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The arthropod-borne flaviviruses cause a series of diseases in humans and pose a significant threat to glo-
bal public health. In this review, we aimed to summarize the structure of the capsid protein (CP), its rel-
evant multiple functions in the viral life cycle and innovative vaccines targeting CP. The flaviviral CP is the
smallest structural protein and forms a homodimer by antiparallel a-helixes. Its primary function is to
package the genomic RNA; however, both steps of assembly and dissociation of nucleocapsid complexes
(NCs) have been obscure until now; in fact, flaviviral budding is NC-free, demonstrated by the subviral
particles that generally exist in flavivirus infection. In infected cells, CPs associate with lipid droplets,
which possibly store CPs prior to packaging. However, the function of nuclear localization of CPs remains
unknown. Moreover, introducing deletions into CPs can be used to rationally design safe and effective
live-attenuated vaccines or noninfectious replicon vaccines and single-round infectious particles, the lat-
ter two representing promising approaches for innovative flaviviral vaccine development.

� 2020 Elsevier Ltd. All rights reserved.
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1. Introduction

The emergence or reemergence of flaviviruses, including den-
gue virus (DENV), Zika virus (ZIKV), yellow fever virus (YFV), Japa-
nese encephalitis virus (JEV), West Nile virus (WNV), and tick-
borne encephalitis virus (TBEV), has posed an enormous threat to
global public health in recent decades. Most of these viruses are
arthropod-borne viruses (i.e., arboviruses) that are transmitted to
vertebrate hosts through the bites of infected mosquitoes or ticks,
causing diseases in animals and humans. Among them, DENV is the
most important human pathogen, with approximately 390 million
infections every year [1].

Flaviviruses are a group of enveloped positive-sense RNA
viruses. The viral shell is formed by 180 copies of glycosylated E
and M proteins, which are anchored to a lipid bilayer; within the
lipid bilayer, the core of the viral particle is the nucleocapsid com-
plex (NC), which consists of capsid proteins (CPs) and viral geno-
mic RNA (vRNA) [2–6]. The viral genome is approximately 11,000
nucleotides in length and contains a single open reading frame
encoding a polyprotein of approximately 3400 amino acids. After
cleavage by the viral NS3 protease (with cofactor NS2B) and host
signalase, the polyprotein generates three structural proteins (C,
prM, and E) and seven nonstructural proteins (NS1, NS2A/2B,
NS3, NS4A/4B, and NS5) [7].

Over the past decades, great advances have been made to
understand flaviviruses, but the CP-related processes, viral encap-
sidation and uncoating are still unclear. Although vaccines for YFV,
JEV, and TBEV have obtained successes and progress has been
made in DENV vaccine development, there are still some aspects
that are less than satisfactory, and there are still no available vac-
cines for WNV and ZIKV. Vaccines play a key role in preventing fla-
vivirus infection and controlling viral spread, considering that
there is no specific treatment available for the diseases caused by
flaviviruses; thus, vaccine development is a consistently important
issue in flavivirus research.
2. The functional and structural flexibility of flavivirus capsid
proteins

The mature CP is approximately 100 amino acids in length.
Although the amino acid sequences of CPs are not very conserved
among the Flavivirus genus (Fig. 1A), similar structures and proper-
ties are shared by all flavivirus CPs. Approximately one-quarter of
the residues are basic and mainly cluster at the N-terminus and C-
terminus; this property is in accordance with their function in the
vRNA package. Moreover, there is a characteristic region predomi-
nately composed of hydrophobic residues in all flavivirus CPs,
called the ‘‘central hydrophobic domain” (Fig. 1A) [8], which has
been proven to play an essential role in viral assembly [9].

The structures of the DENV, WNV (Kunjin subtype), ZIKV and
JEV CPs have been resolved by different methods [10–15]. All the
determined structures reveal that CP is dimeric (Fig. 1B) and that
each monomer contains 4 distinct a-helices (termed a1-a4, they
are connected by loops), but its N-terminus (approximately 20
aa) is intrinsically disordered [11,14]. The homodimers are con-
nected mainly by extensive hydrophobic interactions and hydro-
gen bonds [10,13,14]. All flavivirus CP homodimers contain at
least two layers of contact interface. The a2-a20 interface forms
the bottom of a hydrophobic cleft (Fig. 1B) that is crucial for viral
association with biological membranes [10] and lipid droplets
(LDs) (Fig. 1C) [16]. The longest helix pair, a4-a40, is at the bottom
of the homodimer and forms an interface with a high density of
positive charges, and this interface is proposed as the vRNA-
binding site (Fig. 1C) [10,13]; the a4-a40 pairs also affect protein
stability and overall conformation [17]. The N-terminus and a1-
helix of CPs are very flexible among the Flavivirus genus, which
may help them to adopt different conformations for various phys-
iological processes [12,15]. The a1 of ZIKV CP is much shorter than
that of other flavivirus CPs but has a unique long pre-a1 loop. The
orientation of the a1 of DENV CP is different from that of others
[14]. The third layer of the contact interface on the top of the dimer
structures, which is formed by antiparallel (WNV and JEV) a1-a10

[12,14] or (ZIKV) a1-a10 with pre-a1-pre-a10 loops [11,13,15] that
occlude the a2-a20 hydrophobic cleft and form a closed conforma-
tion, except the DENV CP dimer. By contrast, the a1 and a10-helices
of the DENV CP dimer form an open conformation without pairing,
exposing the a2-a20 hydrophobic cleft (Fig. 1B). However, it should
be noted that the only structure of the DENV CP was solved by
NMR in solution, which is relatively less stable than the structures
of the ZIKV, WNV and JEV CPs in crystals. A subsequent study con-
firmed that the DENV a2-a20 interface is in conformation exchange
in the free state, interconverting between an open and a closed
state regulated by the flexible N-terminus [18]. Whether other fla-
vivirus CPs also employ the same mechanism for different biolog-
ical processes is still unclear. In addition, tetrameric and hexameric
arrangements are also observed in the WNV [12] and ZIKV [13] CP
crystal structures, respectively.

It was assumed that the functional CP requires a highly orga-
nized arrangement, and major mutations that transform its struc-
ture abrogate its functions [19]. Unexpectedly, the research team
of W. Mandl showed that TBEV CP tolerated large internal dele-
tions, and the generated mutants could be divided into three
groups according to their viability in cell culture [9,19,20]. For
the first group, mutant RNA could generate viable infectious
viruses, albeit viral growth was correspondingly decreased [20].
For the second group, the viral production of mutants carrying
large deletions was completely or nearly abolished, but pseudore-
vertants could easily be restored by spontaneous second-site
mutations in the capsid gene [9]. For the third group, viral infection
spread was irreplaceably abolished by deletions that were too
large; these mutants became noninfectious replicons that secreted
only subviral particles (SVPs) [19,21]. Consistent with TBEV CP, it
was demonstrated that YFV CP, with nearly 40 aa in the N-
terminus or 27 aa in the C-terminus, was still functional in RNA
packaging [22]. Similar properties were also observed in WNV;
when even 36 or 37 residue deletions were introduced into CP
by reverse genetics technology, these mutants were still viable
[23]. These results together suggest the remarkable flexibility of
flaviviral CPs in both structure and function. However, all of these
viable mutants or pseudorevertants displayed attenuated viral
growth kinetics in cell culture compared with those of the wild
type, without influences on RNA replication and translation, but
producing substantial amounts of SVPs [9,20,22,23].
3. Capsid protein maturation and the anchor sequence

Post-translation, CP anchors in the ER membrane via an internal
signal peptide sequence (known as the anchor) at its C-terminus.
The anchor spans the ER membrane and directs the translocation
of the downstream prM protein. Cleavage of the C-prM junction
employs a coordinated two-step proteolytic process by viral
NS2B3 and signalase at the two termini of the anchor, and the sig-
nalase cleavage of prM in the lumen remains inefficient until
NS2B3 cleavage occurs [24–29].

The lack of polar residues in the c-region of the anchor sequence
indicates that it is not a typical signal sequence, and a PQAQA
mutant of the c-region with polar residues dramatically uncoupled
the coordinated proteolytic process [25]. However, the PQAQA
mutant displayed impaired growth kinetics because enhanced sig-
nalase cleavage of anchor-prM increased the assembly and release



Fig. 1. The structures of flaviviral capsid proteins. (A) The multiple sequence alignments among flaviviral capsid proteins, produced by CLUSTALW. The secondary structure of
the DENV2 capsid protein is indicated at the top, and the ‘‘central hydrophobic domain” of the DENV4 capsid protein is shown at the bottom. (B) The dimeric structure of the
DENV2 capsid protein (1R6R.pdb), with each monomer marked in green and brown, respectively. (C) The model of capsid protein binding to vRNA and the biological
membrane. (D) The secondary structure of 1–200 nt of DENV4 genome. 5’UTR:1–101 nt; capsid gene: 102–200 nt. The 5’UAR, 5’DAR and 5’CS elements are highlighted in
yellow, green and red, respectively. DCS-PK is also indicated. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of
this article.)
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of SVPs at the expense of infectious virion production [28,29]; for
YFV, the PQAQA mutant is even lethal for viral production [27].
This finding indicates that sequential cleavage at the C-prM junc-
tion facilitates infectious particle assembly. In addition, the anchor
also contributes to E protein stability to prompt assembly of infec-
tious particles [30], and a cleavable anchor in context is more effi-
cient than separate mature CP for particle assembly [29,31].
Interestingly, a noncleavable C-anchor could not be utilized for
packaging the MVEV replicon, but that of YFV and ZIKV could, sug-
gesting that the accessibility of the anchor cleavage site to the
NS2B3 protease is virus specific [29,32,33]. Only mature CPs are
packaged into virions in flavivirus infection; surprisingly, a recent
study reported that unprocessed C-anchor proteins could be pack-
aged into DENV2 pseudoviruses [34]. In summary, the sequential
cleavage of the C-prM junction is pivotal for efficient flavivirus
assembly, and this process is controlled by sequence elements in
the CP anchor.
4. The conserved RNA secondary structures in the capsid gene

Flavivirus CP is involved in vRNA replication in a special man-
ner. Although RNA sequences are not conserved among divergent
flaviviruses, there are several conserved RNA secondary structures
in the 50-terminus of the CP-encoding sequence that are necessary
for vRNA replication. (1) The AUG codon of CP starts from the stem
loop B (SLB) structure, and a partial 50-upstream AUG region
(UAR)-flanking stem (UFS) is located in the CP coding sequence
[35]. (2) The 50 downstream AUG region (50DAR) and (3) 50 cycliza-
tion sequence (50CS) [36–38]. (4) A stable hairpin known as capsid-
coding hairpin (cHP) is surrounded by the 50DAR and 30CS [39,40].
(5) The downstream 50 CS pseudoknot (DCS-PK) element contains
sequences complementary to a region in the 30UTR [41–43]. There-
fore, these cis-elements must be taken into consideration when
studying CP functions or constructing subgenomic replicon tools
and inserting markers between the viral 50UTR and CP coding
sequence.
5. The subcellular distribution of capsid protein

Although current studies on flaviviruses have shown that the
flaviviral assembly process does not exhibit a necessary step occur-
ring in the cell nucleus, it has been well demonstrated that many
mosquito-borne flavivirus CPs partially localize in the cell nucleus
[44–48]; in the cytoplasm, in addition to localizing in the ER, DENV
CP and ZIKV CP have also been demonstrated to accumulate on LDs
[13,16], but the link between the functional importance and the
subcellular distribution of CPs is still unclear.
5.1. Nuclear localization of capsid protein in viral production

Flavivirus CPs localized in the nucleus independent of viral
infection, and overexpression of only the capsid gene resulted in
its nuclear localization and colocalization with nucleoli [45,49].
Although the molecular weight of flavivirus CPs is relatively low,
they are actively transported into the nucleus but not by simple
diffusion [44,46]. Interestingly, the nuclear localization signals
(NLSs) of flavivirus CPs are heterogeneous [44–46,49–51]. It has
also been demonstrated that the nuclear localization of flavivirus
CPs is functionally correlated with virus production [45,49,51]. It
is worth stressing that the key sites of the predicted NLS are usu-
ally basic residues, which play a role in RNA binding for CPs. How-
ever, it is still to be solved to uncouple the correlation of nucleolar
localization and RNA association in present studies.
5.2. Lipid droplet association of capsid protein

Both the DENV and ZIKV CPs were observed accumulating on
the surface of LDs in infected cells [13,16]. It can be speculated that
the CP accumulation on LDs may be a common feature in flavivirus
infection, but further verification is needed. Experimental evidence
indicated that the hydrophobic a2-helix and the positively charged
N-terminal region participate in the interaction with LDs [46,52],
but these regions are also responsible for ER membrane association
and RNA binding, respectively. Thus, studies to define the signifi-
cance of LD-associated CPs during viral infection are complicated,
although the numbers of LDs and viral replication affect each other
[16]. It is possible that LDs may serve as a reservoir of CPs in early
infection and are then mobilized to the ER membrane for particle
morphogenesis when needed [16]. However, the functional signif-
icance of CP accumulation on LDs still deserves further study.
6. The role of capsid protein in nucleocapsid formation

One of the most important roles of CPs in the viral lifecycle is
the formation of the NC, and the CP dimer is believed to be the
building block for NC assembly [53]. Previously resolved cryo-EM
structures of both mature and immature DENV virions revealed
that the core lacks a well-formed protein organization [2,54].
According to a recent 9-Å-resolution structure of immature ZIKV,
the NC core was observed close to the transmembrane domains
of the E and prM proteins [55]. The NC core of immature Kunjin
virus (KUNV) was also shown to be positioned asymmetrically
with respect to the glycoprotein shell [56]. Therefore, these results
indicate that the icosahedral axes of the CP shell may not coincide
with the axes of the dominant outer glycoprotein shell, thus caus-
ing poor reconstruction of the CP shell.

6.1. RNA-binding activity of capsid protein

To assemble the NC, CP must bind to vRNA. Based on the struc-
tures of flavivirus CP dimers, the positively charged a4-a40 inter-
face is proposed as the main RNA binding site [10]. In fact,
in vitro studies have shown that the N-terminal region of CP also
binds to RNA [15,57], and the N-terminal region is essential for
viral particle assembly [58]. The CP dimers showed no specificity
toward different nucleic acids in vitro [13,17]; however, only
positive-sense vRNA is packaged in flaviviral virions, and a study
in vitro showed that the DENV CPs and ZIKV CPs associate with
vRNA at specific sites rather than in a random manner [59].

6.2. Nucleocapsid assembly and viral budding

The encapsidation signals for flavivirus genomes have not been
identified to date; thus, the specific mechanism of NC formation
remains unclear. The nucleocapsid-like particles (NLPs) can be
assembled in vitro but are larger than the authentic NC, which
may be attributed to cellular or viral components participating in
NC formation in vivo [17,60]. The formation of CP-only particles
is unlikely due to the highly positive charge of the CP dimer, which
is neutralized by the packaged genome [17]. In cells, the NCmay be
assembled in a near-neutral environment within the ER membra-
nous compartment, which is physically linked to vesicles and con-
tains the prM-E proteins [61]. It is believed that viral encapsidation
and NC incorporation into viral particles is a coordinated process,
supported by the fact that the NC has never been isolated from
infected cells. Thus, the NC assembly process and the NC structure
are still elusive.

Previous structural studies observed a clearly low-density gap
between the NC and lipid bilayer [2,3,54,62]; in addition, unlike
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in coronavirus and hepatitis B virus, the cytoplasmic sides of the
flaviviral prM and E proteins on ER membranes are extremely short
and are devoid of a distinct NC-binding domain [20]. These traits
suggest that the NC and outer glycoproteins may not directly inter-
act. However, recently determined structures at higher resolutions
showed that the NC is asymmetrically positioned with respect to
the outer glycoprotein shell in both immature KUNV [56]; how-
ever, NC is still positioned concentrically with the outer glycopro-
tein shell in mature virions [6,56], suggesting a rearrangement of
the NC during viral maturation. According to these structural stud-
ies, a model for flaviviral budding was put forward: the NCs inter-
act with glycoproteins at the beginning of viral budding and form
an immature virion with an eccentrically positioned NC core; dur-
ing viral maturation, the conformational rearrangements of outer
glycoproteins possibly result in loosening of NC-glycoprotein inter-
actions and release of the NC core to the center [56]. Recent studies
have also proposed a general model for flavivirus virion assembly.
In this model, the transmembrane protein NS2A plays a central role
in orchestrating virion assembly [63].

6.3. Nucleocapsid-free subviral particles

SVPs are routinely generated as a byproduct in flavivirus-
infected cell cultures; secreted particles contain only the M and E
proteins and lipid membrane but lack the NC core. Similar recom-
binant SVPs can be produced by coexpressing the prM and E pro-
teins in cell culture. The assembly and budding of these particles
occur in an NC-independent manner; however, these particles
undergo the same maturation and transport process as whole viri-
ons [64]. Two distinct sizes of recombinant SVPs were observed in
TBEV; however, smaller SVPs (approximately 30 nm in diameter)
were far more prevalent than the larger SVPs (approximately
50 nm in diameter) [65]. A structural study revealed that the orga-
Fig. 2. Rational vaccine design targeting capsid proteins. (A) A schematic diagram of liv
vaccines. (C) A schematic diagram ofDC replicons based on single-round particles. (D) A s
DNA vaccine. SRIP: single-round infectious particle.
nization of the E protein is different in SVPs than in the whole virus
[66], but SVPs show hemagglutination and fusion activities similar
to those of whole virions and have been proven to be excellent
immunogens with protective capability [28,67,68].
7. The uncoating of nucleocapsid

In viral infection, how the NC is dissociated and how vRNA is
released to enable protein synthesis are still unknown steps in fla-
vivirus biology because there is little research data for this process
to date. Tracing the fate of DENV CP after viral entry, we found that
CP was degraded after internalization by a ubiquitin proteasome-
dependent process; however, mutational analysis revealed that
DENV CP ubiquitination occurs at noncanonical residues but not
Lys residues [69]. A deletion mutation study of ZIKV CP using an
infectious clone indicated that the a3-helix may also affect NC
uncoating steps [33]. These data indicate that both viral and host
factors are possibly involved in the viral NC uncoating process;
however, as one of the most understudied viral processes in fla-
viviruses, further attention is urgently needed to clarify the molec-
ular mechanism of the flaviviral uncoating process.
8. Rational vaccine design targeting capsid protein

Due to increasing transnational communication and climatic
and socioeconomic changes, emerging and reemerging flaviviruses
have caused an ever-growing threat to global public health; a
recent example of this issue is the rapid and wide spread of ZIKV
throughout the Americas since 2015 [70]. There is currently no
efficient medical treatment against these important viral diseases;
thus, safe and efficacious vaccines are of great importance for pre-
venting viral infection and spread. In many respects, flavivirus vac-
e-attenuated viruses with capsid deletions. (B) A schematic diagram of DC replicon
chematic diagram for chimeric SRIPs. (E) A schematic diagram for an SRIP-producing
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cine development has historically achieved success, such as the
most successful live-attenuated vaccine YF-17D and many other
live-attenuated or inactivated vaccines against YFV, JEV and TBEV
infection [71]. However, concerns about safety have been raised
regarding adverse reactions observed with YF-17D and inactivated
JEV vaccines [72,73]. In addition, there are still no available vacci-
nes for human against WNV and ZIKV, and the only licensed DENV
vaccine is also less than satisfactory for its efficacy and safety
[71,74]. Hence, innovative vaccine development must meet the
stringent need for safety, efficacy and cost effectiveness and face
the challenge of the complicated pathogenesis of some flaviviruses
[19]. Manipulation of reverse genetics technology has identified CP
as a target for flaviviral vaccine development; both live-attenuated
and new-style replicon vaccines can be generated by introducing
different sizes of deletions into the CP gene of the viral genome
(Fig. 2). We summarize these reports here, and the potential bene-
fits are discussed.

8.1. Live-attenuated vaccines with capsid deletions

As mentioned above, the flaviviral CPs display significant flexi-
bility in structure and function. Introducing different sizes of dele-
tions into CP resulted in various degrees of attenuation of viral
replication in vitro. Do deletions in CP also affect flaviviral virulence
in vivo? Assessing the 50% lethal dose (LD50) and the 50% infective
dose (ID50) of TBEVDC mutants in mouse models, it was found that
a small deletion mutant (CD28-31) exhibited virulence indistin-
guishable from that of the wild type, but a viable mutant with a
large deletion (CD28-35) in the first group was highly attenuated,
with a much higher LD50 than the wild-type virus (�106.5 PFU ver-
sus 100.9 PFU) [20]; the pseudorevertants C(D28-48/Du78-85) and
C(D28-48/Q70L) were equally attenuated (LD50 � 106.5 PFU) but
more infective than the mutant CD28-35 (ID50 of 10 PFU versus
102.6 PFU), so a larger attenuation index was achieved (up to
105.5, calculated from the ratio of the LD50/ID50) [9,19]. More
importantly, upon inoculation with any of the mutants, all the
seroconverted mice survived a challenge with a lethal dose of
wild-type virus; in other words, the 50% protective dose was equal
to the ID50, indicating that all of these mutants elicited a protective
immunity and are ideal and highly efficient immunogens [9,19,20].
In addition to TBEV, DENV2 DC mutants that were tested in vivo
also showed significant attenuation in suckling mice and efficiently
induced high antibody titers in adult mice [75]. Additionally, DC
pseudorevertants of WNV did not cause disease but could induce
protective immunity even at doses of 101–106 FFU [76]. Interest-
ingly, a study showed that a CD61-71 mutant had abolished ZIKV
infectious virion production that was then restored by adaptive
mutations (prM-E21K and NS2B-E27G) only in BHK21 cells but
not in other cell lines (indicate complex interactions that appar-
ently occur between structural and non-structural proteins during
virus replication and/or assembly), making this live virus function
like a single-round infectious particle (SRIP) in vivo and safely
inducing strong immunity protection against vertical transmission
in mice [33]. These data indicate that engineering deletions into
the capsid gene of flaviviruses via reverse genetics is a feasible
approach for generating efficient live-attenuated vaccine
candidates.

The flaviviral live-attenuated vaccines are characterized by
their high efficiency in seroconversion and protection in animals.
The classical live-attenuated vaccines were generated by continu-
ous passaging of the virus in cell culture or animal tissue to accu-
mulate various mutations, finally achieving the aim of significant
attenuation but immunogenicity in vivo. The admirable example
is the YF-17D vaccine, which was developed by 176 passages of
the Asibi strain in mouse embryo tissue and chicken embryo tissue,
which markedly reduced its viscerotropism and neurotropism [77].
However, this traditional method is usually time consuming; it is
unpredictable whether the obtained viruses are attenuated and
still can elicit protective immunity. In addition, because multiple
mutations spread throughout the viral genome, it is toilsome to
clarify the molecular mechanism responsible for the attenuated
phenotype, limiting the assessment of the risk for spontaneous
reversions to a virulent phenotype. However, using reverse genet-
ics tools, we can rationally design the viral genome to obtain a
desired phenotype in a relatively short time, when the desired phe-
notype and its significance for safety and immunogenicity is well
understood, along with the specific molecular determinants behind
them. Introducing deletional mutations into the flaviviral capsid
gene on the basis of a well-understood molecular mechanism is a
unique way to design and generate live-attenuated vaccine candi-
dates, and this approach has several benefits. (1) The successful
application of this approach in TBEV, DENV2 and WNV, in addition
to the relatively conserved structures of CPs among flaviviruses,
suggests that this approach can be a universal approach for differ-
ent flaviviruses, although there are possibly intricate differences in
the length and location of deleted mutations. (2) With regard to
safety, the deleted mutations are very stable, especially large dele-
tions, and it is almost impossible to revert to a wild-type sequence.
Although risks can arise from intermolecular RNA recombination
events between the genomes of closely related viruses, there are
few reports on flaviviruses; thus, RNA combination is not a major
risk because of the very low frequency [78]. In addition, CP dele-
tions in combination with other well-understood mutations, such
as point mutations in the E protein and other different principles,
further improve the safety [19,76]. (3) C-deleted viruses contain
authentic structural proteins (prM/E) and nonstructural proteins,
so they induce only specific immune responses, which should be
considered more advantageous than chimeric viruses [19,33]. In
addition, C-deleted viruses are highly immunogenic, which is a
general advantage of live vaccines; with only a single-dose vacci-
nation, protective immunity can be elicited [9,76]. In summary,
introducing deletions into the flaviviral capsid gene is a promising
approach for novel flaviviral live-attenuated vaccine development
(Summarized in Table 1).

8.2. Capsid-deleted replicon vaccines and single-round infectious
particles

Although live vaccines are highly efficacious, there are still risks
of rare vaccine-associated diseases, especially in immunodeficient
individuals. To address this issue, limiting the infectivity of a vac-
cine by disabling its viral encapsidation process is an elegant solu-
tion. This goal can be easily achieved by introducing very large
internal deletions into CP to generate noninfectious DC-replicons,
therefore opening a new approach for flaviviral vaccines. A self-
amplifying DC-replicon that is able to produce highly immuno-
genic SVPs may be delivered as RNA, DNA, or virus-like particles
(VLPs) [79].

As a proof of concept, this approach was first verified with TBEV
[21]. A 62-residue deletion in TBEV CP (D28-89) irreversibly abol-
ished infectious virion formation but maintained RNA replication
and promoted SVP production. By engineering supplementary
mutations that uncouple the coordinated cleavage events in the
C-prM junction (see previous section), an idealized mutant C
(D28–89)-S that liberates significantly more SVPs was created.
Mouse experiments showed that this replicon mRNA vaccine (de-
livered by a gene gun) induced a broad humoral and cellular
immune response comparable to that of a live vaccine and pro-
tected mice from challenge; even a single immunization induced
long-lasting (more than 1 year) and high titers of neutralizing anti-
bodies [80]. Then, a DNA-based noninfectious DC replicon for WNV
was also tested in mice, and it induced a high-quality immune



Table 1
Attenuated flaviviruses generated by C-deletion.

Species Deletion sizea Minimal protective dose Animal model Reference

TBEV C(D28-43) 102.6 PFU mouse [20]

TBEV C(D28-48/Q70L) and

C(D28-48/Du78-85)

~10 PFU mouse [9]

WNV C(D40-75/D39E) and C(D51-87) ~10 PFU mouse [23,76]

DENV C(D41–49), C(D42–51) NDb mouse [75]

ZIKV C(D63-71) + prM-E21K + NS2B-E27G 105 FFU mouse [33]

a The deleted amino acids in capsid proteins are highlighted with underscores.
b ND: not determined.
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response by intramuscular injection and effective protection of
animals, similar to those of the virus or infectious DNA, while the
magnitude was relatively lower [81]. Therefore, these studies
demonstrated the enormous potential of flavivirus DC replicons
as a new type of nucleic acid vaccine.

Nevertheless, in the early study of nucleic acid vaccines, booster
immunizations are often necessary for providing sufficient protec-
tion against virulent strain challenges due to the low delivery effi-
ciency of DNA and RNA in vivo. To overcome this barrier, one
advisable alternative is viral delivery, which delivers replicon
RNA via VLPs [79]. The DC replicon RNA can be packaged into VLPs
by trans-complemented CPs to form SRIPs (or pseudoviruses). True
to the SRIP name, these particles can invade cells and release the
replicon RNA to the cytoplasm, followed by initial RNA replication
but inability to form infectious virions because of the lack of a
functional copy of the structural gene in the genome [82–84];
however, the cells infected by SRIP-packaged DC replicon RNA
should produce a mass of SVPs. To date, different expression sys-
tems have been used to package the DC replicons of WNV [85],
YFV [86] and DENV2 [87,88] to produce SRIPs.

The viral delivery approach of the DC-replicon was first applied
for YFV and WNV [32], the DC-replicons can be easily packaged
into VLPs, and the titer reached approximately 108 SRIPs/ml [32].
A single-dose intraperitoneal immunization of mice with 3 � 104

WNV SRIPs completely protected the mice from a lethal challenge
with a virulent WNV strain [32]. In a subsequent study, a more effi-
cient and safer cultivation system was developed for the produc-
tion of second-generation WNV SRIPs, which was named
RepliVAX WN [85]. Single immunization with RepliVAX WN eli-
cited strong protective immunity against WNV disease in mice
and hamsters, and durable protective immunity in hamsters lasted
for 6 months [85,89]; in mice, WNV-specific IgG antibody
responses and vigorous and specific CD4+ and CD8+ T cell
responses were detected after immunization and induced a Th1-
biased immune response, similar to live-attenuated vaccines and
different from inactivated vaccines [90,91]; importantly, long-
lived plasma cells secreting WNV-specific IgG antibodies and
CD8+ memory T cell responses were detected at 8 months post
immunization [92]. Furthermore, in comparison with that of live-
attenuated vaccines and inactivated vaccines in mice and ham-
sters, the immunogenicity of RepliVax vaccines (for WNV and
YFV) was comparable in terms of both the magnitude and durabil-
ity of the response [90]. Based on the RepliVax pseudoviruses, dif-
ferent single-cycle chimeric flavivirus vaccines were generated for
JEV, DENV2, and TBV by replacing the native prM-E genes of C-
deleted replicons with those of other flaviviruses [90,93–96]. All
of these constructs revealed good capacity to induce a potent and
durable immune response in animal models, and it is important
that their immunogenicity was not significantly affected by preex-
isting immunity against the vector backbone [80,96]. There is also
an investigation of an SRIP-producing DNA vaccine. This vaccine is
based on a C(D18–100) replicon cDNA of KUNV, and a separate but
complete CP is encoded in reverse orientation controlled by a sec-
ond cytomegalovirus (CMV) promoter in the same plasmid. After
transfection, both the replicon RNA and CP are produced in the cell,
therefore forming secreted SRIPs that deliver the DC replicon to
adjacent cells, and both DNA-transfected and SRIP-infected cells
contain the DC replicon, which produces SVPs, resulting in an
enhanced immune response [31,97].

Both DC replicon nucleic acid vaccines and their derived SRIP
strategy appear promising for innovative flaviviral vaccine devel-
opment, especially SRIPs because of their great capacity to provide
protective immunity in animal models after only a single immu-
nization, and they can be conveniently propagated and produced
at high titers in a stable cell line; moreover, they are reliably safe
without causing spread infection. However, SRIPs suffer from a
high cost of production and storage and are difficult to purify
[79]. Currently, the issues of mRNA instability, inefficient in vivo
delivery and the difficulty of manufacturing are no longer barriers
in the widespread implementation of mRNA vaccines. On the con-
trary, mRNA vaccines have several beneficial features over inactive
and live-attenuated viruses, as well as DNA-based vaccines, such as
being safer, being more efficient and having the potential for rapid,
low-cost scalable manufacturing (for a review, see [98,99]), so DC
replicon mRNA vaccines are also very promising alternatives to
conventional flaviviral vaccines. In addition to having safety and
efficiency similar to those of SRIPs, they are more suitable for
meeting the challenges of rapid development and large-scale
deployment for emerging virus vaccines [99].
9. Summary

Over the past decades, although we have made important
advances in our understanding of key steps in the flaviviral life
cycle and their application to development of novel vaccines, many
aspects of the viral life cycle remain obscure. Flaviviral CP plays a
crucial role in viral assembly. We have learned about structures,
posttranslational cleavage and maturation, and the subcellular dis-
tribution of flaviviral CP; however, how the NC is assembled and
dissociated, how the NC should be incorporated into viral particles
and the process of NC uncoating are not well explained to date.
Perhaps structural studies on the NC in the future will aid in our
understanding of these aspects.

Due to the lack of specific treatments for flavivirus-related dis-
eases, vaccines are the most powerful measures to prevent flavivi-
ral infection and viral spread. Although vaccines have achieved
success with respect to YFV, TBEV and JEV, there is still room for
improvement concerning safety, efficiency, and low cost. As a
viable approach, C-deleted genome-generated live-attenuated
viruses are efficient and convenient approaches with several
advantages over traditional methods for attenuation of viruses,
but safety concerns for live viruses still exist. By contrast, the non-
infectious DC replicon displays significant potential. Both viral
delivery (SRIPs) and nonviral delivery (nucleic acid vaccine) of
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theDC replicon have potential, and mRNA vaccines of theDC repli-
con are a particularly promising alternative approach [79,99].
However, to meet the need of public health emergencies caused
by novel flaviviruses (suggested by ZIKV), the mRNA vaccines of
the DC replicon can be rapidly put into use, which is also an
advantage.
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