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Mixed-valence insulators with neutral Fermi
surfaces
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Samarium hexaboride is a classic three-dimensional mixed valence system with a high-

temperature metallic phase that evolves into a paramagnetic charge insulator below 40 K. A

number of recent experiments have suggested the possibility that the low-temperature

insulating bulk hosts electrically neutral gapless fermionic excitations. Here we show that a

possible ground state of strongly correlated mixed valence insulators—a composite exciton

Fermi liquid—hosts a three dimensional Fermi surface of a neutral fermion, that we name the

“composite exciton.” We describe the mechanism responsible for the formation of such

excitons, discuss the phenomenology of the composite exciton Fermi liquids and make

comparison to experiments in SmB6.
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E lectronic solids where the valence of one of the constituent
elements is non-integral show a number of fascinating
properties1,2 arising from the Coulomb interaction between

electrons. Of interest to us in this paper is a class of mixed-
valence (MV) systems, a classic example being SmB63,4, where a
high temperature metallic state evolves into an insulator at low
temperatures. Attention has been refocused on this material in
recent years following the proposal5 that it may be an interaction-
driven topological insulator (TI)6,7. There is compelling evidence
now for metallic surface states in this material (of possibly
topological origin) despite an electrically insulating bulk at low
temperatures from predominantly transport8–13 and other
measurements14. A different fascinating aspect of a number of
MV insulators, including SmB63,4, are various thermodynamic
and transport anomalies at low temperatures, apparently at odds
with an insulating behavior in the bulk. Traditionally, these
anomalies have often been attributed to the presence of in-gap
states. An interesting development was the observation of
quantum oscillations (QO) in magnetization, first reported in
SmB6 by Li et al.15 and interpreted as additional evidence for the
two-dimensional metallic surface states.

However, subsequent measurements of QO in magnetization
in SmB6 by Tan et al.16 observed frequencies corresponding to
almost half of the bulk Brillouin zone. Tan et al.16 found that the
frequencies, the cyclotron mass and the amplitude of the oscil-
lations are quite similar to the measured quantum-oscillations in
the other metallic hexaborides RB6 (R≡ La, Pr, or Ce)17–20.
Moreover the measured density of states from the low-
temperature specific heat is in good agreement with the value
obtained from quantum oscillations21. Based on these observa-
tions ref. 16 raised the surprising possibility that the quantum
oscillations are a property of the electrically insulating bulk. They
also suggested that the oscillations originate from the same in-gap
states responsible for the low temperature anomalies which have
since been re-examined closely. However it has also been argued
more recently22 that some of the same QO results can be
explained using a purely two-dimensional model of the metallic
surface states. The low temperature anomalies include a finite
linear specific heat coefficient16,23,24 and bulk optical conductivity
below the charge-gap25. Furthermore, a field-induced thermal
conductivity proportional to the temperature has been reported
in some samples21 (though this feature does not seem to be
present universally26,27). Taken together these measurements
suggest the presence of a Fermi surface of electrically neutral
fermions in the bulk that nevertheless couple to the external
magnetic, but not to weak DC electric-fields.

Inspired by the current baffling experimental situation, we are
led to a number of theoretical questions. Can MV insulators host
Fermi surfaces of neutral fermionic quasiparticles? If so, what is
the origin of the neutral (fermionic) excitation and what con-
strains the volume of the Fermi surface? What are the thermo-
dynamic and transport signatures of phases with such neutral
fermionic excitations? Can Fermi surfaces of neutral fermions,
that do not couple directly to the external magnetic-field, give rise
to quantum oscillations? In a separate development, it has been
pointed out28,29 that under certain conditions, even band-
insulators with gaps smaller than the cyclotron energy can
exhibit quantum oscillations.

In recent years, a number of triangular lattice organic materials
close to the Mott transition have been shown to act as charge-
insulators but thermal metals30–33, where the electron appears to
have splintered apart into fractionalized excitations (“partons”)
34,35; while the charge degree of freedom can remain gapped, the
spinful, neutral spinon can form a Fermi surface. The possibility
of observing quantum oscillations for such neutral spinon Fermi
surfaces has been addressed previously by Motrunich36. However,

strongly correlated mixed-valent insulators are far from being a
Mott insulator, thereby requiring a different microscopic
mechanism to stabilize such a neutral Fermi surface.

Here we show that in the limit of strong Coulomb interactions
in a mixed-valence insulator, there is a well defined mechanism
for the formation of an electrically neutral fermionic quasiparticle
—dubbed the fermionic composite exciton (ce)—that can form a
Fermi surface; the resulting phase—the composite exciton Fermi
liquid (CEFL)—is electrically insulating but will have a neutral
fermi surface. We show that the CEFL shares a number of fea-
tures with the observed phenomenology in SmB6. We also note
that while the present work is motivated by the recent experi-
ments in SmB6, it is potentially relevant to other mixed-valence
insulators2,14, such as SmS under pressure, YbB12 etc.

Results
Electronic structure. The electronic configuration of Sm is [Xe]
4f65d06s2. In SmB6, the valence of Sm is known to fluctuate
between Sm2+ and Sm3+ with an average valence of ~ 2.637,38.
There is strong spin–orbit coupling in this material and the
six-fold degeneracy of the J ¼ 5

2 orbital is lifted due to crystal field
splitting, giving rise to a quartet (Γ8) and a doublet (Γ7). The
five-fold degenerate d–orbitals split up into a doublet (eg) and a
triplet (t2g). The ground state of Sm in SmB6 is in a coherent
superposition of 5d1 (eg)+ 4f5 (Γ8)⇋ 4f6. In contrast, the ground
state of La in metallic LaB6 has an electronic configuration of [Xe]
5d16s2 and there are no f–electrons.

Band-structures for the surface as well as the insulating bulk39

have been modeled using multi-orbital tight-binding models40,41,
but we focus here on the simplest two-band model for a mixed-
valence compound in three dimensions2 to illustrate the key ideas.
In particular, we will restrict ourselves to the situation where both
the d and f orbitals are treated as doublets instead of quartets.

Model. We start with a band of d–conduction electrons, where
drσ is the annihilation operator for a d–electron at site r with spin
σ, and a heavy band of f electrons, where frα is the annihilation
operator for an f–electron at site r and crystal-field multiplet
index α (both σ, α= ↑, ↓ and we drop the distinction between the
two from now on). As discussed above, it is appropriate to con-
sider a model where the f–valence fluctuates between nf= 1 and
nf= 2. With respect to the nf= 2 state, the above configurations
can be interpreted as an empty state and a state with one hole
respectively. We therefore carry out the following particle-hole
(PH) transformation fα ! εαβf

y
β ¼ ~fα where εαβ is the fully anti-

symmetric tensor and we have introduced ~f as the f–hole. The
standard periodic Anderson Hamiltonian42, but now written in
terms of the ~f –hole is given by,

H ¼ P
rr′;α

�tdrr′ � μdδrr′
� �

dyrαdr′α �
P
rr′;α

tfrr′
~f yrα~fr′α

þP
r;r′

εβγVαβ r� r′ð Þdyrα~f yr′γ þH:c:
h i

� Udf
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r � 1

� �
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ð1Þ

where n
~f
r =
P

α
~f yrα~frα = 2� nfr , with nfr =

P
α f

y
rαfrα and

ndr =
P

α d
y
rαdrα. Udf is a repulsive density–density interaction

between the f and d–electrons (or equivalently, it represents an
attractive interaction between the ~f –hole and the d–electron) and
Uff represents a large on-site Coulomb repulsion between the
~f holes. The hoppings for the d–electron (~f –hole) are given by tdrr′
(tfrr′), with td

�� ��� tf
�� �� and μd represents the chemical-potential
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for d–electrons. The hybridization, Vαβ, between the d and f
electrons, has odd parity Vαβ(−k)=−Vαβ(k).

We are interested in the limit of Uff →∞, and Udf large but
finite. We use here a slightly different variant of the standard
slave-boson representation43,

~frα ¼ brχrα; ð2Þ

where we have fractionalized the ~f –hole into a spinless boson
(“holon”), b, that carries the physical, negative (−1) electro-
magnetic charge (i.e., opposite to electron charge) under the
external gauge-field, Aμ and a neutral fermion (“spinon”), χα, that
carries the spin (α); see Fig. 1a. There is a redundancy associated
with the above parametrization χ → χαe−iθ, b → beiθ which leaves fα
invariant. We therefore assume that the holon (spinon) carries a
unit positive (negative) charge under an emergent U(1) gauge-
field aμ= (a0, a). We are interested in describing phases with a
charge-gap (i.e., insulators) where the holon remains uncon-
densed, bh i ¼ 0 and where the Fermi surface of the d–electrons is
absent. The above definition in terms of the partons is to be
supplemented with a gauge-constraint, that ensures restriction to
gauge-invariant states in the Hilbert space, of the form
byrbr = χyrαχrα. We impose an additional hard-core constraint on
the bosons, i.e., byrbr � 1, which ensures no double occupancy of
the ~f –hole; the total density of doped holes is then

P
r b

y
rbr =P

r
~f yrα~frα. (See the Methods section for a comparison to the

standard slave-boson representation.)

Composite excitons. The global requirement for obtaining a
mixed-valence insulator, that is also consistent with the known
electronic count in SmB6 is

P
r
~f yrα~frα =

P
r d

y
rσdrσ (equivalently,P

r dyrσdrσ þ f yrαfrα
� �

= 2), which when combined with the above
constraints automatically implies nb= nd. As a result of the
attractive interaction (Eq. (1)) between the ~f –holes and
d–electrons (Udf > 0), there is now an attractive interaction
between the holons and the conduction electrons. For sufficiently
strong attraction, it is therefore possible to form bound states of
the conduction electrons and the holons to form a neutral

fermionic composite exciton (fCE),

ψkα � bdkα;ψ
y
kα � b� dykα: ð3Þ

The above quasiparticle is electrically neutral but is charged
under the internal U(1) gauge field associated with the slave boson
construction (see Fig. 1b); at a finite density it can form a Fermi
surface that is minimally coupled to the emergent gauge-field aμ.
Note that in our specific example, as a result of the hard-core
constraint, the number of bosons are guaranteed to be equal to the
number of conduction electrons and therefore, the number of fCE is
identical to the number of conduction electrons, i.e., nψ= nd. The
volume of the Fermi surface of the ψ fermions will then be identical
to the volume of the original conduction (d–)electron Fermi surface.

The effective Hamiltonian that describes the low energy
physics, after the conduction electrons have formed bound states
with the holons can be expressed as,

H′¼ P
k;α

εCEψ
y
kαψkα þ

P
k;α

εχ;k χ
y
kαχkα

þ P
rr′;αβ

εβγVαβ r� r′ð Þψy
rαχ

y
r′γ þH:c:

h i
þ ¼ ;

ð4Þ

where εCE is the fCE dispersion (see Methods section for an
estimate of the nearest neighbor fCE hopping) and εχ,k is the
spinon dispersion. Note that, by construction, the holon is
gapped. On the other hand as a result of the complete binding of
all the d–electrons to form fCE, the charged d–excitations are also
gapped. The ellipses denote various allowed terms; one such term
(among others) is the exchange interaction between the f
moments,

Hex ¼ JH
X
r;r′h i

Sr � Sr′; ð5Þ

which also modifies the dispersion for the spinon bands, with the
hopping tχ set by tf, JH and the holon hopping (see Supplementary
Note 1).

For a finite V, the fCE band hybridizes with the spinon band to
yield renormalized bands as shown in Fig. 1c (see Methods
section). It is convenient to carry out a PH transformation on

Composite
exciton

b -holon

~

χ-spinon
f -hole

a

b

k

�

�X

�CE

c

Fig. 1 Route to composite exciton Fermi liquids. a Slave-boson representation for the ~f–hole in terms of a holon (blue circle) and spinon (black arrow),
coupled mutually to a (zigzag line). b Strong binding of the conduction d–electron (red circle with arrow) to the holon leads to formation of a fermionic
composite exciton coupled to the same a. c Two-band model when the f–valence fluctuates between nf= 1 and 2. The composite exciton dispersion εCE
(blue dashed line) and a narrow spinon dispersion εχ (orange dashed line) shown for the gauge-invariant combination ζ= tCE/tχ > 0. The hybridization
between the two gives rise to two bands (orange and green solid lines) and as a result of the filling leads to a semi-metallic state (yellow shaded regions),
where the volumes of the two pockets are equal. For ζ < 0, the resulting state would be an insulator
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χrα ! ~χrα � εαβχ
y
rβ. Then,X
r

nψr ¼
X
r

nχr ¼
X
r

2� n~χr
� �

: ð6Þ

A finite tχ is necessary to get crossings at the fermi-level; one
then obtains an electrically neutral semi-“metal” with “particle”
and “hole” pockets with equal volume. The Fermi surfaces thus
obtained have both fCE and spinon character; from now on we do
not distinguish between the two. Note that the hopping
amplitudes for the fCE and spinon are not individually gauge-
invariant, unlike the gauge-invariant ratio ζ= tCE/tχ. Which sign
of ζ is preferred depends on various microscopic details; if ζ < 0 (ζ
> 0) the ground state will in fact be an insulator (semi-metal) of
fCE and spinons.

Let us now briefly describe a possible mechanism that allows
the insulating bulk hosting a CEFL to coexist with a metallic
surface. Previously, it has been argued44 that the Kondo-screening
can be reduced significantly near the surface leading to “Kondo-
breakdown,” in which the f–moments decouple from the
conduction electrons, giving rise to quasiparticles that are lighter.
As a result of surface-reconstruction and screening effects45, it is
also possible that the ratio Udf/td is smaller close to the boundaries
than in the bulk. The weaker attraction between the holon and
the conduction electrons can then lead to an unbinding of the fCE
close to the surface, thus liberating the holon and the conduction
electron within a length scale, ξ, from the surface (Fig. 2). The
unbound holons can then Bose condense near the surface,
confining the gauge-field, thereby rendering the originally neutral
fermions with physical charge. In this way, one may recover
metallic quasiparticles at the surface as a result of unbinding of
the fCE. Moreover, depending on the details of the fCE dispersion
(which may be itself topological) and the odd-parity hybridiza-
tion, Vαβ(k), it is possible for the metallic quasiparticles at the
surface to realize topologically protected surface-states. We leave
a discussion of the detailed quantitative theory for future work.

Phenomenology of CEFL. Returning now to a description of the
bulk, the low-temperature specific heat is dominated by the

fluctuation of the fermion-gauge field system. As a result of the
gauge-field fluctuations (see Methods section and the Supple-
mentary Note 2 for a discussion of the low-energy field theory)
the low-T specific heat46,47 is given by,

C ¼ γT; where γ � lnð1=TÞ: ð7Þ

Measurements of specific heat in SmB6 do report a linear in T
specific heat16,23,24. Moreover the gapless fCE excitations along
the neutral Fermi surface contribute to the NMR spin-lattice
relaxation rate, 1/T1, in the usual way,

1
T1T

¼ const: ð8Þ

Measurements on SmB6 support such metallic 1/T1T behavior
(V. Mitrovic, personal communication)48. Note that however as a
result of strong spin-orbit effects, the above quantity need not be
related to the Knight-shift by Korringa’s relation.

The mere presence of a charge-gap in the system does not
imply a lack of sub-gap optical conductivity49; the only physical
requirement is that the conductivity vanish as ω → 0. We are
interested here in the form of Re[σ(ω)] at low, but finite,
frequencies. We apply the Ioffe-Larkin rule to the (fCE+ holon)
system50 (see Supplementary Note 3 for details) and relate the
holon-response to a dielectric constant, ϵb. We expect the
response of the fCE to be similar to that of a metal at low but
non-zero frequencies with Re σCEðωÞ½ 	 � ω and
Im σCEðωÞ½ 	 
 Re σCEðωÞ½ 	. Then,

Re½σðωÞ	 ¼ ω2 ϵb � 1
4π

	 
2 1
Re σCEðωÞ½ 	 ; ð9Þ

where the fCE conductivity can be expressed in the generalized
Drude form σCE(ω)= ρ/(Γ(ω)− iω), with Γ(ω) a frequency
dependent scattering rate and ρ is defined to be the total optical
weight. At low ω, where ΓðωÞj j 
 ω, the real part of the
conductivity can be evaluated as51,52

ω2 Re σCEðωÞ½ 	 � ρRe½ΓðωÞ	: ð10Þ

Depending on the mechanism responsible for relaxation of
currents, one can then obtain different results for Γ(ω); we discuss
the different regimes in the Methods section. Recent measure-
ments of optical-conductivity in the THz regime in SmB625 find
appreciable spectral weight below the insulating gap, much larger
than any imaginable impurity band contribution.

After integrating out all the matter-fields, the ground-state
energy of the system in the limit of weak fields follows from
gauge-invariance,

uðb;BÞ ¼ u0 þ
ðb� BÞ2

2μb
þ b2

2μCE
þ B2

2μv
þ uoscðbÞ þ ::; ð11Þ

where μb, μCE, μv represent the permeability of the gapped holons,
composite-excitons and the background “vacuum” respectively;
all of these quantities depend on the UV details of the underlying
theory. uosc(b) is the oscillatory component, relevant for our
discussion on quantum-oscillations and the ellipses denote
additional higher order terms. In the limit of a small B, the
internal b can optimize itself in order to minimize the energy;
ignoring the oscillatory component in Eq. (11), the optimum

�

Fig. 2Metallic surface with insulating CEFL bulk. The bulk realizes a CEFL, a
compensated semi-metal with particle and hole-like pockets (as shown in
Fig. 1c), that have both fCE and spinon-like character (see Fig. 1a, b for a
carricature of the excitations). Upon approaching the surface, it possible for
the fCE to unbind as a result of reduced Udf/td in a region of typical size ~ξ,
thereby liberating the d–electrons and holons, which may Bose condense.
The latter leads to confinement and the resulting state is then a decoupled
metallic surface. Only the top and bottom surfaces are shown for clarity

ARTICLE NATURE COMMUNICATIONS | DOI: 10.1038/s41467-018-04163-2

4 NATURE COMMUNICATIONS |  (2018) 9:1766 | DOI: 10.1038/s41467-018-04163-2 | www.nature.com/naturecommunications

www.nature.com/naturecommunications


value is

b ¼ b ¼ αB;withα ¼ μCE
μCE þ μb
� � ð12Þ

an O(1) number that is a priori unknown. In the regime where
μCE � μb, b locks almost perfectly to the external B (i.e., α → 1).

The period of the oscillations is then (see Methods section)53,

Δ
1
B

	 

¼ 2π

Si?
1þ μb

μCE

	 
�1

¼ 2πα
Si?

; ð13Þ

where Si? is the cross-sectional area of the fCE Fermi surface sheet
i perpendicular to B. In the limit where α → 1 (i.e., where b → B),
the period is directly related to the volume of the composite
exciton fermi surface, but in general it can be significantly
different depending on the value of α. Including the
effect of impurities broadens the Landau-levels and the
oscillation amplitude has an additional Dingle suppression
~exp(−1/ωc,iτi)54, where τi is the elastic lifetime and ωc,i is the
effective cyclotron energy in sheet i.

The low temperature thermal conductivity, κ, is dominated by
the fermionic contribution (i.e., the holon, the gauge-field and the
phonon contributions are expected to be small compared to the fCE
contribution) and there is no difference between the physical
thermal conductivity and the conductivity due to the fCE. Let us
first estimate the longitudinal thermal conductivity, κxx � κCExx , due
to the composite-excitons. We assume that the fermionic composite
excitons form a state akin to an ordinary metal for thermal
transport55, such that the longitudinal conductivity is given by

κxx ¼
X
i¼1;2

k2Bτi
9mi

2miεF
�h2

	 
3=2

T; ð14Þ

where εF is the Fermi-energy, mi represent the masses for the two
pockets and we have allowed for different lifetimes, τi, for the two
pockets. At zero magnetic-fields, all of the experiments on SmB6
find a value of κxx/T that extrapolates to zero as T → 010,26. There is
no consensus yet on whether κxx/T extrapolates to a finite value in
the limit of T → 0 at a finite magnetic field21,26. The presence of a
zero-field T-linear specific heat combined with an absence of a
finite T-linear thermal conductivity suggests the presence of either
a small zero-field gap that closes at higher fields, or, the presence
of localized states. Within the former scenario, it is plausible that
at zero-field and at low temperatures, the CE Fermi surfaces
undergo pairing to yield a gapped state with a small insulating gap,
that can be significantly smaller than the charge-gap.

We note that experimentally, the thermal conductivity
measurements have been carried out at very low temperatures
(<1 K) while the coefficient of the linear in T specific heat is
typically extrapolated from higher temperatures. The opening of a
small insulating pairing gap at a temperature Tp corresponds to
an actual phase transition in (3+ 1)–dimensions (in the Ising
universality class) with an associated divergence in the specific
heat. Interestingly, a number of experiments report a strong
upturn in the specific heat around ~1 K, which is believed to be
inconsistent with the usual Schottky contribution. Within the
above scenario, it is plausible that the upturn in the specific heat
is associated with the onset of the divergence around Tp ≈ 1 K.

It is also useful to estimate the thermal Hall conductivity, κxy.
In the weak-field regime, as noted previously, the composite
excitons move essentially under the effect of an effective magnetic
field b and are subject to the Lorentz force associated with this
field. However note that the two pockets contribute to the
thermal Hall response with opposite signs. We know semi-

classically that for each pocket

κixy ¼ ωc;iτi

� �
κixx; ð15Þ

where ωc;i ¼ e bj j=mi = αe Bj j=mi and κixx can be read off from Eq.
(14) above. The total thermal Hall response is the difference of
the response for the “particle” and “hole”-like pockets. Observa-
tion of a non-zero thermal Hall effect is a good indicator that the
parameter α—which determines the magnitude of orbital effects
of the external magnetic field—is not too small. In SmB6, if the
quantum oscillations truly arise from the bulk neutral fermi
surface of composite excitons as a result of the mechanism
proposed above, then that necessarily implies a finite bulk
thermal Hall response. However, we note that since the system is
analogous to a compensated semi-metal, the thermal Hall effect is
expected to be vanishingly small at higher fields when ωc,iτi≳ 1.

Let us finally address the fate of the fCE semi-metal phase as it
is doped away from the mixed-valence limit by excess d–electrons
or holes (e.g., by chemical substitution or by gating thin films).
There are two natural outcomes: if the holon remains uncon-
densed, the d–electrons (or holes) can form a “small” Fermi
surface while the neutral fCE Fermi surface continues to be
present. This phase is the familiar (mixed-valence) fractionalized
Fermi-liquid (FL*)56. On the other hand, if the holons condense as
a result of doping away from the mixed-valence limit, the CE
fermi surfaces become Fermi surfaces of physical electrons (and
holes) as a result of confinement. The exact outcome is sensitive to
microscopic details and is beyond the scope of our discussion here.

The mechanism responsible for the formation of the fermionic
exciton is physically distinct from the one responsible for the
conventional bosonic exciton1. A few recent theoretical studies
have tried to address the origin of the low-energy bulk
excitations in SmB6 using a variety of different approaches57–59.
The CEFL is strikingly distinct from these previous proposals—
unlike refs. 58,59 the composite exciton is not a Majorana fermion,
and unlike ref. 57, the composite exciton has Fermi statistics and
forms a Fermi surface (see Supplementary Note 4 for a more
detailed comparison).

Discussion
We have described a phase of matter with a neutral Fermi surface
of composite excitons in a mixed-valent insulator with a charge-
gap. A number of properties associated with such a phase
resembles the experimental results in bulk SmB6. Future
numerical studies of the periodic Anderson model in the insu-
lating regime and in the presence of strong interactions may be
able to shed light on questions related to energetics and stability
of various phases. We also note that more recent measurements
on a mixed valence insulator compound different from SmB6,
that displays clear bulk quantum oscillations and has metallic
longitudinal thermal conductivity down to the lowest measurable
temperatures at zero field, in a clear indication of the formation of
a Fermi surface of neutral fermions (L. Li, Y. Matsuda, and T.
Shibauchi, personal communication).

Methods
Slave-boson representation. In order to motivate the rationale behind choosing
the prescription in Eq. (2), recall that the standard slave-boson representation
proceeds as,

~frα ¼ hyrχrα; ð16Þ

where hr is a spinless bosonic holon with the constraint hyrhr þ
P

α χ
y
rαχrα ¼ 1.

Consider now the scenario where the h–holons are perturbed away from a Mott-
insulating state with hh i ¼ 0 and hyrhr

� � ¼ 1� x (where x represents the density of
doped holes away from the 4f6 configuration). The two representations are then
physically equivalent if we make the transformation hyr ! br and byrbr

� � ¼ x; for a
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concrete scenario, consider, e.g., the quantum rotor model where hyr ¼ eiθr and nhr
is the boson density conjugate to θr.

Fermionic composite exciton hopping. Consider the limit where there is a clear
hierarchy of scales: Uff � Udf � td � V and where td is the nearest neighbor
hopping for the d–electrons. In this regime, the nearest neighbor hopping ampli-
tude for a single fCE is approximately given by (see Supplementary Note 1)

tCE � td
tf
Udf

 !
; ð17Þ

where tf is the effective nearest neighbor ~f –hole hopping. There is, in principle, a
very strong on-site repulsion set by Uff for the fCE, as a result of the constraint of
no double occupancy for the hard-core holons. However, if the binding is not
purely on-site and has some finite extent, the repulsion between the fCE can be
renormalized down from the bare Uff and the resulting state can be described
within a weakly interacting CEFL.

The fermionic exciton is clearly significantly different from the more
conventional bosonic exciton1,57,60 that has been discussed in the context of
semimetals and narrow gap semiconductors. The latter arises in the limit where Udf

dominates over Uff. In contrast, as shown above, the fermionic exciton is expected
to arise naturally in the limit where Uff � Udf , which is a more realistic regime for
mixed-valent systems. Fermionic composite excitons have also been discussed
recently in the context of multi-component quantum hall states61.

Low energy field theory for CEFL. Let us describe the low-energy effective field
theory for the CEFL phase described in the main text56. The composite exciton,
ψkα,i, with i= 1, 2 representing the two pockets, is coupled minimally to aμ and the
non-relativistic b holons at a finite chemical potential, μb > 0, are coupled mini-
mally to Δaμ= aμ− Aμ (see Supplementary Note 3 for a more complete discus-
sion). Let us first discuss the form of the gauge-field propagator, Dij(iωn, q)≡
ai iωn; qð Þaj �iωn;�qð Þ
D E

where we choose to work in the Coulomb gauge ∇ · a=
0, with a being purely transverse. As a result of the minimal coupling, integrating
out the fCE excitations leads to a Landau-damped form of the propagator,

Dij iωn; qð Þ ¼ δij � qiqj=q
2

Ξ ωnj j=qþ βq2
; ð18Þ

where Ξ, β are constants determined by details of the fCE dispersion.
For the specific non-relativistic form of the theory for the holons, there are no

holons in the ground state and the only holon self-energy, Σb, contribution arises as
a result of the coupling to the gauge-field and Σb iωn; qð Þ ~
q2 1þ c ωnj jln 1= ωnj jð Þ þ ¼ð Þ at T= 0, where c is a constant. The above correction
is less important than the bare terms in the holon action and can therefore be
ignored.

Finally, as a result of the coupling to the gauge-field fluctuations, the fermions
have a self-energy,

ImΣCEðωÞ � ω; ð19Þ

upto additional logarithmic corrections.

Alternative route to CEFL. We demonstrate here an alternate route toward
arriving at a description of the bulk CEFL phase from a different starting point.
Consider a compensated semi-metal with (physical) d–electron and f–hole pockets.
We are interested in driving the semi-metal into an insulating phase in the pre-
sence of strong interactions. The Hamiltonian is given by,

Hcsm ¼ �P
rr′

tdrr′d
y
rαdr′α þ

P
rr′

tfrr′f
y
rαfr′α

þP
rr′

εαβVrr′d
y
rαf

y
r′β þ Hint;

ð20Þ

where the hoppings td, tf are positive and V denotes the hybridization. We will
specify the form of Hint momentarily.

Consider setting V= 0 for now and using the slave-rotor formalism to
represent the electronic operators as,

drα � eiθrψrα; frα � e�iθr χrα; ð21Þ

where the rotor field, eiθr , carries physical charge and the spinful fermions ψα, χα
are electrically neutral. Let nr be the boson density conjugate to the rotor field.
Then the gauge-invariant states satisfy the constraint: nr þ nψr � nχr ¼ 0, where
ndr ¼ nψr ; n

f
r ¼ nχr . Let us then consider the interaction term to be of the form,

Hint ¼ U
X
r

ndr � nfr
� �2! U

X
r

n2r : ð22Þ

It is then clear that at small U (compared to the hoppings), the rotor fields
condense eiθr

� �
≠0 and we recover the compensated semi-metal phase. At strong U,

one can drive a “Mott”-transition to a phase where the rotor-fields are gapped

eiθr
� � ¼ 0 (i.e., to an insulator) where the ψ, χ fermions can form Fermi surfaces,
inherited from the original d, f Fermi surfaces. This is the CEFL phase. Both phases
are stable to having a small V.

Optical conductivity of CEFL. As introduced in Eq. (10), in the regime where Γ(ω)
arises primarily due to scattering of the fermions off the gauge-field fluctuations
and where the effects of static disorder can be ignored (i.e., the mean-free path, ‘mf ,
is long), Γ(ω) ~ ω5/3. In three dimensions, this arises from the fCE self-energy,
ImΣCE(ω) ~ ω (upto additional logarithms) and includes two extra powers of
qj j � ω1=3. Hence, under these set of assumptions, Re[σ(ω)] ~ ω2.33.

On the other hand, in the regime where Γ(ω) still arises due to scattering of the
fermions off the gauge-field fluctuations, but the finite ‘mf modifies the ωj j=q form in
the gauge-field propagator (Eq. (18)) around q � ‘�1

mf , Γ(ω) ~ω2, and Re[σ(ω)] ~ω2.
Finally note that the fCE density can couple to the local disorder-potential and Γ

may be dominated entirely by a frequency independent elastic scattering-rate (Γ0);
then Re[σCE(ω)] ≈ ρ/Γ0 which leads to Re[σ(ω)] ~ ω2. Similarly, as a result of
localization effects, it is possible for ΣCE(ω) to vanish much faster than ω such that
Re[σ(ω)] ≈ Re[σCE(ω)], in which case results for strongly disordered metals will
apply.

Quantum oscillations in CEFL phase. For small fields the energy in Eq. (11) can
be rewritten as,

uðb;BÞ ¼ u′0ðBÞ þ
ðb� bÞ2
2μeff

þ uoscðbÞ; ð23Þ

u′0ðBÞ ¼ u0 þ
1
2

1
μv

þ 1
μb þ μCE

	 

B2; ð24Þ

and μ�1
eff ¼ μ�1

b þ μ�1
CE. At zero temperature, the oscillatory component is given by53,

uoscðbÞ ¼
χiosc
2

bj j5
2πSi?

	 
1=2

f
2πSi?
bj j

	 

; ð25Þ

f ðxÞ ¼
X1
n¼1

ð�1Þn
n5=2

cos 2πnx � π=4ð Þ; ð26Þ

where χiosc sets the scale for the overall amplitude of the oscillations from the Fermi
surface sheet i.

Data availability. All relevant data are available from the authors upon reasonable
request.
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