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ABSTRACT

The boronic acid moiety is a versatile functional
group useful in carbohydrate recognition, glycopro-
tein pull-down, inhibition of hydrolytic enzymes and
boron neutron capture therapy. The incorporation of
the boronic-acid group into DNA could lead to
molecules of various biological functions. We have
successfully synthesized a boronic acid-labeled
thymidine triphosphate (B-TTP) linked through a
14-atom tether and effectively incorporated it into
DNA by enzymatic polymerization. The synthesis
was achieved using the Huisgen cycloaddition as
the key reaction. We have demonstrated that DNA
polymerase can effectively recognize the boronic
acid-labeled DNA as the template for DNA poly-
merization, that allows PCR amplification of boronic
acid-labeled DNA. DNA polymerase recognitions
of the B-TTP as a substrate and the boronic
acid-labeled DNA as a template are critical issues
for the development of DNA-based lectin mimics via
in vitro selection.

INTRODUCTION

Boronic acid is a versatile functional group that has been
explored for the development of various biologically
important compounds (1–3), such as carbohydrate sensors
and receptors (4–12), inhibitors of hydrolytic enzymes
(1–3,13) and boron neutron capture therapy agents
(14,15). We envision that the incorporation of the boronic
acid moiety into nucleic acid has the potential to lead to the
discovery of new aptamers (7,16,17) against carbohy-
drates, glycoproteins and glycolipids with specific focus on
differentiating the carbohydrate portion. The design is
built on earlier works demonstrating the feasibility of

selecting modified DNA/RNA aptamers for various
applications and the effect of DNAmodification in general
(18–28). Boronic acid-labeled aptamers with high specifi-
city and affinity for certain carbohydrates could be used as
tools for the rapid analysis of glycosylation patterns of
proteins, peptides and lipids in the same way as lectin
arrays are used (29–33). However, the number and
specificity of carbohydrate aptamers could far surpass
that of available natural lectins after the development of
the appropriate platform technology. The key step in
developing such boronic acid-labeled DNA aptamers is the
successful demonstration of the design, synthesis and
incorporation of boronic acid-labeled nucleotide into
DNA by enzymatic polymerization. Herein, we describe
our efforts in demonstrating this critical feasibility.

MATERIALS AND METHODS

Synthesis of the boronic acid-labeled thymidine triphosphate
(B-TTP)

Chemicals were obtained fromAldrich, Frontier Scientific,
Accros and Asymchem unless indicated otherwise. For all
reactions analytical grade solvents were used. Anhydrous
solvents were used for all moisture-sensitive reactions.
NMR data was collected on a Varian Unity 300MHz or a
Bruker 400MHz spectrometer. The chemical shifts are
relative to TMS as an internal standard for 1H, the
deuterated solvent used for 13C and 85% H3PO4 as an
external reference for 31P. Mass spectra were recorded on a
Waters Micromass LC-Q-TOF micro spectrometer at
Georgia State University Mass Spectrometry Facilities.

8-Bromo-2-methylquinoline (2). To the solution of
2-bromoaniline (5.0 g, 29.1mmol) in 6N hydrochloric
acid (15ml) under reflux crotonaldehyde (2.2409 g,
32.0mmol) was added dropwise. After refluxing for 8 h,
the reaction mixture was cooled down and washed with
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20ml of ether, followed by the addition of zinc chloride
(3.95 g). The reaction mixture was stirred for 30min
at room temperature and an additional 15min at 08C
to yield a yellow precipitate. The solid was collected
and washed with 3N cold hydrochloric acid, and then
suspended in 2-propanol (20ml) and stirred for 5min at
room temperature. The solid was filtered and washed with
2-propanol until the washing became colorless, and then
washed with 20ml of ether and dried in air. The solid was
suspended in 15ml of cold water followed by the addition
of 5ml of concentrated ammonium hydroxide. The
mixture was vigorously shaken and then extracted with
ether (3� 20ml). After drying over magnesium sulfate and
concentration, a dark solid product was obtained, which
was purified by chromatography (EtOAC:Hexanes 10:90)
to give a white solid product (3.62 g, 56%) 1H
NMR(400MHz, CDCl3) d 8.02 (2H, t, J¼ 8.4Hz), 7.73
(1H, d, J¼ 8Hz), 7.33 (2H, t, J¼ 8), 2.82 (3H, s); 13C
NMR (75MHz, CDCl3) d 160.2, 144.7, 136.4, 132.8,
127.6, 127.3, 125.9, 124.0, 122.7, 25.6; EIMS, m/z 221/223
M/M þ 2; Anal. Calcd for C10H8BrN: C, 54.08; H, 3.63;
N, 6.31. Found: C, 54.25; H, 3.41; N, 5.89.

8-Bromo-2-bromomethylquinoline (3). To a solution of
2 (2.5477 g, 11.47mmol) in carbon tetrachloride (40ml)
NBS (2.2461 g, 12.62mmol) and 20mg of AIBN were
added. The mixture was refluxed overnight under regular
light, and then filtered to remove the solid. Evaporation of
the solvent gave a yellow solid product that was purified
by chromatography (hexanes:DCM 80:20) to yield a white
solid (1.33 g, 39%). 1H NMR (400MHz, CDCl3) d 8.16
(1H, d, J¼ 8.4Hz), 8.05 (1H, d, J¼ 7.2Hz), 7.78 (1H, d,
J¼ 7.6Hz), 7.65 (1H, d, J¼ 8.4Hz), 7.41 (1H, t,
J¼ 7.6Hz), 4.78 (3H, s); 13C NMR (75MHz, CDCl3)
d 158.3, 144.7, 138.0, 133.9, 128.9, 127.7, 127.6, 125.1,
122.4, 34.6; EIMS, m/z 299/300/301 (M/M þ 1/M þ 2);
Anal. Calcd for C10H7Br2N: C, 39.91; H, 2.34; N, 4.65.
Found: C, 40.13; H, 2.281; N, 4.34.

(8-Bromo-quinolin-2-ylmethyl)-methylamine (4). To a
solution of 3 (1 g, 3.32mmol) in THF (5ml) methylamine
(10.5ml, 40% aqueous solution) was added. The solution
was stirred for 30min and then extracted with EtOAc
(30ml). The organic phase was washed with DI water
(2� 20ml), dried over anhydrous magnesium sulfate and
concentrated to give a red oily product, that was purified by
column chromatography (MeOH:DCM 1:99) to yield
a yellow solid (0.8 g, 96%). 1H NMR (400MHz CDCl3)
d 8.09 (1H, d, J¼ 8.4Hz), 8.02 (1H, d, J¼ 7.2Hz), 7.77 (1H,
d, J¼ 8Hz), 7.49 (1H, d, J¼ 8.4Hz), 7.36 (1H, t,
J¼ 8.0Hz), 4.12 (2H, s), 2.58 (3H, s); FABMS, m/z 251/
253 (MþH/Mþ 2þH); Anal. Calcd for C11H11BrN2: C,
52.61; H, 4.42; N, 11.16. Found: C, 52.17; H, 4.46; N, 11.10.

(8-Bromo-quinolin-2-ylmethyl)-methylcarbamic acid tert-
butyl ester (5). To a solution of 4 (0.7501 g, 2.99mmol) in
methanol (Boc)2O (1.4992 g, 6.87mmol) and triethylamine
(2.1ml, 14.9mmol) were added. The mixture was stirred at
room temperature for 2 h, and then concentrated in vacuo
to remove all the solvent. The residue was dissolved in
DCM (20ml) and then washed with DI water (2� 10ml)

and brine (10ml). The organic solution was dried over
MgSO4 and concentrated to give yellow oil. Purification
by chromatography (hexanes:EtOAc 10:90) yielded a light
yellow oily product. 1H NMR (400MHz CDCl3) d 8.16
(1H, t, J¼ 8.4Hz), 8.06 (1H, d, J¼ 6.9Hz), 7.80 (1H, d,
J¼ 7.8Hz), 7.41 (2H, m), 4.81 (2H, s), 3.03 (3H, d,
J¼ 11.7Hz), 1.4–1.6 (9H); 13C NMR (100MHz, CDCl3)
d 160.0, 144.9, 137.5, 133.4, 128.7, 127.7, 126.9, 124.9,
120.7, 119.8, 80.1, 55.5, 35.2, 28.7; ESIMS, m/z 351/353
(M/(Mþ 2),100); Anal. Calcd for C16H19BrN2O2: C,
54.71; H, 5.45; N, 7.98. Found: C, 54.97; H, 5.62; N, 7.75.

2-[(tert-Butoxycarbonyl-methyl-amino)-methyl]-quino-
line-8-boronic acid (6). To a flask charged with 5
(0.4440 g, 1.26mmol), bis(neopentyl glycolato)diboron
(0.3427 g, 1.52mmol), Pd(dppf)Cl2 (0.0310 g,
0.038mmol) and KOAc (0.3722 g, 3.79mmol) in a
nitrogen atmosphere anhydrous DMSO (10ml) was
added. The mixture was stirred at 808C overnight.
After cooling down, the reaction mixture was poured
into DCM (20ml) and washed with DI water (4� 30ml).
The organic solution was dried over MgSO4 and
concentrated to give dark oil. Purification by column
chromatography (MeOH/DCM, 1:99) yielded a yellow
oily product (0.3313 g, 82%). 1H NMR (400MHz CDCl3)
d 8.45 (1H, d, J¼ 5.4Hz), 8.14 (1H, d, J¼ 6.6Hz), 7.97
(1H, d, J¼ 8.1Hz), 7.623 (1H, t, J¼ 7.5Hz), 7.49 (1H, d,
J¼ 8.4Hz), 4.80 (2H, d, J¼ 6.0Hz), 3.09 (3H, d,
J¼ 4.2Hz), 1.3–1.5 (9H); 13C NMR (100MHz, CDCl3)
d 157.3, 156.8, 156.2, 150.3, 139.4, 137.4, 129.7, 127.2,
126.6, 119.1, 118.9, 80.5, 74.7, 34.7, 27.4, 23.9; ESIMS,
m/z 315, M� 1.

Compound 7. To a solution of 6 (0.226 g, 0.72mmol) in
DCM (20ml) TFA (5ml) was added. The solution was
stirred for 1 h, and then concentrated in vacuo to give
yellow oil that was then dissolved in dry THF (10ml).
To this mixture azido acetic acid (79mg, 0.79mmol),
N,N0-carbonyldiimidazole (CDI) (174mg, 1.07mmol)
and i-PrNEt (0.25ml, 1.43mmol) at 08C were added.
The mixture was stirred overnight at room temperature
and then concentrated to almost dryness. Purification
by silica gel column (DCM:MeOH, 100:1) yielded a
yellow solid (0.160 g, 68%). 1H NMR (400MHz CDCl3)
d 8.45 (1H, d, J¼ 5.4Hz), 8.14 (1H, d, J¼ 6.6Hz), 7.97
(1H, d, J¼ 8.1Hz), 7.623 (1H, t, J¼ 7.5Hz), 7.49 (1H, d,
J¼ 8.4Hz), 4.80 (2H, d, J¼ 6.0Hz), 4.30 (2H, d,
J¼ 5.5Hz), 3.09 (3H, d). ESIMS, m/z 300, Mþ 1.

5-[3-(Trifluoroacetamido)-propynyl]-20-deoxyuridine 9.
5-Iodo-20-deoxyuridine (0.35 g, 1.0mmol) was dissolved
in degassed anhydrous DMF (10ml). Copper (I) iodide
(0.038 g, 0.2mmol) was added and the reaction mixture
was stirred under nitrogen in the dark by wrapping
the reaction flask with aluminum foil for 30min.
Triethylamine (0.3ml, 2.0mmol) was added to the
reaction mixture, followed by N-propynyltrifluoroaceta-
mide (0.45 g, 2.97mmol) and tetrakis(triphenylphosphine)
palladium (0) (0.11 g, 0.10mmol). The reaction mixture
was stirred overnight with an aluminum foil wrap at room
temperature. Then solvent was removed and the residue
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was purified with a silica gel column (methanol:DCM
1:20) to give a light yellow solid (0.25 g, 67%). 1H NMR
(300MHz, CD3OD) d 8.4 (1H, s), 6.22 (1H, t), 4.39
(1H, m), 4.26 (2H, s), 3.82 (1H, m), 3.74 (2H, m),
2.38–2.20 (2H, m). ESIMS (m/z): 378 (Mþ 1).

Compound 10. To compound 9 (0.25 g, 0.66mmol)
dissolved in methanol was added ammonium hydroxide.
The mixture was stirred overnight followed by solvent
removal. The residue was dried under vacuum and then
dissolved in DMF. Pentynoic acid (68mg, 0.69mmol)
and benzotriazol-1-yl-oxytripyrrolidinophosphonium
hexafluorophosphate (PyBop) (0.99mmol) were added
under ice-bath cooling. The reaction mixture was stirred
overnight at room temperature. Then solvent was
evaporated and the residue was purified by silica gel
chromatography (methanol:DCM 1:15) to give the
product (155mg, 65%). 1H NMR (300MHz CD3OD): d
8.29 (1H, s), 6.22 (1H, t), 4.39 (1H, m), 4.14 (2H, s), 3.90
(1H, m), 3.74 (2H, m), 2.41 (4H, m), 2.26 (3H, m). 13C
NMR (100MHz, CD3OD) d 170.8, 162.0, 148.2, 142.7,
97.2, 87.2, 86.5, 84.3, 80.9, 72.5, 69.4, 67.7, 59.9, 39.0, 33.1,
27.7, 12.8. ESIMS (m/z): 362 (Mþ 1).

Compound 11. Compound 10 (0.15 g, 0.4mmol) was dried
in vacuo over P2O5 overnight and then dissolved in
anhydrous trimethylphosphate (0.6ml) under nitrogen.
Proton sponge (also dried overnight over P2O5) (0.102 g,
0.48mmol) was added to the solution in one portion. Then
the reaction mixture was cooled in an ice bath and POCl3
was added dropwise via a syringewith stirring. The reaction
mixture was stirred on ice for 2 h and then a mixture of
0.98 g of bis-tri-n-butylammonium pyrophosphate
(dissolved in DMF 1.6ml) and 0.6ml tri-n-butylamine
was added in one portion. The mixture was stirred at room
temperature for 10min and then triethylammonium bicar-
bonate solution (0.1M, pH8, 10ml) was added. The
reaction mixture was stirred at room temperature for an
additional hour and purified with a DEAE-Sephadex A-25
column using a linear gradient of ammonium bicarbonate
(0–0.6M) followed by freeze drying to give the final product
as a white powder (84mg, 35%). 1H NMR (300MHz,
D2O): d 8.21 (1H, s), 6.33 (1H, t), 4.68 (1H,m), 4.26 (5H,m),
2.57 (4H, m), 2.45 (3H, m). 13C NMR (100MHz, D2O) d
174.1, 164.2, 150.1, 144.5, 98.7, 89.4, 85.5, 85.2, 83.0, 73.1,
70.1, 69.7, 65.0, 38.5, 33.9, 29.2, 14.0; 31P NMR (161MHz,
D2O): d�10.04 (gP, d), �11.30 (aP, d), �22.96 (bP, t).
ESIMS (m/z): 601 (M), 521 (M�80).

Compound 12. The azide compound 7 (0.014 g,
0.046mmol) and triphosphate compound 11 (0.009 g,
0.015mmol) were suspended in 150 ml of a mixture of
EtOH:H2O:t-butyl alcohol (3:2:5). To this mixture were
added 5 ml of 1.12M sodium ascorbate aqueous solution
and 5 ml of 0.54M CuSO4 aqueous solution. The mixture
was stirred at room temperature overnight and then
filtered to remove the unreacted azide compound. The
filtrate was purified by a DEAE-sephadex A-25 column.
Fractions were collected by monitoring the UV absor-
bance at 289 nm. The combined fractions were lyophilized
to yield a white powder product (3mg, 20%). 1H NMR

(300MHz CD3OD): d 8.52 (1H, m), 8.11 (1H, m), 7.88
(1H, m), 7.68 (1H, s), 7.54 (2H, m), 7.15 (1H, m), 5.94 (1H,
dt), 5.60 (2H, d), 5.01 (2H, d), 4.43 (1H, m), 4.06 (3H, m),
3.99 (2H, m), 3.23 (2H, s), 2.98 (3H, d), 2.54 (2H, d), 2.18
(2H, m), 1.69 (2H, m), 1.21 (2H, m). 31P NMR (161MHz,
D2O): d �9.65 (gP, d), �10.76 (aP, d), �22.36 (bP, t);
ESIMS, m/z 864/784, M-2H2O/M-2H2O-80.

The stability of the boronic-acid-modified-TTP has
been studied at 948C for 2 h. No degradation was observed
based on NMR and MS.

N-[2-(3, 4-Dihydroxy-phenyl)-ethyl]-acrylamide 13. To a
suspension of dopamine hydrochloride (3 g, 16mmol)
in DCM (35ml) was added triethylamine (6.7ml).
The mixture was stirred for 1 h then trimethylchlorosilane
was added. After 4 h, additional triethylamine (2.5ml)
was added followed by acryloyl chloride in a dropwise
fashion with an ice-bath cooling. After stirring the
reaction for 12 h, the white precipitate was filtered,
collected and re-dissolved in 30ml DCM followed by
the addition of 10% TFA/DCM. The reaction mixture
was stirred over night at room temperature. The white
precipitate product was filtered and collected (2.01 g,
64%). 1H NMR (300MHz CDCl3) 6.69 (2H, m), 6.53 (1H,
dd), 6.20 (1H, d), 6.18 (1H, d), 5.62 (1H, t, J¼ 6.0Hz),
3.4 (2H, m), 2.66 (2H, t, J¼ 7.8Hz). 13C NMR (100MHz,
CDCl3) d 166.71, 144.87, 143.41, 130.71, 130.57, 125.10,
119.61, 115.10, 114.98, 41.00, 34.47.
Primer 21 nt: 50-GCGTAATACGACTCACTATAG-30

Primer 1: 50-GCGTAATACGACTCACTATA-30

Primer 2: 50-TGTACGTTTCGGCCTTTCGG-30

Template DNA: 30-GCATTATGCTGAGTGATATCCG
TTGGACTACTCCGGCTTTCCGGCTTTGCATGT-50

32P labeling of the primers

A mixture of 10 ml of the primer DNA (100mM), 2.0 ml of
T4 polynucleotide kinase buffer (�10), 3.0ml of water,
3.0 ml of T4 polynucleotide kinase (10 000 units/ml,
Biolabs, Inc.) and 2.0ml of g-32P-ATP (from Perkin/
Elmer) was incubated for 1 h at 378C followed by heating
in a water bath at 1008C for 5min to denature the T4
polynucleotide kinase. Then the kinased DNA was
precipitated with 2.2ml of 3M sodium chloride solution
(3M) and 66.6ml of ethanol. The mixture was chilled at
�208C for 15min and centrifuged at 14 000 rpm for
15min. The supernatant was discarded and the pellet
was re-dissolved in 8 ml of water (to obtain approximately
100 mM DNA solution, assuming an 80% recovery yield)
and stored at �208C.

Examples of DNA primer extension and time-course study
with B-TTP (12)

Primer extensions were performed with the 50-32P-labeled
primer (21 nt, 5 mM) and the template (55 nt, 5 mM),
Klenow (0.04 units/ml) and dNTPs (0.4mM each). The
reaction mixture was incubated at 378C. Aliquots (5 ml) of
the solution were taken at 0.5, 2, 5, 15 and 60min and
were put into an ice-bath to stop the reaction following
the addition of 5 ml of denaturing dye solution (8M urea)
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into each aliquot. These samples were analyzed later by
electrophoresis and autoradiography.

Primer extension using boronic acid-labeled DNA as
templates

Primer 1/template (5 mM), Klenow (0.04 units/ml), TTP
(0.4mM), B-TTP (0.4mM) or M-TTP (0.4mM), and
three other dNTPs (0.4mM each) were incubated at 378C
for an hour. The prepared DNAs were purified by
membrane filtration for 15min at 14 000 rpm, using
Microcon centrifugal filter YM-3 from Millipore
Corporation, to remove the labeled and non-labeled
dNTPs and other low molecular weight molecules.
50-32P-labeled Primer 2 was then added to the DNAs
prepared using Primer 1, individually, and the mixtures
were heated for 2min at 958C. The mixtures were cooled
to room temperature over 10min. The second run of
the polymerizations on the labeled and non-labeled DNA
templates was performed under the conditions of four
dNTPs (0.4mM each) and Klenow (0.04 units/ml) at 378C
for an hour. The resulting samples were analyzed by
electrophoresis and autoradiography.

Preparation of the polyacrylamide gel containing catechol
(19% acrylamide gels modified with 1% catechol)

Urea (12.6 g), N-[2-(3,4-dihydroxy-phenyl)-ethyl]-acryla-
mide (0.16 g), a 40% acrylamide solution (24ml), �5
TBE (Tris-borate-EDTA made from 108 g Tris base, 55 g
boric acid, 9.3 g Na4EDTA in 1 l of water) (6ml) and water
(6ml) were mixed and heated in a microwave for 30 s. After
cooling, 20 ml of TEMED (N,N,N-tetramethyl thylenedia-
mine) and 150 ml of APS (ammonium persulfate) were
added before loading this solution into a gel cast.

Incorporation of B-TTP into DNA by PCR

Each 50 ml reaction was performed with 1.2 mM primers 1
and 2/template, 0.25mM of each dNTPs, 0.25mM of
labeled-TTP (B-TTP) and 3.5 units of high fidelity DNA
polymerase (Roche, Indianapolis, Ind.) under conditions
of 1 cycle at 948C for 2min, 30 cycles at 948C for 20 s,
598C for 30 s, 728C for 1min and 1 cycle at 728C for 7min.
(Primer 1: 50-CGCCGCCCCCGCCGCG-30 Primer 2: 50-C
GGCGGCCCGCGGGCG; Template DNA: 50-CGCCG
CCCCCGCCGCG-40N-CGCCCGCGGGCCGCCG-30.)
Ten microliters of each amplification product was
separated by gel electrophoresis on 1.5% agarose, stained
with ethidium bromide and visualized under UV light.

RESULTS AND DISCUSSION

In considering the eventual incorporation of the boronic
acid into DNA, we focused on the strategy of covalently
linking a boronic acid moiety to a nucleoside triphos-
phate, which can be used in DNA polymerization and
amplification. It has been demonstrated in the literature
that 5-position modification of deoxyuridine can be
tolerated by polymerases and reverse transcriptases
(17,34), though the situation with the attachment
of a boronic acid moiety could be very different.
One key factor that could lead to failure in this strategy

with this type of modification is the strong Lewis acidity of
the boronic acid moiety that can lead to tight interactions
with Lewis bases commonly found on nucleic acids and
enzymes. Such interaction could have several implications
not common with the attachments of other organic
functional groups at the 5-position of deoxyuridine
including impeded incorporation and amplification,
added secondary structures in the DNA products,
enzyme binding and inhibition and even inter-strand
interactions. Despite all these, 5-position modification on
deoxyuridine represents the best chance for success.
For minimal interference of the polymerase reaction,

we were interested in a long and somewhat linear
linker, and for the ease of attachment we were interested
in using a reaction that is mild, can be carried out
in an aqueous solution, and does not interfere with
other existing functional groups. For these reasons,
we selected the Huisgen cycloaddition for the coupling of
the boronic acid moiety with the nucleoside (35).
Therefore, we have designed compound 12 as a monomeric
building block for DNA polymerization. We chose an 8-
quinoline boronic acid analog because of our prior
experience with such compounds, its known affinity for
various sugars and its water solubility. In addition, we were
interested in using this somewhat large arylboronic acid as
a model because its successful incorporation into DNA
would probably mean that other smaller arylboronic acid
analogs would have minimal problem to be incorporated.
With this strategy in mind, we were in need of

a quinoline boronic acid analog with an azido group
and a 5-modified deoxyuridine analog with an alkyne
group. The synthesis of the quinoline boronic acid
followed the procedures described in Scheme 1.
The synthesis of the quinoline boronic acid building

block started with the commercially available 2-bromoani-
line (1), which was converted to 2-methylquinoline (2)
by refluxing with crotonaldehyde in 6N HCl (36–39)
(Scheme 1). Bromination at methyl group gives compound
3, which was reacted with 40% methylamine aqueous
solution in THF to yield 4. The amino group was first
protected with Boc before borylation under the catalysis
of dichloro-(bis-diphenylphospino)ferrocenyl)-palladium
[Pd(dppf)Cl2] to give compound 6. Deprotection by
TFA followed by amide formation with azido acetic acid
generated the quinoline boronic acid (7).
For the synthesis of the final compound 12, there are

two possible general approaches. The first approach is to
attach the boronic acid first before triphosphorylation.
The second approach is to triphosphorylate first
before the attachment of the boronic acid moiety.
In both approaches, the synthesis started with 5-iodo-20-
deoxyuridine (Scheme 2). By following literature proce-
dures, an alkyne side chain was attached to the 5-position
(34,40–42). Deprotection of the amino group and intro-
duction of a terminal alkyne group gave intermediate 10.
We first took the approach of attaching the boronic
acid to nucleoside 10 followed by phosphorylation.
Unfortunately, the incorporation of the boronic acid
moiety made the phosphorylation very difficult (results
not shown). As a consequence, we were unable to obtain
the final product using this method. We suspect that the
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boronic acid moiety interferes with the phosphorylation
because of the presence of two hydroxyl groups on the
deoxyribose moiety or the difficulty in drying this highly
polar and hygroscopic compound, though we did not
analyze every component of the reaction mixture.
Therefore, we turned to the second approach of preparing
the triphosphate (11) before attaching the boronic
acid moiety. The triphosphorylation of 10 allowed for
the synthesis of 11 (M-TTP). The subsequent Huisgen
cycloaddition allowed the tethering of the quinoline
boronic acid moiety to give 12. The final product
was purified by a Sephadex-DEAE A-25 followed by
ion-exchange HPLC. Thermal stability studies using
NMR under PCR conditions demonstrated that the
boronic acid moiety does not present additional stability
problems.
Since the goal is the incorporation of the boronic

acid moiety into DNA, primer extension using B-TTP (12)
was conducted using a short sequence of 21-nt template
(50-GGTTCCACCAGCAACCCGCTA-30, molecular
weight¼ 6336.2Da) as the template and a 14-nt primer
(50-TAGCGGGTTGCTGG-30, molecular weight¼
4350.8Da). The primer extension reaction using natural
TTP yielded a DNA product with molecular weight
of about 6512 a as determined using MALDI mass
spectrometry (calculated molecular weight: 6518.2 a)
(Figure 1). The same reaction using B-TTP yielded a
DNA product with a molecular weight of about 6941Da
(calculated molecular weight: 6930.2Da). Such results

clearly demonstrated the successful incorporation of the
boronic acid-labeled thymidine unit.

More detailed examination of the B-TTP incorporation
was conducted through the extension of a 21-nt primer on
a 55-nt template. This longer template has three As in
the sequence allowing for the incorporation of three Ts
or labeled Ts. We first studied the time-dependent
incorporation of B-TTP compared with natural TTP
using a 32P-labeled primer. Gel electrophoresis results
showed that the full-length DNA was obtained from
primer extension reactions (Figure 2a) that was confirmed
by mass spectrometry. Furthermore, there was no notice-
able difference in the rate of incorporation of natural
TTP and B-TTP (12). For example, at 0.5min,
neither the B-TTP nor the natural TTP was incorporated
significantly. From time 0 to 15min, there was
time-dependent incorporation in both cases. At 15min,
both reactions reached maximal incorporation. Control
reactions with only the primer, without enzyme
and without added TTP or labeled TTP showed no full-
length DNA formation. (The smear in the third lane
without TTP was from mismatch pairing and
incomplete reaction.) All these indicate that the boronic
acid-labeled base, B-TTP (12), was recognized by
the Klenow fragment at approximately the same
level as natural TTP. It is interesting to note that the
B-TTP DNA and TTP-DNA were not well
separated when using 19% acrylamide gel (Figure 2a),
but were well resolved when using 15% acrylamide
gel (Figure 2b).

In order to allow for quick confirmation of boronic acid
incorporation into DNA using electrophoresis, we have
also developed a gel-shift method by using a low
percentage of acrylamide (1%) modified with catechol,
that was synthesized as shown in Scheme 3. Because
catechol is known to form a tight complex with the
boronic acid moiety (43–45), such gels are expected to
exert extra retention power for boronic-acid-containing
DNA and therefore allow for their separation from
natural DNA of the same length and composition.
Figure 3 shows the successful application of such a
catechol-embedded acrylamide gel and its ability to
differentiate the boronic acid-labeled DNA from that of
the natural one. Specifically, when analyzed on the
catechol-modified acrylamide gel, only the natural and
non-boronic-acid-modified DNA (using M-TTP, 11)
showed the same retention. The DNA labeled with
boronic acid through the incorporation of B-TTP (12)
moved more slowly compared with the other two as
expected based on the known interaction between boronic
acid and catechol (43–45). This was confirmed by co-
loading these two different samples on the same lane
(Figure 3).

With the demonstration of incorporation of the
boronic acid-labeled TTP, next it was important to
examine whether the boronic acid-labeled DNA could
serve as a template for further polymerization and
amplification.

To demonstrate the recognition of boronic acid-labeled
full-length DNA as templates by the Klenow fragment,
two 20-nt primers for the 50- and 30-ends, respectively,

Figure 1. The MALDI-TOF mass spectrometric analysis of primer
extension products on a 21-nt template using TTP (top, showing
a mixture of template and TTP product) and B-TTP (bottom: showing
a mixture of template and B-TTP product). The mass difference of
418.6 reflects the incorporation of the boronic acid-labeled thymidine
moiety.
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were synthesized (Figure 4). The polymerase reactions
using the boronic acid-labeled DNA as the template
and with M-TTP (11), TTP or B-TTP (12) and the other
three dNTPs as the monomers were carried out first
with primer 1, which is complementary to the 30-terminus
of the full-length DNA. After primer extension, the full-
length DNA obtained was purified by membrane filtra-
tion to remove the labeled and non-labeled dNTPs. Then
further polymerization was conducted using natural
dNTPs and 50-32P-labeled primer 2, which is complemen-
tary to the 30-terminus of the polymerized full-length
DNA templates. Gel electrophoresis of the DNA products
shows no noticeable differences between the experiments
using natural and labeled full-length DNA as templates,
indicating that all full-length DNA templates generated
using M-TTP, TTP and B-TTP in the first primer
extension were recognized with a similar efficiency by
the polymerase (Figure 4). Such results are very critical
for future work.
In order to confirm the general feasibility of incorpor-

ating the boronic acid-labeled TTP (B-TTP) into DNA,
we have also carried out similar studies using a different
template. The results again demonstrated the synthesis
of the full-length DNA using B-TTP. Furthermore, using
an agarose gel run for a longer time, the boronic acid-
labeled DNA was differentiated from the natural DNA
that is consistent with the increased molecular weight of
the boronic acid-labeled DNA (Figure 5). It should be
noted that the boronic acid has a pKa of about 9 (46) and
is mostly charge neutral under the electrophoresis condi-
tions (buffer pH 8.3).

Figure 2. (a) Time-dependent primer extension using B-TTP and TTP: reaction was performed with 5mM 5050-32P-primer/template, 0.4mM of each
dNTPs, 0.4mM of B-TTP, and Klenow 0.04 units. Electrophoresis was conducted on 19% acrylamide gel. (b) Primer extension using B-TTP
analyzed on 15% acrylamide gel: reaction was performed with 5mM 5050-32P-primer/template, 0.4mM of each dNTPs, 0.4mM of B-TTP, and
Klenow 0.04 units. From left to right, lane 1 (from left): M-TTP-DNA; lane 2: co-spot of M-TTP-DNA and TTP-DNA; lane 3: TTP-DNA; lane 4:
co-spot of B-TTP-DNA, and TTP-DNA; lane 5 B-TTP-DNA, lane 6: primer.

Figure 3. Gel-shifting experiments of full-length natural and
boronic acid-labeled DNA using catechol-modified acrylamide gel:
reaction was performed with 5 mM 50-32P-primer/template, 0.4mM of
each dNTPs, 0.4mM of B-TTP and Klenow 0.04 units for 1 h;
the acrylamide gel was prepared with 19% acrylamide and 1%
N-[2-(3,4-dihydroxyphenyl)-ethyl]-acrylamide co-loaded lane 1. From
left to right: lane 1, M-TTP-derived DNA; lane 3, TTP-derived DNA;
lane 5, B-TTP-derived DNA; lane 6, primer; lane 2, M-TTP and
TTP-derived DNA co-loaded; lane 4, TTP and B-TTP-derived DNA
co-loaded.

Nucleic Acids Research, 2007, Vol. 35, No. 4 1227



CONCLUSIONS

A modified TTP nucleotide containing a boronic
acid functional group was synthesized using copper
(I)-catalyzed Huisgen cycloaddition. This boronic acid-
labeled nucleoside triphosphate can be incorporated into
DNA with a similar efficiency as the natural TTP. Further
DNA template efficiency studies indicated that the DNA
sequences containing labeled nucleotides served as tem-
plates very well. PCR amplification of the DNA with the
boronic acid-labeled TTP has also been achieved, indicat-
ing that B-TTP is stable under the elevated temperature.
Such studies lay the foundation for future development of
DNA-based boronolectins.

SUPPLEMENTARY DATA

NMR and MS spectra for compound 6–12 are available as
Supplementary Data at NAR online.
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