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Abstract

Serine proteases constitute the major protein content of mast cell secretory granules. Here

we present the extended cleavage specificity of two such proteases from the golden ham-

ster, Mesocricetus auratus. Analysis by phage display technique showed that one of them

(HAM1) is a classical chymase with a specificity similar to the human mast cell chymase.

However, in contrast to the human chymase, it does not seem to have a particular prefer-

ence for any of the three aromatic amino acids, Phe, Tyr and Trp, in the P1 position of sub-

strates. HAM1 also efficiently cleaved after Leu similarly to human and many other mast cell

chymases. We observed only a 3-fold lower cleavage activity on Leu compared to sub-

strates with P1 aromatic amino acids. Chymotryptic enzymes seem to be characteristic for

connective tissue mast cells in mammalian species from opossums to humans, which indi-

cates a very central role of these enzymes in mast cell biology. HAM1 also seems to have

the strongest preference for negatively charged amino acids in the P2´position of all mast

cell chymases so far characterized. The second hamster chymase, HAM2, is an elastolytic

in its activity, similarly to the α-chymases in rats and mice (rMCP-5 and mMCP-5, respec-

tively). The presence of an α-chymase that developed elastase activity thereby seems to be

a relatively early modification of the α-chymase within the rodent branch of the mammalian

evolutionary tree.

Introduction

Mast cells (MCs) are resident tissue cells frequently found in the connective tissue of the skin

and around blood vessels and nerves as well as in the mucosa of the airways and intestines.

They are therefore distributed primarily along both external and internal surfaces of the body,

potentially acting as a first line of defence against incoming pathogens [1, 2]. To be able to
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exert its guardian function, MCs pre-store a number of potent inflammatory mediators in

cytoplasmic granules. These granules are rapidly exocytosed following activation of the cell by

IgE crosslinking or anaphylotoxin triggering. The majority of proteins found in these granules

are serine proteases, which can be generally subdivided into chymases and tryptases [3–6].

Tryptases are tetrameric enzymes that cleave after basic amino acids i.e., arginine and lysine,

whereas chymases are mostly chymotrypsin-like and cleave substrates after aromatic amino

acids [7–9]. Phylogenetic analyses of the chymases have led to the identification of two distinct

subfamilies, the α-chymases and the β-chymases [6, 10, 11]. The α-chymases are found as a

single gene in all species investigated, except for ruminants, sheep and cattle, where two very

similar α-chymase genes have been identified [6, 12]. The β-chymases have only been identi-

fied in rodents, dogs and cats [6]. Concerning the evolution of this locus, several additional

major changes have occurred in rodents. For example, the rodent α-chymases, mouse mast

cell protease (mMCP)-5 and rat mast cell protease (rMCP)-5, have changed primary cleavage

specificity from aromatic amino acids (chymotrypsin-like) to aliphatic amino acids (elastase-

like) [13–16]. Other subfamilies have also appeared in some mammalian lineages as exempli-

fied by the mMCP-8 family in rodents and the duodenases in cows, sheep and pigs [6, 12].

This locus is therefore highly interesting, not only from an immunological view-point but also

from an evolutionary perspective.

In order to study the appearance and diversification of these enzymes during vertebrate

evolution we have analysed their genomic loci and determined the extended specificity of a

number of mast cell chymases in various placental mammals including, dogs, mice, rats,

humans and cynomolgus monkeys as well as in one marsupial, the American opossum [17–

21]. All of them contain a classical chymase with chymotryptic activity, however with slightly

different primary and extended specificities. A majority also show a relatively strong prefer-

ence for negatively charged residues in the P2´position of the substrate, as well as dominance

of aliphatic amino acids both upstream and downstream of the cleavage site. We have previ-

ously shown that the P2´preference for negatively charged amino acids is, in the human chy-

mase, primarily dependent on two enzyme residues: Arg143 and Lys192 [22]. Mutational

analysis shows that both are important, where each contributes approximately 50% towards

the preference effect [22].

The primary and extended specificities of these enzymes are of key importance for their tar-

get specificity and therefore their biological function. Determination of these key characteris-

tics of these enzymes from a panel of different mammalian species can thereby give us clues to

their conserved biological functions. One of the key questions in the context of rodent mast

cell enzymes, and in particular their chymases, is when the α-chymase mutated into a potent

and highly specific elastase in its catalytic specificity. Furthermore, with this knowledge, what

is the function of this new specificity in rodent mast cells? This change in specificity of the α-

chymases is also directly connected to the appearance of the β-chymases. Here, in both mice

and rats, they have taken over the chymase function from the mutated α-chymase. Their β-

chymases, mMCP-4 and rMCP-1, have become the primary chymotryptic enzymes when the

α-chymases became elastases [18]. This is a strong indication that the chymase is of central

importance for the biological function of the mast cell. Another interesting question is the evo-

lutionary timing of the appearance of the mMCP-8 family of chymase-locus encoded prote-

ases. mMCP-8 is the first identified basophil-specific gene in any species and has therefore

attracted attention as both a basophil specific marker as well as a gene to produce basophil

ablated mice for in depth studies of basophil biology [23–25].

Initial studies using chromogenic substrates and X-ray crystallography analyses show that

the hamster chymase 1 (HAM1) is a typical chymase with selectivity for the aromatic amino

acids Tyr and Phe but also Leu, whereas hamster chymase 2 (HAM2) is an elastase with
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preference for the aliphatic amino acids Ala and Val in the P1 position of substrates [15]. How-

ever, no detailed analyses of their extended specificities have been performed so far. In order

to address this question, here we have determined the extended specificities of these two serine

proteases from the golden hamster (Mesocricetus auratus) by phage display technique. Fur-

thermore, we have performed a detailed quantitative analysis of the importance of individual

amino acids at, and around, the cleavage site for the efficiency in cleavage by the use of a panel

of recombinant substrates. We have also studied the genomic organization of the chymase

locus in a panel of rodents. Our results confirmed that the hamster α-chymase (HAM2) is an

elastase, thereby indicating an early change in specificity in the rodent branch of the mamma-

lian evolutionary tree, and that one β-chymase has taken a role as the primary chymotryptic

enzyme. Interestingly, this hamster enzyme (HAM1) is also the mammalian chymase with the

strongest P2´preference for negatively charged amino acids. Based on the phylogenetic tree

(Fig 1) we also conclude that the golden hamster and the Chinese hamster both have mMCP-8

related genes, also indicating that these enzymes appeared early in rodents. This gene has not

been found in any other mammalian species except rodents, indicating rodent-specific func-

tions for both the mMCP-8 related proteases as well as elastase specific α-chymases.

Results

Phylogenetic analysis

A phylogenetic analysis has been performed to determine the relatedness in primary structure

of the two hamster proteases to other mammalian mast cell proteases. This analysis is a part of

a larger analysis of the evolution of the hematopoietic serine proteases presented in Akula et al

2015 where in total 368 different hematopoietic serine proteases were analyzed by several dif-

ferent algorithms [6]. Four additional trees are, in addition to the tree in this article, found in

the supplementary material of that article [6]. As can be seen from Fig 1 HAM1 cluster firmly

with the other rodent β-chymases whereas the HAM2 cluster with the other rodent α-chy-

mases. Two rabbit chymases and a guinea pig enzyme, which will be discussed later in this

communication as interesting representatives of proteases from an early branching rodents,

does in this analysis cluster outside the tight inner cluster of the rodent α-and β-chymases

(Fig 1) [6].

Purification and activation of recombinant HAM1 and HAM2

The coding regions for the golden hamster HAM1 and HAM2 were inserted into the baculo-

virus vector pAcGP67B. The three chymases were expressed in baculovirus-infected insect

cells and purified as previously described [15]. Following purification, the fully mature chy-

mases (25–28 kDa) were�95% pure as determined by SDS-PAGE (Fig 2) and the correct N-

termini were confirmed by N-terminal sequencing. Mass spectral analysis has suggested that

HAM2 is heterogeneously glycosylated, but no glycan side chains were attached to HAM1

[15]. Recombinant human chymase, produced in baculovirus infected insect cells as described

above and a commercial preparation of human neutrophil elastase (Fig 2), were used as refer-

ence enzymes in the chromogenic substrate assays.

Chromogenic substrate assays

A panel of chromogenic substrates were used to determine the primary specificities of the two

hamster chymases. The panel included chymase, elastase, tryptase and asp-ase substrates.

HAM1 cleaved the substrates with Phe and Tyr very efficiently but not any of the other sub-

strates (Fig 3, column 1) that is consistent with known human chymase specificity (Fig 3,
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Fig 1. Phylogenetic tree of serine proteases encoded from the chymase locus in vertebrate species. A panel of

vertebrate chymase locus encoded genes were analyzed for their sequence relatedness using the MrBase analysis

program and the Maximum-likelihood algorithm [6]. The major enzyme clusters are marked by brackets and their

names. The genes of particular interest for this study are marked with red arrows.

https://doi.org/10.1371/journal.pone.0207826.g001
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column 3). In contrast, HAM2 did not cleave any of the chymase substrates but instead effec-

tively cleaved the elastase substrates with a Val, Ala or an Ile in the P1 position (Fig 3, column

2). HAM2 thereby showed almost the same characteristics as the human neutrophil elastase

that was included as a reference (Fig 3, column 4). Interestingly, no cleavage was observed for

the Leu containing substrates for any of the hamster chymases nor the human chymase.

Determination of the extended cleavage specificity by substrate phage

display

To determine the extended cleavage specificities of the two hamster mast cell proteases a

phage T7 based system was used where individual peptide sequences are displayed on the sur-

face of the phage. The phage library used contained approximately 5x107 phage clones. Each

phage clone expresses a unique sequence of 9 random amino acids (nonamer), which enables

the characterization of a region covering both 4–5 amino acids upstream and downstream of

the cleavage site. The random region in each phage clone is followed by a His6-tag at the C-ter-

minus of capsid protein 10. The phages can thereby be immobilized on Ni-NTA agarose

beads. Selections of nonamers susceptible to cleavage by the two proteases were performed

Fig 2. SDS-PAGE of purified chymases and related reference proteases used in this study. Three different

recombinant mast cell chymases were expressed in a baculovirus expression system. The purified active enzymes were

analyzed by separation on SDS-PAGE and visualized with Coomassie Brilliant Blue staining. Proteases: HC, human

chymase; hNE, human neutrophil elastase; HAM 1 and 2, hamster chymases 1 and 2. M is molecular weight marker.

https://doi.org/10.1371/journal.pone.0207826.g002
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Fig 3. Chromogenic substrate assays. A panel of chromogenic substrates was used to determine the primary

specificity of HAM1 and HAM2. Specificities of the human chymase and human neutrophil elastase are presented as

reference. The panel includes different chymase, elastase, tryptase and aspase substrates. The amino acid sequences of

the substrates are listed at the left side of the panels. The analyses were done in triplicates and the standard deviation

within these triplicates is presented in the figure.

https://doi.org/10.1371/journal.pone.0207826.g003
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over 8 and 5 biopannings (HAM1 and HAM2, respectively), after which they induced the

release of 15 and 107 times more phages compared to a PBS control, respectively (data not

shown).

After the last biopanning, 120 individual phage clones were isolated for each of the two pro-

teases, and the region containing the nine amino acids random region was amplified by PCR.

96 of these PCR samples with, strong and clean PCR fragments were sent for sequencing. The

sequences encoding the randomly synthesized nona-peptides were then translated into nona-

peptides, which were aligned based on the results from the chromogenic substrate assay for P1

specificity and for similarities to the cleavage specificity of the human chymase and mMCP-4

for HAM1, and rMCP-5 for HAM2 [14, 19].

HAM1 showed a very strict chymotryptic activity with a preference for aromatic amino

acids in the P1 position (Figs 4 and 5). A relatively equal distribution for the three aromatic

amino acids, Phe, Tyr and Trp was observed in the P1 position, with also a high frequency of

aliphatic amino acids both upstream and downstream of the cleavage site. A strong preference

for negatively charged amino acids in the P2´position, similar to what is seen for the mouse

and human chymases, was also observed (Figs 4 and 5).

When analysing the phage clones for HAM2, a high number of aliphatic amino acids were

observed (Figs 6 and 7). Based on the results from the chromogenic substrate assay, the align-

ment was assigned to give preference for the three aliphatic amino acids Val, Ile and Ala in the

P1 position (Fig 6). A marked overrepresentation of Val and Ile over Ala in the P1 position

was observed as well as positions surrounding the cleavage site with a marked overrepresenta-

tion of aliphatic and aromatic amino acids both upstream and downstream of the cleavage site.

There was also a slight preference for uncharged hydrophilic amino acids, including Ser, Thr

and Met in the P1´position (Figs 6 and 7). However, no marked overrepresentation of nega-

tively charged amino acids in the P2´ was observed, which is different from observations from

the rat homologue, rMCP-5 (Fig 6).

Verifying the consensus sequence by the use of recombinant protein

substrates

In order to validate the phage display sequence data and to address small variations of amino

acids in the aligned phages a system was developed where by a number of sequences were ana-

lysed by the cleavage of recombinant substrates in a two-thioredoxin (trx) system (Fig 8A).

These recombinant protein substrates, have been used in a number of previous studies and

there been shown to be highly reliable and useful for the validation of the results from the

phage display [20, 22, 26–30]. In this system double stranded oligonucleotide encoding the

actual sequence is inserted in the linker region between two E.coli thioredoxin (trx) proteins

by ligating into a BamHI and a SalI site of the vector construct (Fig 8A). For purification pur-

poses a His6-tag was added to the C-terminal of this protein (Fig 8A). We usually start with the

consensus sequence obtained from the phage display analyses followed by a number of related

and unrelated substrate sequences to obtain a more complete picture of the selectivity of the

enzyme under analysis. All of these substrates were expressed as soluble proteins in E.coli and

purified on IMAC columns to obtain a protein with a purity of 90–95%. These recombinant

proteins were then used to study the preference of the two hamster chymases for these differ-

ent sequences (Figs 8 and 9).

The analysis of HAM1 confirmed the finding from the phage display analysis that this pro-

tease had a relatively strong preference for negatively charged amino acids in the P2’ position,

similar to what has been observed for many other mammalian mast cell chymases including

the human chymase and mMCP-4 (Fig 8C) [19]. It has what is probably the strongest
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Fig 4. Phage displayed nonamers susceptible to cleavage by HAM1 after five biopannings. After the last selection

step, phages released by proteolytic cleavage of the three proteases were isolated and the sequences encoding the

nonamers were determined. The general sequence of the T7 phage capsid proteins are PGG(X)9HHHHHH, where

(X)9 indicates the randomized nonamers. The protein sequences were aligned into a P5-P4´ consensus, where cleavage

occurs between positions P1 and P1´. If the sequence was found more than once this is indicated by the corresponding
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preference for negatively charged amino acids in this position that we have seen among all the

mast cell chymases analysed so far. We also saw relatively small differences between the three

aromatic amino acids in the P1 position, which also reflected the results from the phage display

analysis. Both Phe and Trp substrates were cleaved with almost equal efficacy and only a

slightly lower activity was observed on the Tyr containing substrate (Fig 8D). Like many other

mammalian mast cell chymases, substrates with Leu in the P1 position were also cleaved rela-

tively efficiently. We observed a drop in activity by a factor 3 of the Leu substrate compared to

the most efficiently cleaved substrates having Phe or Trp in the P1 position (Fig 8D). No cleav-

age or only very minor was observed for the substrates containing a Val, Arg or Lys in the P1

position, showing that this enzyme is a strict chymase (Fig 8E).

HAM2 showed a very different cleavage preference (Fig 9) compared to HAM1, which was

also seen in the phage display analysis. Here, no activity against the Phe containing substrate

was seen, instead it effectively cleaved the three substrates having an aliphatic amino acid in

the P1 position (Fig 9A). The substrates with a Val, Ile or Ala in the P1 position were cleaved

almost equal catalytic rate, with possibly a slight preference for Val and Ile over Ala (Fig 9A).

There was also a strong dependence on surrounding residues next to the cleavage site. Small

amino acids such as Gly were not favoured in the near vicinity of the cleavage site (Fig 9B and

9C). This pattern was not consistent with the result from the phage display sequences (Fig 6).

However, many of the Gly residues upstream of the cleavage site in the phage display

sequences originate from the phage arm which ends with PGG, which result in an overrepre-

sentation of Gly residues within this region of the phage display sequences. Interestingly, from

the phage display we saw a higher number of aromatic amino acids in the surrounding of the

cleavage site compared to what was observed for rMCP-5 (Fig 6).

Discussion

Compared to most other placental mammals, several major changes in the repertoire of the

different mast cell chymotryptic enzymes have occurred in rodents. One of the most signifi-

cant is the change in primary specificity of the α-chymase, where rodent α-chymases have

become elastases in their catalytic specificity. The second is the appearance of two new subfam-

ilies of enzymes, one that is closely related to the original α-chymase, and one completely new

family more related to cathepsin G and the granzymes. The second family has been named the

mMCP-8 family from the first gene of that family identified, the mMCP-8 gene in the mouse

[23, 24]. The first of the two new families, the new α-chymase related genes are the β-chy-

mases. They are located downstream of the α-chymase within the chymase locus [5, 6]. In both

mice and rats, this region has undergone a massive expansion: There are at least four transcrip-

tionally active β-chymases in the mouse and five in the rat [5, 6]. One of the questions we have

addressed in this study is the evolutionary timing of these two events. We can now, from the

analyses of the two hamster enzymes, say that the mutations resulting in the change in primary

specificity of the α-chymase occurred relatively early in the rodent lineage. Interestingly, in all

three rodent species analysed so far (rats, mice, golden hamster) where the chymotryptic activ-

ity of the α-chymase has been lost, there the β-chymases have taken over the role as the major

chymotryptic mast cell enzymes. Together with the presence of highly proteolytically active

chymotryptic enzymes in all mammalian species analysed so far, this gives very strong

number to the right of the sequence. The amino acids are colour coded according to the side chain properties as

indicated in the legend. For comparison phage display data from four additional enzymes were included in the figure;

mMCP-4, human chymase, human thrombin and mMCP-1 [17–19, 27].

https://doi.org/10.1371/journal.pone.0207826.g004
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Fig 5. Distribution of amino acids in positions P4 to P4´ in phage displayed nonamers cleaved by HAM1 after five

biopannings. Based on the alignment in Fig 4 the percentage of each amino acid present in each position P4 to P4´ as

calculated. The amino acids are ordered from left to right: aromatic, aliphatic, hydrophilic, basic (positively charged)

and acidic (negatively charged). In the bottom of the figure we have used the computer program WebLogo to generate

an illustration of the relative distribution of the amino acid preferences for cleavage by HAM1 as obtained from the

phage display analysis.

https://doi.org/10.1371/journal.pone.0207826.g005
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Fig 6. Phage displayed nonamers susceptible to cleavage by HAM2 after eight biopannings. After the last selection

step, phages released by proteolytic cleavage of the three proteases were isolated and the sequences encoding the

nonamers were determined. The general sequence of the T7 phage capsid proteins are PGG(X)9HHHHHH, where

(X)9 indicates the randomized nonamers. The protein sequences were aligned into a P5-P4´ consensus, where cleavage

occurs between positions P1 and P1´. If the sequence was found more than once this is indicated by the corresponding
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indications that a chymotryptic enzyme is a key characteristic of mammalian connective tissue

mast cells.

To further search for the origin of the mutations that resulted in a major shift in primary

specificity of the α-chymase, one species is of particular interest, the rabbit. Rabbits may repre-

sent a very early branching point of the rodent lineage, which was also indicated from the phy-

logenetic tree (Fig 1). However, when comparing the sequences of the two rabbit enzymes that

in the phylogenetic tree, clustered with the α− and β-chymases respectively, a few interesting

features of these two enzymes were found (Fig 10). In the alignment, the rabbit α-chymase

(Rabbit Cma-like in Fig 10) appears to have been inactivated by mutations affecting both the

active site as well as the N-terminal hydrophobic region involved in the activation of the prote-

ase (Fig 10). The Ser of the catalytic triad has been mutated into a Leu and a charged amino

acid, an Arg, has been introduced into the four amino acids N-terminal region, which is usu-

ally hydrophobic and often having the characteristic sequence Ile-Ile-Gly-Gly. These two

mutations most likely turn the enzyme into a non-functional pseudogene (Fig 10). The second

rabbit enzyme (Rabbit Cma1 in Fig 10), which clusters closely with the β-chymases also had

acquired a number of mutations that has affected the substrate pocket. These mutations may

have effects on both its primary and extended specificities. In the positions 189, 190, 216 and

226 (chymotrypsinogen numbering), which are, based on X-ray crystallography analysis of

HAM2 [15], known to affect the P1 specificity due to their position in lining the active site

pocket, is in all the active chymases (SAGA, or TAGA or AAGA) (Fig 10). The elastases

mMCP-5, rMCP-5 and HAM2 instead have NVVA or NVVS in these positions. Interestingly,

the rabbit CMA1-like gene, which is the β-chymase homologue, instead has the amino acids

SATV forming its substrate binding pocket, indicating a more narrow pocket (especially

affected by Thr instead of Gly in the position 216) compared to the classical chymases (Fig 10).

However, no kinetic data are available yet regarding these rabbit enzymes, therefore the

answers to their activity and cleavage specificities needs to wait for more detailed analyses of

these interesting enzymes.

The appearance of the β-chymases in mammals is also still not fully resolved. We can see

that in all rodents studied, including rats, mice and hamsters, all contain β-chymases, and fur-

thermore, they have taken over the primary chymase activity from the α-chymases. Interest-

ingly, the guinea pig has been shown to have Leu specificity [16]. Despite this, the picture of

the β-chymase in rodents is therefore relatively clear, perhaps with the guinea pig and rabbit as

exceptions, as previously described. However, for the cat and dog enzymes, which cluster with

the rodent β-chymases, the picture is much less clear (Figs 1 and 10). In several updates of the

dog genome, the potential dog β-chymase has changed significantly, from being a pseudogene,

into a functional gene. Another gene in the locus that was present but is now lost in this update

is granzyme H. Subsequently, in the latest genome update, granzyme H is back and the β-chy-

mase is now no longer there. This highlights the genome sequences are still not fully completed

and a lot of caution needs to be taken when analysing the evolution of these proteases, not only

in this locus but also with other genes and gene loci of presumed completed genomes. The β-

chymase genes from the previous genome assemblies also contained a region of undefined

nucleotides, which in both dog and cat sequences are located in the presumed coding region.

Therefore the gene is most likely there despite the fact that it is not found in the last genome

update. In addition, to our knowledge no recombinant protein has been produced for these β-

number to the right of the sequence. The amino acids are colour coded according to the side chain properties as

indicated in the legend. For comparison, phage display data for another elastase specific chymase, rMCP-5 [14], is

included in the figure.

https://doi.org/10.1371/journal.pone.0207826.g006
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Fig 7. Distribution of amino acids in positions P4 to P4´ in phage displayed nonamers cleaved by HAM2 after five

biopannings. Based on the alignment in Fig 6 the percentage of each amino acid present in each position P4 to P4´ as

calculated. The amino acids are ordered from left to right: aromatic, aliphatic, hydrophilic, basic (positively charged) and

acidic (negatively charged). In the bottom of the figure we have used the computer program WebLogo to generate an

illustration of the relative distribution of the amino acid preferences for cleavage by HAM2 as obtained from the phage

display analysis.

https://doi.org/10.1371/journal.pone.0207826.g007
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Fig 8. Analysis of the cleavage specificity of HAM1 by the use of recombinant protein substrates. Panel A shows the overall structure of the recombinant protein

substrates used for analysis of the efficiency in cleavage by HAM1. In these substrates two thioredoxin molecules are positioned in tandem and the proteins have a

His6-tag positioned in their C termini. The different cleavable sequences are inserted in the linker region between the two thioredoxin molecules by the use of two

unique restriction sites, one Bam HI and one SalI site, which are indicated in the bottom of panel A. In panel B an example cleavage is shown to highlight possible

cleavage patterns. Panels C, D and E shows the cleavage of a number of substrates by HAM1. The sequence of the different substrates are indicated above the pictures

of the gels. The time of cleavage in minutes is also indicated above the corresponding lanes of the different gels. The uncleaved substrates have a molecular weight of

approximately 25 kDa and the cleaved substrates appear as two closely located bands with a size of 12–13 kDa.

https://doi.org/10.1371/journal.pone.0207826.g008
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chymases, which is why we do not know if they are functional, and in that case what specificity

they have. This was the case for the rabbit α-chymase and also the dog and cat β-chymases,

which have a somewhat peculiar N-terminal region including two hydrophobic residues (if

they exist) (Fig 10). Instead of a classical Ile-Ile-Gly-Gly motif, they both have Ile-Thr-Ser-Gly,

indicating they may have problems being fully active after removal of the activation peptide

(Fig 10). The sequence from an early assembly also contained a frame shift in the sequence of

exon 5, and by PCR we amplified this region from wolves to see if the presumed inactivation

was dog specific. We found that this frame shift also was also present in wolves, indicating an

early inactivation of this gene [5]. Therefore several unanswered questions remain concerning

these presumed β-chymases in dogs and cats. We have also failed in several attempts to isolate

the cDNA by PCR amplification from dog tissues, also indicating that the gene may be tran-

scriptionally inactive.

In rodents, the β-chymases have increased in number by local gene duplications and also

diversified in their functions. One of them has taken over the role of the α-chymase, another

Fig 9. Analysis of the cleavage specificity of HAM2 by the use of recombinant protein substrates. Substrate sequences are indicated above the gel images. The time

of cleavage in minutes is indicated above the corresponding lanes of the different gels. The uncleaved substrates have a molecular weight of ~25 kDa and the cleaved

substrates appear as two close bands with a size of 12–13 kDa.

https://doi.org/10.1371/journal.pone.0207826.g009
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has become the major mucosal mast cell protease, mMCP-1 in the mouse and rMCP-2 in the

rat [17, 29]. These new mucosal mast cell specific β-chymases have gained important functions

in opening the intestinal mucosa for entry of immune components such as antibodies and

complement but also inflammatory cells, primarily eosinophils and neutrophils into the intes-

tinal lumen for combatting intestinal parasites. In both mice and rats a few additional β-chy-

mases are also found: rMCP-3 and -4 in rats and mMCP-2 and mMCP-9 in mice (Fig 11). No

specific functions have yet been identified for these proteases. Interestingly, mMCP-2,

although relatively highly expressed, seems to have a very narrow substrate binding pocket and

no proteolytic activity has been found for this protein [17]. Both rMCP-3 and rMCP-4 are

expressed in rat mucosal mast cells, although at low levels [31, 32]. rMCP-4 has also been char-

acterized by phage display and has a relatively strict extended specificity indicating a few well

defined targets [33]. However, no targets for this protease have yet been identified. Interest-

ingly, both the golden hamster and the Chinese hamster seem to differ quite extensively from

the other rodents by only having one β-chymase, indicating that the massive expansion of the

β-chymases seen in rats and mice occurred relatively late (Fig 11). Furthermore this expansion

of the β-chymases seems to have been relatively independent events in mice and rats, indicat-

ing a strong evolutionary driving force in their expansion [5, 6].

In conclusion, from the analyses of the two mast cell chymases from the golden hamster,

the change in primary specificity of the α-chymase occurred relatively early in the rodent

branch of the mammalian evolutionary tree. It is apparent that the β-chymase in hamsters has

Fig 10. Alignment of a number of mammalian alpha and beta chymases. A panel of mammalian alpha and beta chymases were aligned using the

DNA Star Megalign program and using the Clustal W algorithm. The positions of the three residues of the catalytic triad His-Asp-Ser are marked by

black dots. The positions of the four amino acids of the substrate pocket, residues 189, 190, 216 and 226, are marked by red arrows. These four residues

are for many of these proteases (at least the mammalian enzymes) of major importance for their P1 selectivity [5, 6, 15, 16].

https://doi.org/10.1371/journal.pone.0207826.g010
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Fig 11. The chymase locus in mammals. A schematic representation in scale of the chymase locus from a panel of placental mammals. This is the locus encoding the

α and β-chymases, the mMCP-8 family members, cathepsin G and several of the T cell and NK cell expressed granzymes [6]. The genes are colour coded. Granzymes

in dark blue, the α-chymase in light blue, the β-chymases is slightly darker blue, cathepsin G in bright green, the mMCP-8 related proteases in a light blue-green colour

and the duodenases of ruminants in red. Bordering genes that help in assigning the locus during genomic screening and for analysis of potential rearrangements in

areas close to the locus are depicted in other colours including yellow, light green, grey, purple, pink and orange. The genomic coordinates for the chymase loci

presented in this figure are as follows, Human Chr14q12; 24,336,021–24,050,297: Dog—Chr8; 4,305,443–4,877,589: Cat—ChrB3; 76,811,637–77,430,021: Bovine—

Chr21; 34,633,172–35,305,932: Sheep—Chr18; 33,488,221–34,143,547: Rabbit—Chr17; 44,437,869–45,028,695: Mouse—Chr14qc3; 55,784,995–56,525,032: Rat—

Chr15p13-12; 34,470,796–36,744,750: Golden Hamster—Chr (unknown); 2,447,327–2,618,184 (1): Golden Hamster—Chr (unknown); 12,152,784(RNF17)–

12,397,1608 CTSG)(2): Chinese Hamster—Chr (unknown); 451,470(RNF17)–929,914 (RIPK3).

https://doi.org/10.1371/journal.pone.0207826.g011
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also taken over the primary chymase function following the loss of the chymase activity of the

original α-chymase, indicating that this also happened relatively early in rodent evolution.

One major difference seen between both the golden and the Chinese hamsters compared to

mice and rats, is the expansion of the β-chymases. This expansion seems to have occurred rela-

tively late and independently in mice and rats. This is based on the finding that only one β-chy-

mase gene is present in both Chinese and golden hamsters whereas both mice and rats have a

relatively large number of such genes. The positioning of the β-chymase genes relative to each

other as well as to other genes within the locus differ significantly between mice and rats [5, 6].

The evolutionary driving force behind this massive expansion is also interesting but remains

to be elucidated.

Experimental procedures

Phylogenetic tree and sequence alignments

A panel of vertebrate chymase locus encoded genes were analyzed for their sequence related-

ness using the MrBase analysis program and the Maximum-likelihood algorithm [6]. The

alignment in Fig 10 was performed in the DNAStar program using the Clustaw W algorithm.

Production and purification of recombinant HAM1, HAM2 and the guinea

pig chymase

Chymase sequences were retrieved from SwissProt/TrEMB. The two hamster cDNA sequences

were subcloned into a pAcGP67B vector that encodes a secretion signal, ubiquitin and an

enterokinase (EK) cleavage sequence immediately before cloning site [15, 16]. The resulting

expression vectors were transfected into baculovirus-infected insect cells (High Five) (Invitro-

gen, Carlsbad, CA). Purification was performed on heparin–Sepharose (GE Healthcare, Piscat-

away, NJ) and the enzymes were activated by EK cleavage (Roche, Nutley, NJ) [16]. After

activation, the second heparin–Sepharose column was used to remove EK and released N-ter-

minal peptides.

Protein purity and concentration was estimated by separation on 12.5% SDS-PAGE gels.

Protein samples were mixed with sample buffer, and β-mercaptoethanol was added to a final

concentration of 5%. To visualize the protein bands, the gels were stained with colloidal Coo-

massie Brilliant Blue [34].

Analysis of primary specificity by cleavage of chromogenic substrates

Enzymatic activity was measured against a panel of chromogenic substrates from Bachem

(Bubendorf, Switzerland) and Chromogenix (Mölndal, Sweden). Measurements were per-

formed in 96-well microtiter plates with a substrate concentration of 0.2 mM in 200 μl PBS.

Hydrolysis at 37˚C was monitored spectrophotometrically at 405 nm for up to 6 hrs in a Versa-

max microplate reader (Molecular Devices, Sunnyvale, CA).

Determination of cleavage specificity by phage-displayed nonapeptide

library

A library of 5x107 unique phage-displayed nonameric peptides was used to determine the

cleavage specificity of the two hamster chymases, as previously described [14, 18, 33]. In these

T7 phages, the C-terminus of the capsid protein 10 were manipulated to contain a nine amino

acids long random peptide followed by a His6-tag [33]. An aliquot of the amplified phages

(~109 pfu) were bound to 100 μl Ni-NTA beads by their His6-tags for 1 hr at 4˚C under gentle

agitation. Unbound phages were removed by washing ten times in 1.5 ml 1 M NaCl, 0.1%
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Tween-20 in PBS, pH 7.2, and two subsequent washes with 1.5 ml PBS. The beads were finally

resuspended in 1 ml PBS. Activated HAM1 or HAM2 (~0.1 μg) were added to the resuspended

beads and left to digest susceptible phage nonapeptides under gentle agitation at room temper-

ature for 2 hours. PBS without protease was used as control. Phages with a random peptide

that was susceptible to protease cleavage were released from the Ni-NTA matrix, and the

supernatant containing these phages was recovered. To ensure that all of the released phages

were recovered the beads were resuspended in 100 μl PBS (pH 7.2) and the supernatant, after

mixing and centrifugation, was added to the first supernatant. To ensure that the His6-tags

had been hydrolyzed on all phages recovered after protease digestion, 15 μl fresh Ni-NTA aga-

rose beads were added to the combined phage supernatant and the mixture agitated for 15

min followed by centrifugation. A control elution of the phages still bound to the beads, using

100 μl 100 mM imidazole showed that at least 1 x 108 phages were attached to the matrix dur-

ing each selection. Ten μl of the supernatant containing the released phages was used to deter-

mine the amount of phages detached in each round of selection. Dilutions of the supernatant

were plated in 2.5 ml 0.6% top agarose containing 300 μl of E. coli (BLT5615), 100 μl diluted

supernatant and 100 μl 100 mM IPTG. The remaining volume of the supernatant was added to

a 10 ml culture of BLT5615 (OD ~0.6). The bacteria had 30 min prior to phage addition been

induced to produce the T7 phage capsid protein by the addition of 100 μl 100 mM IPTG to the

culture. The bacteria lysed approximately 75 min after phage addition. The subsequent lysate

was centrifuged to remove cell debris and 500 μl of the phage sub-library was added to 100 μl

fresh Ni-NTA beads, to start the next round of selection.

Following five or eight rounds of selection, 120 plaques for each of the two hamster prote-

ases were isolated from LB plates after plating in top agarose. Each phage plaque, correspond-

ing to a phage clone, was dissolved in phage extraction buffer (100 mM NaCl and 6 mM

MgSO4 in 20 mM Tris-HCl pH 8.0) and vigorously shaken for 30 min in order to extract the

phages from the agarose. The phage DNA was then amplified by PCR, using primers flanking

the variable region of the gene encoding the modified T7 phage capsid protein. After amplifi-

cation, the PCR reactions of the 96 clones with the most intense PCR fragments after gel analy-

sis were sent in a 96-well plate to GATC Biotech (Germany) for sequencing.

Generation of a consensus sequence from sequenced phage inserts

Phage sequences were aligned manually based on the results from the chromogenic substrate

analyses indicating their P1 preference. For example, in the case of HAM1, sequences with

only one aromatic amino acid were aligned first and sequences with more than one possible

cleavage site were then aligned to fit this pattern. Amino acids with similar characteristics were

grouped together as follows: aromatic amino acids (Phe, Tyr, Trp); negatively charged amino

acids (Asp, Glu); positively charged amino acids (Lys, Arg), small aliphatic amino acids (Gly,

Ala); larger aliphatic amino acids (Val, Leu, Ile, Pro), hydrophilic amino acids (Ser, Thr, His,

Asn, Gln, Cys, Met). The nomenclature by Schechter and Berger [35] was adopted to designate

the amino acids in the substrate cleavage region, where P1-P1’ corresponds to the scissile

bond.

Sequence logo

We used web logo3 (http://weblogo.threeplusone.com/) [36] server to create the sequence logo

of HAM1 and HAM2 phage display sequences. The parameter used to create a sequence logo

are probability units options for Y-axis, stack of consensus sequence in X-axis, composition is

an auto, error bars selected and custom scheme colour for amino acids in the sequence logo,

KRH (yellow), DE (red), FYW (green), STCMNQ (white) and GAVLIP (blue).
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Generation of recombinant substrates for cleavage specificity analysis

A novel substrate was developed to verify the results obtained from the phage display analyses.

Two copies of the E. coli thioredoxin (trx) gene were inserted in tandem into the pET21 vector

for bacterial expression (Fig 6A). In the C-terminal end a His6- tag was inserted for purifica-

tion on Ni2+ IMAC columns. In the linker region, between the two trx molecules, the different

substrate sequences were inserted by ligating double stranded oligonucleotides into two

unique restriction sites, one BamHI and one SalI site (Fig 6A). The sequences of the individual

clones were verified after cloning by sequencing of both DNA strains. The plasmids were then

transformed into the E.coli Rosetta gami strain for protein expression (Novagen, Merck,

Darmstadt, Germany). A 10 ml overnight culture of the bacteria harbouring the plasmid was

diluted 10 times in LB + Amp and grown at 37˚C for 1–2 hr until the OD (600 nm) reached

0.5. IPTG was then added to a final concentration of 1 mM. The culture was then grown at

37˚C for an additional 3 hr under vigorous shaking, after which the bacteria were pelleted by

centrifugation at 3500 rpm for 12 min. The pellet was washed once with 25 ml PBS + 0.05%

Tween 20. The pellet was then dissolved in 2 ml PBS and sonicated 6 x 30 sec to open the cells.

The lysate was centrifuged at 13000 rpm for 10 min and the supernatant was transferred to a

new tube. Ni-NTA slurry (0.5 ml) (50% slurry concentration) (Qiagen, Hilden, Germany) was

added and the sample was slowly rotated for 45 min at RT. The sample was then transferred to

a 2 ml column and the supernatant was allowed to slowly pass through the filter leaving the

Ni-NTA beads with the bound protein in the column. The column was then washed four

times with 1 ml of washing buffer (PBS + 0.05% Tween + 10 mM Imidazole + 1 M NaCl). Elu-

tion of the protein was performed by adding 150 μl elution buffer followed by five 300 μl frac-

tions of elution buffer (PBS + 0.05% Tween 20 + 100 mM imidazole). Each fraction was

collected individually. Samples (10 μl) from each of the eluted fractions were then mixed with

1 volume of 2x sample buffer and 1 μl β-mercaptoethanol and then heated for 3 min at 80˚C.

The samples were analysed on a SDS bis tris 4–12% PAGE gel and the second and third frac-

tions that contained the most protein were pooled. The protein concentration of the combined

fractions was determined by Bio-Rad DC Protein assay (Bio-Rad Laboratories Hercules, CA

USA). Approximately 25 μg of recombinant protein was added to each 50 μl cleavage reaction

(in PBS). Ten μl from this tube was removed before adding the enzyme, the 0 min time point.

The active enzyme was then added (approximately 34 or 20 ng of the HAM1 or 17 ng for the

HAM2) and the reaction was kept at room temperature during the entire experiment. Samples

(10 μl) were removed at the indicated time points (15 min, 45 min and 150 min) and stopped

by addition of one volume of 2x sample buffer. β−mercapto-ethanol (1 μl) was then added to

each sample followed by heating for 3 min at 80˚C. Twenty μl from each of these samples was

then analysed on 4–12% pre-cast SDS-PAGE gels (Invitrogen, Carlsbad, CA, USA). The gels

were stained overnight in colloidal Coomassie staining solution and de-stained according to

previously described procedures [34].
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