 0.2]

and pattern-conditioned outputs = [0.0, 0.3(3), 0.3(3), 0.3(3), 0.0], ii) element-wise subtraction

returns [0.2, −0.1(3), −0.1(3), −0.1(3), 0.2], iii) sign extraction returns [1, −1, −1, −1, 1], iv)

differencing operation leads to [−2, 0, 0, 2], finally, v) the indices that are non-zero will pro-

duce the intersection points [v1 = 0, v2 = 3] that map to the original values of 1 and 5.

As previously mentioned, the intersection of empirical distributions can generate more

than one interval of interest. By default DISA considers all the of the pattern-conditioned out-

come intervals to compute the discriminative and informative properties of the pattern. How-

ever, if the discriminative power of the pattern is still below a minimum threshold (e.g.,

lift<1.3), then DISA will start to disregard uninformative intervals. Starting from the lowest

individually ranked (e.g., by lift), the intervals are disregarded one by one, until either all of

them are removed (resetting to the default behavior) or the satisfaction of the minimum dis-

criminative power.

Software

The previously introduced methodology is made available as an open-source software package,

DISA, developed in Python (v3.7). DISA is able to assess the discriminative properties from

the inputted patterns in the presence of numeric or categorical outcome variables. A pipeline

of the DISA package is illustrated in Fig 6. If DISA receives a numerical outcome, the outcome

ranges that are likely to be discriminated by the observations supporting a given pattern are

first determined. DISA accomplishes this by approximating two probability density functions

(e.g. Gaussians), one for all the observed targets and the other with targets of the pattern cover-

age. The intersecting points between the two probability density functions is computed to

identify the range of values discriminated by the pattern. Second, DISA extends state-of-the-

art statistics for assessing the informative and discriminative power of classic association rules.

Currently, DISA supports 53 evaluation metrics in total. An illustrative subset of metrics is

provided in Table 1 (complete list in DISA’s GitHub repository).

Fig 5. Special cases of the intersection between empirical distributions. The blue line represents the outcome variable, and the yellow line the

pattern-conditional outcome variable. (a) Intersection forms the interval [−inf, v1]. (b) Intersection forms the intervals [−inf, v1] and [v2, v3]. (c)

Intersection forms the intervals [−inf, v1], [v2, v3] and [v4, inf].

https://doi.org/10.1371/journal.pone.0276253.g005
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Fig 6. Overview of DISA workflow. Input: multivariate data (optional); list of patterns; and outcome variable. Statistical calculus: a)

discriminated ranges from pdf (probability density function) intersection points (numerical outcomes only) and b) pattern properties, and

metrics (e.g. statistical significance, gini index, information gain). Output: list of metrics per pattern.

https://doi.org/10.1371/journal.pone.0276253.g006

PLOS ONE DISA tool: Discriminative and informative subspace assessment with categorical and numerical outcomes

PLOS ONE | https://doi.org/10.1371/journal.pone.0276253 October 19, 2022 10 / 19

https://doi.org/10.1371/journal.pone.0276253.g006
https://doi.org/10.1371/journal.pone.0276253


Results

In order to illustrate DISA properties, we considered four public datasets taken from the litera-

ture: 1) Echocardiogram [41], monitoring physiological features of patients that suffered heart

attacks at some point in time, the task consists in extracting discriminative patterns of surviv-

ability after a heart attack; 2) Liver Disorders [42], a dataset of molecular features from blood

tests which are thought to mark liver disorders that might arise from excessive alcohol con-

sumption, in this case the task consists in extracting patterns that discriminate the number of

intake drinks per day; 3) Breast Cancer Wisconsin (Diagnostic) [43], where each observation

corresponds to the follow-ups of a breast cancer patient, variables concern cancer cell nuclei

features from a digitized image of a fine needle aspirate, and the outcome is the number of

months until cancer relapse; and 4) Dodecanol production [20, 21], a dataset that monitors the

concentration of key enzymes observed in the two Design-Build-Test-Learn cycles of 1-dode-

canol production (a medium-chain fatty acid used in detergents, pharmaceuticals and cosmet-

ics) in Escherichia coli with the outcome determining the concentration of the targeted organic

compound. The list of variables per dataset, as well as their meaning, is presented in Table 2.

We used BicPAMS software [35] to extract patterns, with particular focus on constant

coherence on columns (pattern on rows). Regarding statistical significance, we did not filter

patterns exhibiting a p-value above 0.05 (patterns that might have occurred by chance). To

allow the creation of larger patterns during the merging step, we allow up to 30% noise within

the pattern. This will reduce the number of redundant patterns. Numeric input variables are

categorised with DI2 discretizer [25], with |L| = 3, |L| = 5, and |L| = 7 categories.

Broad characteristics of the extracted patterns are presented in Tables 3 and 4. A set of illus-

trative patterns for each dataset are displayed in Fig 7, with the respective properties in

Table 5.

Discussion

In this work, we proposed an approach for pattern evaluation in the presence of numerical

outcomes. Below, we experimentally assess the results of the proposed methodology on four

publicly available datasets.

Case study: Echocardiogram
A few discriminative patterns, yielding Support< 10%, were extracted from the Echocardio-
gram data as shown in Table 3. In Table 4, we can see that the most prominent discriminative

criteria for the found patterns were an average Lift� 1.6 and StandardisedLift� 0.75 for con-

figuration |L| = 3. A pattern with lift above 1 and Standardised Lift in [0.7,1] generally

Table 1. A small sample of metrics implemented in DISA. Three types are presented: support-based metrics, confi-

dence-based, and lift-based.

Support-based Confidence-based Lift-based

Statistical significance [14] Confidence [36] Lift [36]

Coverage (Support) [36] All-Confidence [37] Standardised Lift [16]

Difference in Support [11] Casual Confidence [38] Hyper Lift [39]

Bigger Support [11] Descriptive Confirmed Confidence [40] Weighted Lift [17]

Casual Support [38] Hyper Confidence [39] -

Weighted Support [17] Laplace Corrected Confidence [40] -

Weighted Rule Support [17] Weighted Confidence [17] -

https://doi.org/10.1371/journal.pone.0276253.t001
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discriminate the subspace of values it forms. The analysis of the found patterns using DISA

reveals that the majority of discoveries discriminate a low survivability range (see GitHub

repository https://github.com/JupitersMight/DISA/tree/main/Example for a detailed descrip-

tion of all patterns), including the pattern shown in Fig 7a. The patients suffering a heart attack

in Fig 7a pattern exhibited moderate values of contractility and moderate size of the heart at

end-diastole. In this case, when the local survivability within the pattern intersects the overall

survivability, it forms a span of time that is discriminative of patients who survive a maximum

of 12 months. This pattern possesses a high discriminative power, the maximum achievable,

with a Lift = 3.09 and StandardisedLift = 1, and it also yields ~w2 ¼ 8:64. A ~w2 > 3:84 means

that the null-hypothesis of independence between the pattern and the outcome should be

Table 2. Variable description for the four selected datasets for this study. Variables not presented in this table were removed due to redundancy/irrelevance.

Dataset name Variables Type

Echocardiogram (130 samples) age-at-heart-attack: Age in years when heart attack occurred Integer

pericardial-effusion: Pericardial effusion is fluid around the heart. Binary

fractional-shortening: Contracility around the heart (lower numbers are increasingly abnormal) Continuous

epss: E-point septal separation, another measure of contractility Continuous

lvdd: Left ventricular end-diastolic dimension (size of the heart at end-diastole) Continuous

wall-motion-index: A measure of how the segments of the left ventricle are moving. Continuous

survival (outcome): Survivability in months Integer

Liver Disorders (344 samples) mcv: mean corpuscular volume Continuous

alkphos: alkaline phosphotase Continuous

sgpt: alanine aminotransferase Continuous

sgot: aspartate aminotransferase Continuous

gammagt: gamma-glutamyl transpeptidase Continuous

drinks (outcome): number of half-pint per day Continuous

Breast Cancer Wisconsin (Diagnostic)

(46 samples)

radius: mean of distance from center to points on the perimeter Continuous

texture: standard deviation of gray-scale values Continuous

perimeter: perimeter of the cell nucleus Continuous

area: area of the cell nucleus Continuous

smoothness: local variation in radius lengths Continuous

compactness: perimeter x perimeter / area−1 Continuous

concavity: severity of concave portions of the contour Continuous

concave points: number of concave portions of the contour Continuous

symmetry: symmetry of the cell nucleus enzyme that catalyzes oxidation-reduction (redox) reaction. Continuous

fractal dimension: coastline approximation Continuous

tumor size: diameter of the excised tumor in centimeters Continuous

lymph node status: number of positive axillary lymph node observed at time of surgery Continuous

time (outcome): Time of cancer recurrence in months Continuous

Dodecanol (237 samples) AHR_ECOLI: level of enzyme that catalyzes the reduction of a wide range of aldehydes Continuous

LCFA_ECOLI: level of enzyme that catalyzes the esterification of exogenous long-chain fatty acids into

metabolically active CoA thioesters for subsequent degradation into phospholipids

Continuous

Dodecanoyl-[acyl-carrier-protein] hydrolase: level of chloroplastic that plays an essential role in chain

termination during de novo fatty acid synthesis

Continuous

Fatty acyl CoA reductase: level of reduction catalyst of long chain acyl-CoA to fatty aldehyde Continuous

A1U2T0: level of enzyme that catalyzes long chain fatty acyl-CoA into a chain primary alcohol Continuous

A1U3L3: level of enzyme that catalyzes oxidation-reduction (redox) reaction. Continuous

Dodecanol (outcome): organic compound produced Continuous

https://doi.org/10.1371/journal.pone.0276253.t002

PLOS ONE DISA tool: Discriminative and informative subspace assessment with categorical and numerical outcomes

PLOS ONE | https://doi.org/10.1371/journal.pone.0276253 October 19, 2022 12 / 19

https://github.com/JupitersMight/DISA/tree/main/Example
https://doi.org/10.1371/journal.pone.0276253.t002
https://doi.org/10.1371/journal.pone.0276253


rejected. Larger chi-squared values indicate stronger evidence of a strong relationship between

the pattern and the outcome.

Case study: Liver disorders
The extracted patterns from this data source display a Support� 10% in configuration |L| = 3,

as shown in Table 3. As the cardinality of input variables increases (higher |L|), the most salient

discriminative criteria are ~w2 � 3:31, Lift� 1.7, StandardisedLift� 0.80, and Stat.
Significance� 0.03 for configuration |L| = 7. In this context, a statistical significance lower

than 0.05 means that the pattern probability of occurrence deviates from expectations. The

careful analysis of the patterns using DISA revealed that a good portion of the discovered pat-

terns discriminate a low drink intake per day (see GitHub repository for a trace of all patterns).

An example is shown in Fig 7b, whose individuals with very high values of alanine aminotrans-

ferase and gama-glutamyl transpeptidase, generally drank up to 2 drinks per day. This pattern

possesses a high discriminative power, the maximum achievable, with a Lift = 2.04 and Stan-
dardisedLift = 1. It also has a strong dependence with the outcome with a ~w2 ¼ 5:28, and statis-

tical significance (p-value = 0.008).

Case study: Breast cancer wisconsin (Diagnostic)
A high number of patterns were extracted from this data source as shown in Table 3. The pat-

terns in general were borderline discriminative, with the most notable discriminative criteria

being the Lift� 1.3 and Stat.Significance� 0.04 for configuration |L| = 7. The careful analysis

of the patterns using DISA revealed that a significant number of the found patters discrimi-

nated a low time until cancer recurrence (images in GitHub). An example is shown in Fig 7c,

whose patients with short periors until cancer relapse show high heterogeneity cells character-

istics, a very high number of compact cells and high severity of concave portions of the con-

tour. In this case, the dynamically inferred discriminative span of time until relapse is between

1.4 and 9 months. The pattern possesses a high discriminative power, the maximum achiev-

able, with a Lift = 4.18 and StandardisedLift = 1. It also has a ~w2 ¼ 10:21, meaning that the pat-

tern is strongly dependent of the given span of time for cancer reoccurrence, and statistical

significance (p-value = 8.63 × 10−6).

Case study: Dodecanol
Finally in the Dodecanol dataset, for configuration |L| = 7, a moderate number of patterns were

extracted as shown in Table 3. The discriminative criteria is optimal across the found patterns

from all configurations, e.g. ~w2 � 16, Lift� 1.5, StandardisedLift> 0.9, and Stat.

Table 3. Configurations used in BiCPAMS and best results from the four case studies. Each row from left to right indicates the percentage of noise allowed, the number

of categories for the continuous variables (coherence strength), the number of extracted patterns, the average number of columns in each patterns (and standard deviation),

and the average number of rows in each pattern (and standard deviation).

Configuration Echocardiogram Liver Disorders Breast Cancer Wisconsin Dodecanol

Quality |L| #bics μ(|I|) ± σ(|I|) μ(|J|) ± σ(|J|) #bics μ(|I|) ± σ(|I|) μ(|J|) ± σ(|J|) #bics μ(|I|) ± σ(|I|) μ(|J|) ± σ(|J|) #bics μ(|I|) ± σ(|I|) μ(|J|) ± σ(|J|)

100% 3 3 9±4.3 3.3±1.2 7 42±19 2.5±0.7 56 9.8±1.3 2.3±0.8 6 36±16 3±0.8

100% 5 8 7.1±2.9 2.8±0.7 8 20±10 2.2±0.4 50 6±1 2.5±1 18 18±6 2.1±0.3

100% 7 13 5.6±1.2 2.5±0.4 16 8.7±4.1 2.4±0.4 96 3.5±0.8 2.8±1 25 11±8 2.7±0.6

70% 3 3 9±4.3 3.3±1.2 7 42±19 2.5±0.7 59 10±1.4 2.3±0.7 7 29±13 3.1±0.8

70% 5 8 7.6±3 2.8±0.7 8 20±10 2.2±0.4 54 6±1 2.4±1 20 17±7 2.4±0.8

70% 7 14 5.7±1.4 2.6±0.6 16 8.7±4.1 2.4±0.4 102 3.6±0.9 2.9±1.4 24 12±8 2.6±0.6

https://doi.org/10.1371/journal.pone.0276253.t003
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Significance� 0.04. The careful analysis of the patterns using DISA revealed that some of the

discovered patterns discriminated a low production of dodecanol (images in GitHub). An

example is shown in Fig 7d, where a reduced dodecanol production (maximum of 0.14 units)

is discriminated by the presence of samples with a very high concentration of enzymes respon-

sible for the catalysis of long chain fatty acyl-CoA into a chain primary alcohol and low con-

centration of enzymes responsible for oxidation-reduction (redox) reactions. The pattern

possesses moderate discriminative power with a Lift = 1.49 and StandardisedLift = 0.87. It fur-

ther shows a strong relation with the outcome, ~w2 ¼ 12:8, and possesses high statistical signifi-

cance (p-value = 7.23×10−6).

State-of-the-art comparison

To test the DISA assessment of the patterns’ discriminative power, we considered an addi-

tional set of approaches: 1) Classic approach, where the numerical outcome variable is

Table 4. Results of the analysis of DISA (gaussian) across all patterns per dataset. A selective list of statistical measures is provided. For each measure, the average value

obtained across the patterns per parameterization, as well as the standard deviation, are presented.

Parameterization Echocardiogram
Quality |L| Information Gain Gini Index ~w2 Lift Standardise Lift Stat. Significance

100% 3 0.06±0.05 0.01±0 2.69±0.88 1.64±0.26 0.75±0.17 0.05±0.03

100% 5 0.03±0.02 0±0 1.57±1.17 0.96±0.45 0.43±0.21 0.07±0.06

100% 7 0.04±0.06 0±0 1.71±2.18 1.01±0.66 0.41±0.19 0.06±0.05

70% 3 0.06±0.05 0.01±0 2.69±0.88 1.64±0.26 0.75±0.17 0.05±0.03

70% 5 0.02±0.01 0±0 1.44±0.96 0.92±0.38 0.41±0.19 0.07±0.06

70% 7 0.04±0.06 0±0 1.88±2.08 1.09±0.67 0.44±0.21 0.07±0.05

Parameterization Liver Disorders
Quality |L| Information Gain Gini Index ~w2 Lift Standardise Lift Stat. Significance

100% 3 0.01±0.01 0±0 2.72±3.56 1.10±0.08 0.78±0.05 0.09±0.10

100% 5 0.01±0.01 0±0 2.36±1.61 1.18±0.28 0.69±0.17 0.05±0.03

100% 7 0.06±0.07 0±0 3.31±2.98 1.7±0.75 0.80±0.13 0.03±0.03

70% 3 0.01±0.01 0±0 2.72±3.56 1.10±0.08 0.78±0.05 0.09±0.10

70% 5 0.1±0.01 0±0 2.36±1.61 1.18±0.28 0.69±0.17 0.05±0.03

70% 7 0.06±0.07 0±0 3.31±2.98 1.7±0.75 0.80±0.13 0.03±0.03

Parameterization Breast Cancer Wisconsin (Diagnostic)
Quality |L| Information Gain Gini Index ~w2 Lift Standardise Lift Stat. Significance

100% 3 0.05±0.05 0.2±0.2 2.12±2.16 1.17±0.28 0.71±0.21 0.08±0.07

100% 5 0.03±0.04 0.01±0.01 1.11±1.29 1.19±0.26 0.69±0.17 0.03±0.04

100% 7 0.07±0.10 0.01±0.02 1.72±2.65 1.25±0.81 0.61±0.27 0.05±0.06

70% 3 0.05±0.07 0.02±0.02 2.18±2.49 1.2±0.27 0.72±0.19 0.08±0.07

70% 5 0.05±0.07 0.01±0.01 1.49±1.88 1.25±0.35 0.72±0.16 0.04±0.04

70% 7 0.07±0.11 0.01±0.02 1.87±3.01 1.3±0.92 0.62±0.27 0.04±0.05

Parameterization Dodecanol
Quality |L| Information Gain Gini Index ~w2 Lift Standardise Lift Stat. Significance

100% 3 0.22±0.13 0.06±0.03 34.44±20.35 1.94±0.74 0.92±0.12 0.03±0.06

100% 5 0.17±0.13 0.03±0.03 20.05±17.14 2.08±0.91 0.9±0.11 0.04±0.04

100% 7 0.19±0.11 0.03±0.02 16.71±14.45 2.51±1 0.92±0.13 0.03±0.04

70% 3 0.1±0.1 0.03±0.04 19.21±21.55 1.49±0.5 0.87±0.10 0.06±0.06

70% 5 0.16±0.13 0.03±0.03 18.34±17.07 2.05±0.89 0.9±0.12 0.03±0.04

70% 7 0.19±0.12 0.03±0.02 17.18±14.76 2.45±0.96 0.92±0.13 0.03±0.04

https://doi.org/10.1371/journal.pone.0276253.t004

PLOS ONE DISA tool: Discriminative and informative subspace assessment with categorical and numerical outcomes

PLOS ONE | https://doi.org/10.1371/journal.pone.0276253 October 19, 2022 14 / 19

https://doi.org/10.1371/journal.pone.0276253.t004
https://doi.org/10.1371/journal.pone.0276253


discretized by applying DI2 [25] with |L| = 7, and the outcome is then interpreted as a class. In

this case, DISA selects for each pattern the best fitting class ordered by lift. It is important to

note that the outcome class is defined prior to the discovery of the pattern, without assump-

tions related with the subsequently mined pattern-conditioned outcomes; 2) MinMax
approach, that uses the minimum and maximum of the pattern-conditional outcomes, 3)

Average approach, that uses the average of the pattern-conditioned outcome with bounds

inferred using the observed standard deviation; and 4) Empirical approach, where DISA

considers the empirical distributions of both the continuous outcome variable and the pat-

tern-conditioned outcome variable. These novel approaches are applied to each pattern illus-

trated in Fig 7. Table 5 contains the results of this analysis and we will discuss the results of: i)

the proposed Gaussian approach versus Classic and standard approaches; and ii) the

proposed Empirical approach versus all others.

Fig 7. Visual characterization of the discriminated range of outcomes per pattern. Each chart displays the Gaussian intersections between the

outcome variable and the distribution of pattern-conditional outcomes. The blue line represents the Gaussian of the pattern outcome space, orange line

represents the Gaussian of the original outcome space. All patterns displayed above have |L| = 7 categories (very low, low, medium-low, medium,

medium-high, high, very high). Patterns: (a) φJA
= {medium contractility (epss), medium size of the heart at end-diastole (lvdd)}; (b) φJB

= {medium-

high values of alkaline phosphotase (alkphos), very-high values of alanine aminotransferase (sgpt), very-high values of gamma-glutamyl transpeptidase

(gammagt)}; (c) φJC
= {high standard deviation among the cells compactness, very high compactness, very high severity of concave portions of the

contour, very high symmetry}; (d) φJD
= {very high values of A1U2T0, low values of A1U3L3}. (a) Echocardiogram pattern with intersections at −11.04

and 12.33. (b) Liver Disorders pattern with intersections at −0.94 and 2.04. (c) Breast Cancer Wisconsin (Diagnostic) pattern with intersections at 1.43

and 9.05. (d) Dodecanol pattern with intersections at −0.07 and 0.14.

https://doi.org/10.1371/journal.pone.0276253.g007
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When comparing the results of the Classic and Gaussian approaches in the Liver Dis-
orders, Breast Cancer, and Dodecanol datasets we observe that the Gaussian approach exhib-

its higher values in the ~w2 function, whilst the Classic displays slight improvements in the

lift function for most patterns. In spite of these results, the Classic approach fails to maxi-

mize the patterns’ potential to discriminate specific ranges of outcomes. This can be concluded

by observing a considerable decrease in the values of Standardised Lift. In the case of Breast
Cancer and Dodecanol, Standardised Lift plummeted below 0.5 using the classic approach. The

Average approach also exhibits this failure to find intervals that maximize the patterns’ dis-

criminative potential. These values confirm our initial hypothesis, that the classic and Aver-
age approaches form intervals that might not fully explore the discriminative profile of each

pattern. The MinMax approach is able to fully accommodate noise and outlier pattern-

Table 5. Value of objective interestingness functions for each pattern in Fig 7. In this analysis, we compare the discriminative assessment produced over the range of

discriminated outcomes with DISA against classic alternatives produced by discretizing the numerical outcome using DI2 [25] and the standard MinMax and Average
approach (see Methods section) for the four datasets. The reference DISA values per function are presented in the last two rows.

Echocardiogram
Information Gain Gini Index ~w2 Lift Standardised Lift Stat. Significance

DI2 Classic [0.03, 0.59] 0.17 0.02 8.76 4.06 0.66 0.16

Standard approach MinMax [0.5, 12.0] 0.29 0.03 10.37 3.51 1.00 0.16

average (±σ) [−2.27, 9.14] 0.12 0.02 5.10 2.87 0.67 0.16

DISA Gaussian [−11.04, 12.33] 0.26 0.02 8.64 3.09 1.00 0.16

Empirical [[0.25, 0.75], [11.0, 12.0]] 0.43 0.04 21.42 6.19 1.00 0.16

Liver Disorders
Information Gain Gini Index ~w2 Lift Standardised Lift Stat. Significance

DI2 Classic [0, 0.8] 0.08 0.00 4.80 2.35 0.75 0.008

Standard approach MinMax [0.0, 2.0] 0.14 0.01 5.28 2.04 1.00 0.008

average (±σ) [−0.05, 1.45] 0.07 0.00 3.62 2.06 0.75 0.008

DISA Gaussian [−0.94, 2.04] 0.13 0.007 5.28 2.04 1.00 0.008

Empirical [[0.0, 0.5], [1.0, 2.0]] 0.14 0.01 5.28 2.04 1.00 0.008

Breast Cancer Wisconsin (Diagnostic)
Information Gain Gini Index ~w2 Lift Standardised Lift Stat. Significance

DI2 Classic [−2.08, 4.85] 0.23 0.04 8.13 5.11 0.49 8.63×10−6

Standard approach MinMax [4.0, 7.0] 0.7 0.11 26.32 9.2 1.00 8.63×10−6

average (±σ) [3.80, 6.86] 0.40 0.05 19.40 10.22 0.50 8.63×10−6

DISA Gaussian [1.43, 9.05] 0.41 0.08 10.21 4.18 1.00 8.63×10−6

Empirical [2.0, 7.0] 0.62 0.11 21.4 7.67 1.00 8.63×10−6

Dodecanol
Information Gain Gini Index ~w2 Lift Standardised Lift Stat. Significance

DI2 Classic [0, 0.002] 0.04 0.01 9.67 1.89 0.45 7.23×10−6

Standard approach MinMax [0.0, 0.15] 0.18 0.04 22.08 1.6 1.0 7.23×10−6

average (±σ) [−0.01, 0.10] 0.05 0.02 9.72 1.49 0.77 7.23×10−6

DISA Gaussian [−0.07, 0.14] 0.07 0.02 12.8 1.49 0.87 7.23×10−6

Empirical� 0.39 0.12 63.02 2.7 1.0 7.23×10−6

Information Gain Gini Index ~w2 Lift Standardised Lift Stat. Significance

Metric interval [0, 1] [0, 1] [0, inf] [0, inf] [0, 1] [0, 1]

Reference threshold >0.6 >0.6 >3.84 >1.3 >0.6 <0.05

�[[0.000, 0.00538], [0.00717, 0.00735], [0.03961, 0.04472], [0.05002, 0.05014], [0.05149, 0.05544], [0.05641, 0.06605], [0.06607, 0.07021], [0.10282, 0.11077], [0.13608,

0.13764], [0.1477, 0.14858], [0.15048, 0.15287], [0.15548, 0.15592]]

https://doi.org/10.1371/journal.pone.0276253.t005
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conditioned outcomes, yet it creates intervals that can be too large or permissive, i.e. intervals

that accommodate outcome ranges that are not discriminated by the pattern. The Gaussian
approach is in theory more robust to this problem, an observation that is corroborated by the

collected results.

Considering the selected Echocardiogram pattern, two intervals are formed by the Empir-
ical approach. The first interval captures a low survivability range, [0.25, 0.75] whilst the sec-

ond captures a higher survivability range [11.0, 12.0]. If we observe the statistics of the other

approaches that enclose either one or two of these intervals we can conclude: 1) that the inter-

val of low survivability provides discriminative properties, i.e. in the classic approach the

range [0.03, 0.59] partially encloses [0.25, 0.75]; and 2) that the approaches which consider the

inclusion of higher values of survivability also display discriminative properties, i.e. a compact

range that encloses both of the aforementioned intervals are observed in the MinMax and

Gaussian approaches, [0.5, 12.0] and [−11.04, 12.33], respectively. Note, nevertheless that

the Empirical approach disregards the range of values between [0.75, 11.0]. Results from all

datasets confirm an increase in the discriminative potential in most statistics for all patterns

(e.g., Standardised Lift as 1). However, the Empirical approach is generally restrictive in

the formation of pattern-conditioned outcome intervals, and should be applied with care, e.g.,

complemented with the Gaussian approach to guarantee that the consequent of the target

association rules include all numerical ranges discriminated by a given pattern.

Conclusion

This work proposed a novel distribution-based method to rigorously assess association rules

in the presence of numerical outcomes in the consequent, by inspecting the differences

between the distribution of the numerical outcomes for all observations and those supporting

a given pattern. This methodology allows for a dynamic and pattern-tailored approach to

numerical outcomes as the patterns dictate how the discriminated ranges of values are statisti-

cally produced. The results further confirm the utility of the proposed methodology in dynam-

ically producing pattern-tailored intervals, where discovered patterns from multiple domains

exhibited maximum achievable discriminative power properties.

The methodology is implemented in DISA, an open source Python package capable of

robustly assessing the statistical significance and discriminative power of association rules in

the presence of numerical and categorical outcomes. DISA implements over 50 metrics, heu-

ristics that can be used to guide the discovery process of discriminative patterns and subspace

clusters in various data domains.We believe that DISA can be easily embed and further

extended for more complex patterns, such as with multiple points of intersection, therefore

aiding the scientific community ability along pattern-centric descriptive and predictive tasks.

For instance, the extraction of patterns in omic data able to discriminate numerical pheno-

types, or the extraction of patterns in clinical data able to discriminate risk scales.
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