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Abstract

Machine learning approaches are an attractive option for analyzing large-scale data to detect genetic variants that
contribute to variation of a quantitative trait, without requiring specific distributional assumptions. We evaluate two
machine learning methods, random forests and logic regression, and compare them to standard simple univariate
linear regression, using the Genetic Analysis Workshop 17 mini-exome data. We also apply these methods after
collapsing multiple rare variants within genes and within gene pathways. Linear regression and the random forest
method performed better when rare variants were collapsed based on genes or gene pathways than when each
variant was analyzed separately. Logic regression performed better when rare variants were collapsed based on
genes rather than on pathways.

Background
The common disease/common variant hypothesis has
been successful at detecting some small to moderate
genetic effects for complex traits in genome-wide asso-
ciation studies, although a substantial proportion of the
heritability remains unexplained. The paradigm of com-
mon disease/rare variant contributions to the remaining
genetic variation is now of interest. New sequencing
technologies have made it feasible to determine DNA
sequence variations in large numbers of subjects.
Machine learning approaches are attractive in terms of

handling large-scale data without requiring specific dis-
tributional assumptions and are useful for detecting
interaction effects of multiple predictors on a trait. The
random forest (RF) method and logic regression (LR)
are two machine learning methods [1]. The RF method
[2] has been used in genome-wide association studies to
reduce the number of genetic variants that will be used

for follow-up studies and to detect variants of moderate
effect in the presence of larger effect interactions [3].
In the RF method, the goal is to build a forest of mod-

els, or trees, that, when combined, explain the variation
of a trait. The RF method uses a random subset of the
data and a random subset of the predictors to build a
tree that minimizes the out-of-bag (OOB) mean-square
error (MSE) in a bootstrap sample. The samples not
used to build the tree are called the OOB sample, and
they are used to calculate the OOB MSE. At each node
in each tree, the RF method makes a random draw from
the list of predictor variables. Predictors used or selected
in one node may reappear in any other node. The RF
method then repeats this process using different random
samples of predictors and data to produce a large collec-
tion, or forest, of trees. A variable importance score is
computed for each predictor in a tree, using permuta-
tion to measure how much the OOB MSE for a given
tree would increase if this predictor was randomized
(made noisy). This is one method among several that
can be used to evaluate the predictiveness of the predic-
tors in the tree. The RF method then ranks the predic-
tors based on an average, across all trees, of the variable
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importance scores. To prevent overfitting, the RF
method sets aside OOB samples and calculates the error
rate in prediction for its proposed models in each tree
using the OOB sample. The RF method does not pick a
final model that contains only a subset of the original
large number of predictors. The top-ranked predictors
in an RF model are considered to be those that are
most likely to be truly causal. Users decide the cutoff
that determines what proportion of the top-ranked pre-
dictors are to be used in follow-up investigations (see
[1,2,4]).
LR is a model-searching method embedded in a

regression framework. It uses Boolean operators to con-
struct a flexible network of markers as a model and uses
simulated annealing to control the model’s search across
all variants [1,5]. LR searches all Boolean combinations
of the predictor variables and finds an optimal regres-
sion model with only a handful of the original predic-
tors. The optimal regression model is determined by a
measure of model fitness to the data (MSE for linear
regression). The maximum size of the final model is
predetermined by the analyst, and all the predictors are
equally important. To prevent overfitting, users can
choose either the traditional permutation and cross-vali-
dation method or the conditional permutation test, a
unique feature of LR [1,5,6].
We evaluate the performance of the RF method, LR, and

simple univariate linear regression (ULR) using the
Genetic Analysis Workshop 17 (GAW17) mini-exome
sequence data. We want to determine whether these
methods can detect genetic effects that contribute to the
variation of a quantitative trait despite sparseness in the
data resulting from low minor allele frequency (MAF) at
many genetic variants. Neither the RF method nor LR per-
forms tests of hypotheses in a frequentist framework.
Thus power and type I error calculations under the null
hypothesis are not relevant for these methods. However,
the percentage of simulated data replicates in which either
top-ranked predictors in the RF method or final models in
LR contain true causal variants (CVs), termed the percen-
tage of replicates (PoR), can be interpreted as a surrogate
of power. Alternatively, the percentage of CVs or noncau-
sal variants (NCVs) that are contained in the top-ranked
predictors in the RF method, the final models in LR, or
the most significant set of tests in ULR for multiple repli-
cates of the simulated data can be used to evaluate
whether CVs are more likely to be ranked more highly
than NCVs as predictors of Q2. For LR, permutation test-
ing is used to avoid overfitting, and it provides the PoR in
which the MSE of the final model is smaller than the
MSEs of the models from randomly permuted data sets.
We apply the RF and LR approaches to the simulated

data after collapsing multiple rare variants (RVs) within
genes and within gene pathways. Gene pathways are a

set of genes that interact to perform a particular aggre-
gate function within a cell. We use biological knowledge
of gene pathways to collapse multiple RVs into single
predictors.

Methods
Data
GAW17 provided mini-exome data [7]. We limited our
machine learning methods to the Asian cohort, the lar-
gest, most homogeneous group (13,251 variants after
excluding monomorphic variants in 321 individuals). We
used trait Q2 after adjusting for sex, age, and smoking.
We used the method of Li and Leal [8] see also [9] to
recode the genotype data in two ways. First, by creating
an indicator variable for the presence of at least one RV
within a gene and using it to replace the genotypes of all
RVs within the gene (but not collapsing the common var-
iants), we created a gene-collapsed data set by collapsing
RVs (MAF < 0.01) within genes. This resulted in 6,882
gene-collapsed variants (2,133 RV indicator variables and
4,749 common variants in 2,889 genes). Second, for
genes belonging to the same pathway, we created a path-
way-collapsed data set by using an indicator function for
the presence of any RV (MAF < 0.01) in the same path-
way. Pathways from the Gene Set Enrichment Analysis
database [10] generated 2,416 pathway-collapsed variants.
Common variants were excluded, and genes not belong-
ing to a pathway were assigned their own pathway. We
analyzed uncollapsed, gene-collapsed, and pathway-col-
lapsed data in 200 replicates. After designing and begin-
ning our analyses, we requested the trait simulation
model from the GAW17 organizers so that we could find
out which genetic variants contributed to Q2 (36 CVs, 13
causal genes, and 167 causal pathways in Asians).

Simple univariate linear regression
The uncollapsed, gene-collapsed, and pathway-collapsed
data were analyzed with ULR using a trend test with
PLINK [11] and R after adjusting Q2 for age, smoking,
and sex and after coding genetic variants as the number
of minor alleles. Significance was evaluated at Bonfer-
roni-corrected p-values of 0.05 based on the number of
variants, genes, or pathways. The tests were ranked by
ascending p-values after dropping any NCV that exhib-
ited a correlation greater than 0.6 with any CV (termed
an “uncorrelated NCV” [UNCV]). The percentage of
both CVs and UNCVs that were ranked in the most sig-
nificant 10% of tests in at least 5%, 10% and 20% of
replicates was calculated. This was repeated for gene-
collapsed and pathway-collapsed variants.

Random forest method
We used Random Jungle, version 1.0.359 [12], which is
a version of the RF method that has many options and
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functions that are distinct from the original RF imple-
mentation [2] in R. We coded the collapsed RV predic-
tors as presence or absence of an RV, and we coded all
common variant genotypes as binary predictors using
dominant and recessive coding. Each RF model fitted
10,000 regression trees (required for stability when pre-
dictors have weak effects on the trait) with a minimum
terminal node size of 50 observations and random sets
of 7,000, 3,500, and 1,200 independent variables at each
node in each tree (determined from one data replicate
as suggested by Goldstein et al. [13]) for the uncol-
lapsed, gene-collapsed, and pathway-collapsed data,
respectively. After building each forest, predictors with
negative importance scores were removed and a new
forest was built with the remaining predictors. This pro-
cess was repeated until only 10% of the original predic-
tors remained to build the final forest.
In this study, the main purpose of RF analysis was to

reduce the number of variables for further follow-up
association analysis based on the rated lists of variables
[3]. To evaluate its performance, we determined the
PoR in which each “causal” variant, gene, and gene path-
way occurred in the top 1%, 5%, and 10% of variables
ranked by permutation importance scores. For these
same top-ranked percentiles, we calculated the PoR with
at least one causal variant, gene, or gene pathway ranked
at these levels. We also calculated the percentage of CVs
and UNCVs that were ranked in the top 10% of predic-
tors in 5%, 10%, and 20% replicates and repeated this
for gene-collapsed and pathway-collapsed variants.

Logic regression
We used the LogicReg, version 1.4.8, package in R.
Because of software limitations (maximum 6,000 predic-
tors/run), we separated the analysis by chromosome.
Because LR accepts only binary predictors, we coded the
collapsed RV predictors as binary predictors and
recoded the uncollapsed common variant genotypes as
binary predictors using dominant and recessive coding.
Each logic tree is composed of multiple binary predic-
tors (leaves) connected by Boolean operators. To accom-
modate the situation of many causal RVs, we fitted the
tree using only the “or” Boolean operator instead of the
“and” operator because allowing both in the presence of
many rare alleles would lead to model-fitting failures.
Multiple logic trees are included in LR as additive linear
terms.
For gene-collapsed data, we analyzed (1) the RVs and

common variants together and (2) only the RVs. To
evaluate the effect of model size, we fitted the LR using
1 tree with 3 leaves and 1 tree with 10 leaves for the
gene-collapsed data with combined rare and common
variants, and for the gene-collapsed data with only RVs
we fitted the LR using either 1 tree with 10 leaves or 3

trees with 10 leaves. To demonstrate that overfitting
might be a problem for this data set, we conducted per-
mutation tests for the gene-collapsed 3-trees-10-leaves
procedure on three chromosomes with CVs (2, 3, 6) as
well as three chromosomes without any CVs (1, 4, 5) by
permuting the trait values and refitting at the same
model size. For each chromosome we evaluated whether
the MSE for the real data was less than the observed
MSE values for 25 permuted data sets.
For the pathway analysis, we fitted models using 2

trees with 20 leaves. For each predictor, we calculated
the PoR that identified the predictor in the fitted model,
denoted as the pick rate [6]. Although power does not
apply to LR, one can consider the pick rate of the causal
markers as a surrogate.
We also calculated the percentage of CVs and UNCVs

that were included in the fitted model in 5%, 10%, and
20% of replicates for the gene-collapsed and pathway-
collapsed variants. For each analysis, we also calculated
the MSE for the optimal model in each replicate, aver-
aged this MSE across replicates, and compared this
average MSE for chromosomes with CVs versus chro-
mosomes without CVs.

Results
Simple univariate linear regression
Additional table 1 (see additional file 1 for additional
table 1) shows that for the ULR on uncollapsed data,
only three CVs were significantly associated with Q2 at
a Bonferroni-corrected p-value of 0.05 in one replicate
each (PoR = 0.5%). However, 56 UNCVs were detected
at this Bonferroni-corrected p-value (once for each
UNCV) across the 200 replicates. In the gene-collapsed
data, 2 out of 13 causal genes and 62 out of 2,876 non-
causal genes were detected at a Bonferroni-corrected p-
value of 0.05. For pathway-collapsed data, 17 out of 167
causal pathways and 47 out of 2,249 noncausal pathways
were detected. Table 1 shows that a higher proportion
of CVs than UNCVs had ULR p-values that were ranked
in the most significant 10%, with similar findings for
gene-collapsed and pathway-collapsed variants.

Random forest method
For the uncollapsed data for the RF analysis, each CV
was ranked in the top 10% of predictors in at least 5%
of replicates (range 5–24%) (Additional table 1). Few
CVs were ranked in the top 1% in multiple replicates.
However, 34% of replicates ranked at least one CV in
the top 1% of predictors, 91% of replicates ranked at
least one CV in the top 5% of predictors, and all 200
replicates ranked at least one CV in the top 10% of
predictors.
Additional table 2 (see additional file 2 for additional

table 2) shows the results for the gene-collapsed and
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pathway-collapsed data. Each causal gene was ranked in
the top 10% of predictors in at least 9% of replicates
(range 9–40%). However, 89%, 98%, and 98% of repli-
cates ranked at least one causal gene in the top 1%, 5%,
and 10% of all 2,889 genes, respectively. Each causal
gene was in at least one causal pathway that was ranked
in the top 10% of the 2,416 pathways in at least 6% of
replicates (range 6–66%). Five pathways containing CVs
were ranked in the top 10% of pathways in at least 50%
of replicates. However, 100% of replicates ranked at
least one causal pathway in the top 1% of all 2,416
pathways.
Table 1 shows that for uncollapsed, gene-collapsed,

and pathway-collapsed variants, a higher proportion of
CVs, causal genes, or causal pathways were ranked in
the top 10% of predictors in multiple replicates than
was observed for their uncorrelated noncausal analogs.

Logic regression
We evaluated LR under different settings by changing the
input predictors and the prefixed model size and struc-
ture. When both common variants and gene-collapsed
variants were used as inputs, the pick rates of the CVs
were low; the causal genes were included in the optimal
model in a maximum 22% of replicates. When only the
collapsed RVs were included (Additional table 2), the 3-
trees-10-leaves modeling procedure led to a better pick
rate than the 1-tree-10-leaves procedure, because it
allowed different estimates for effect sizes of the logic
trees. For the 3-trees-10-leaves model, 97% of replicates
produced at least one optimal model containing a true
CV (out of the 22 chromosomal models per replicate).
In Figure 1, for each chromosome for the gene-col-

lapsed data, we plot the pick rates for the most

frequently identified NCVs as lines and CVs as dots.
Despite strong spurious associations with NCVs, the 3-
trees-10-leaves model procedure led to the highest pick
rates for any CV on chromosomes 3, 8, 10, and 17,
showing that the proper model-fitting procedure has the
potential to identify true associations.
The MSE of the optimal model on each chromosome

averaged over all replicates was usually slightly lower for
chromosomes containing CVs compared to chromo-
somes without CVs. However, the permutation test for
the gene-collapsed data on three chromosomes with
CVs and three chromosomes without CVs showed that
the MSE for the optimal model generally was not less
than the MSEs of the permuted data sets, regardless of
whether or not the chromosome contained CVs, indicat-
ing little ability to separate effects of true CVs from
noise in this data set.
Additional table 2 (see additional file 2) shows that in

the pathway-collapsed analyses, the pathways containing
causal genes were rarely included in the optimal models.
Table 1 shows that for the gene-collapsed analyses, a
higher percentage of causal genes than uncorrelated
noncausal genes are included in the final models in mul-
tiple replicates, but it also illustrates that the pathway-
collapsed analyses exhibit virtually no replication of
results across the different replicates.

Discussion
The simulated quantitative trait Q2 was caused by 36
variants with small individual effects on the variation of
the trait [7]. One CV had an average locus-specific her-
itability (h2) [14] (across 200 replicates) of 0.04, five CVs
had locus-specific h2 between 0.011 and 0.017, and the
remaining CVs had locus-specific h2 < 0.01. Thus there

Table 1 Percentage of CVs and UNCVs that were in the top-ranked 10% of predictors (RF and ULR) or that were
included in the final model (LR) in at least 5%, 10%, and 20% of the 200 simulated replicates

Data set Total numbera Random forest, % variants ranked
in the top 10% of predictors

Univariate linear regression, %
variants ranked in the most

significant 10%

Logic regression, %
variants included in final

model

In ≥5
PoR

In ≥10
PoR

In ≥20
PoR

In ≥5
PoR

In ≥10
PoR

In ≥20
PoR

In ≥5
PoR

In ≥10
PoR

In ≥20
PoR

Uncollapsed CVs 36 100 72 33 94 72 39

UNCVs 12,485 76 46 8 90 25 3

Gene-collapsed CVs 15 100 100 50 87 73 53 91b 64 45

UNCVs 6,642 98 81 24 90 26 3 63 32 9

Pathway-
collapsed

CVs 167 99 95 72 93 50 26 1c 0 0

UNCVs 2,249 91 68 38 88 32 8 0 0 0

UNCVs are noncausal variants that were not used in the simulation to determine Q2, were not in one of the causal genes, and did not display correlation of at
least 0.6 with any CVs.
a Total number of nonmonomorphic variants in Asians. For LR we excluded 4 common CVs and 4,725 common NCVs.
b Final LR model: 3 trees with 10 leaves.
c Final LR model: 2 trees with 20 leaves.
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was little power to detect CVs in this small sample
using any statistical method. ULR of uncollapsed data
detected only 3 of the CVs in a single replicate each
(PoR = 0.5%) and 56 false-positive results at a Bonfer-
roni-corrected p-value of 0.05. This false-positive rate is
inflated over the expected rate of 5 per 100 genome-
wide analyses. This inflation may be due to only one set
of genotypes being used in all 200 replicates, the multi-
collinearity of sequence data, or other factors related to
the simulations. Permutation testing should be used in
real data to control type I error. The collapsed analyses
had better power and more appropriate false-positive
rates.
For the RF method using the uncollapsed data, 91%

and 100% of replicates ranked at least one CV in the
top 5% and 10% of predictors, respectively. In the gene-
collapsed and pathway-collapsed data, 89% and 100% of
replicates ranked at least one causal gene or pathway in
the top 1% of predictors, respectively. CVs were
detected more often in gene-collapsed and pathway-col-
lapsed analyses than in uncollapsed analyses. However,
individual CVs, genes, and pathways were not consis-
tently ranked among the top 10% of predictors across
the 200 replicates, and of course many NCVs exist in
even the top 1% of predictors. However, a higher

proportion of CVs, causal genes, and causal pathways
were ranked among the top 10% of predictors in multi-
ple replicates (Table 1) than were the comparable non-
causal variants, genes, or pathways.
If we consider that the main function of the RF

method is to reduce the large number of markers to a
set of candidates for inclusion in additional studies, then
these results suggest that for polygenic models with
small locus-specific h2, such as the one simulated here,
larger samples would be desirable and, in a similarly
small study, at least the top 5–10% of predictors for
uncollapsed data and the top 1% of predictors in gene-
collapsed or pathway-collapsed analyses should be used
in follow-up studies to give a reasonably high probability
that at least one causal locus will be selected.
We observed better performance for LR in the gene-

collapsed data than in the pathway-collapsed data. The
performance of LR can vary substantially depending on
the prefixed model size and structures and the input
predictors. Models with multiple linear terms of logic
trees (multiple trees) appear more appropriate for RVs
with large variance in effect size. In the gene-collapsed
data, even with small effect sizes of CVs on Q2, higher
proportions of causal genes than noncausal genes were
included in the fitted models across multiple replicates.

70

80

50

60

nt
is
id
en

ti
fie

d)

30

40

te
(%

of
ti
m
es

th
e
va
ri
a

10

20

Pi
ck

Ra

# trees = 3, Non causal variant

# trees = 1, Non causal variant

# trees = 3; Any causal variant

# t 1 A l i t

0

ch1 ch2 ch3 ch4 ch5 ch6 ch7 ch8 ch9 ch10 ch11 ch12 ch13 ch14 ch15 ch16 ch17 ch18 ch19 ch20 ch21 ch22

# trees = 1; Any causal variant

Figure 1 LR pick rate (by chromosome) for the most frequently identified noncausal genes and any causal gene using gene-collapsed
data

Kim et al. BMC Proceedings 2011, 5(Suppl 9):S104
http://www.biomedcentral.com/1753-6561/5/S9/S104

Page 5 of 6



Future extensions to LR software that incorporate all
predictors across the genome in a single analysis may
improve performance.
No interactions between loci were simulated for Q2.

However, in reality, genetic elements can work both col-
lectively and separately. Thus machine learning methods
may be especially useful in such situations. Finding net-
works or motifs in the genetic material is an unsolved
problem in the literature.

Conclusions
We applied the RF, LR, and ULR approaches to a simu-
lated polygenic quantitative trait and sequence data with
both common and rare variants. ULR had low power to
detect any CVs in this small sample. All three methods
ranked larger proportions of CVs than NCVs among the
top-ranked predictors in multiple replicates. When
using the RF method or LR, we suggest that multiple
trees and permutation tests be used for analysis. Our
results leave open the question of whether a larger sam-
ple could improve RF and LR performance when effect
sizes are small. Although not providing tests of hypoth-
eses, machine learning approaches such as the RF
method and LR can help researchers elucidate the
causes of variation in a quantitative trait by providing a
putative set of candidate genes for further study.

Additional material
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