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High endothelial venules (HEVs) and lymphatic vessels (LVs) are essential for the function 
of the immune system, by providing communication between the body and lymph 
nodes (LNs), specialized sites of antigen presentation and recognition. HEVs bring in 
naïve and central memory cells and LVs transport antigen, antigen-presenting cells, 
and lymphocytes in and out of LNs. Tertiary lymphoid organs (TLOs) are accumulations 
of lymphoid and stromal cells that arise and organize at ectopic sites in response to 
chronic inflammation in autoimmunity, microbial infection, graft rejection, and cancer. 
TLOs are distinguished from primary lymphoid organs – the thymus and bone marrow, 
and secondary lymphoid organs (SLOs) – the LNs, spleen, and Peyer’s patches, in that 
they arise in response to inflammatory signals, rather than in ontogeny. TLOs usually 
do not have a capsule but are rather contained within the confines of another organ. 
Their structure, cellular composition, chemokine expression, and vascular and stromal 
support resemble SLOs and are the defining aspects of TLOs. T and B cells, antigen-
presenting cells, fibroblast reticular cells, and other stromal cells and vascular elements 
including HEVs and LVs are all typical components of TLOs. A key question is whether 
the HEVs and LVs play comparable roles and are regulated similarly to those in LNs. 
Data are presented that support this concept, especially with regard to TLO HEVs. 
Emerging data suggest that the functions and regulation of TLO LVs are also similar to 
those in LNs. These observations support the concept that TLOs are not merely cellular 
accumulations but are functional entities that provide sites to generate effector cells, and 
that their HEVs and LVs are crucial elements in those activities.

Keywords: lymph node, lymphatic vessel, high endothelial venule, tertiary lymphoid organ, autoimmunity, 
inflammation, cancer, lymphotoxin

inTRODUCTiOn

Goals
Lymphoid and stromal cells accumulate and organize into tertiary lymphoid organs (TLOs) at ectopic 
sites in response to chronic inflammation in autoimmunity, microbial infection, graft rejection, 
and cancer where they assume structural and cellular characteristics of lymph nodes (LNs). High 
endothelial venules (HEVs) and lymphatic vessels (LVs) play key roles in LNs in transporting cells 

Abbreviations: HEV, high endothelial venule; LEC, lymphatic endothelial cell; LN, lymph node; LT, lymphotoxin; LV, lymphatic 
vessel; SLO, secondary lymphoid organ; TLO, tertiary lymphoid organ.
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FiGURe 1 | High endothelial venules and lymphatic vessels in a TLO. 
A mouse salivary gland TLO. HEVs are stained red with an antibody to 
MECA-79. LVs are stained green with an antibody to LYVE-1. From 
“Transgenic LacZ under control of Hec-6ST regulatory sequences 
recapitulates endogenous gene expression on high endothelial venules” 
by Liao et al. (11). Copyright (2007) National Academy of Sciences, USA.
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and antigens from and to the body. The questions to be addressed 
here are whether the HEVs and LVs in TLOs function and are 
regulated in a manner similar to those in LNs.

Background
My research group became intrigued by the concept of TLOs in 
the course of two apparently unrelated series of investigations. 
The first was the characterization of mice that were transgenic 
for a construct of the rat insulin promoter driving expression 
of lymphotoxin alpha (LTα) (1) (in those days known as TNFβ, 
despite having been described as LT previous to the discovery of 
TNF). We made the rat insulin promoter lymphotoxin (RIPLT) 
mouse in order to develop a model of type 1 diabetes, since we 
knew that LT could induce inflammation. The transgene was 
not only expressed in the β cells in the islets of Langerhans in 
the pancreas as expected but also in the kidney and skin, most 
likely because the entire promoter with its negative regulatory 
elements was not included in the construct. At all sites of 
transgene expression, lymphoid cells accumulated, which were 
organized into distinct T and B cell areas (“compartmentaliza-
tion”). Despite several attempts to drive the animals to β cell 
destruction and diabetes, the mice were healthy (2) unless a 
costimulator molecule such as B7-1 was also expressed in the 
β cells. Thus, the model resembled the early peri insulitis and 
non-destructive insulitis of diabetes. At the same time, we were 
collaborating with David Chaplin on the LTα knock out mouse 
that has no LNs (3). We realized that the consequence of ectopic 
expression of LT in the RIPLT mouse was the production of 
organized infiltrates that resembled LNs. We called them TLOs 
(4), a term that had been previously used to designate any 
lymphoid infiltrate (5). The process by which TLOs arise and 
organize was designated as lymphoid neogenesis (4).

In later years, I became especially interested in the vasculature 
of TLOs as I realized that understanding how cells enter into 
TLOs would provide insight into this accumulation and would 
indicate whether or not the apparent organization reflected func-
tion. That is, the presence of HEVs might indicate that naïve cells 
could enter the TLO, and the presence of LVs could indicate a 
method of entrance of antigen-presenting cells, thus providing in 
a single location, the elements to generate an immune response. 
This manuscript addresses these questions.

TeRTiARY LYMPHOiD ORGAnS

Characteristics
Tertiary lymphoid organs, which have been described in almost 
every organ of the body, are also known as tertiary lymphoid 
structures, ectopic lymphoid tissues, or tertiary lymphoid tissues. 
They are distinguished from primary lymphoid organs – the thy-
mus and bone marrow, and secondary lymphoid organs (SLOs) – 
the LNs, spleen, and Peyer’s patches, in that they arise in response 
to inflammation or inflammatory cues, rather than in ontogeny 
and are ectopic to canonical lymphoid organs. They usually do 
not have a capsule but are rather contained within the confines 
of another organ.

Tertiary lymphoid organs are similar to LNs (6) with regard 
to their cellular content, stromal components, lymphoid 

chemokines (7), vasculature, and organization. Cells include 
compartmentalized T and B cells and antigen-presenting cells, 
including follicular dendritic cells and dendritic cells. CD8 
and CD4 subsets include naïve, Treg, and T follicular helper 
cells (8, 9). B cells may be organized into germinal centers with 
plasma cells. HEVs (10), LVs (11, 12) (Figure 1), and conduits 
with fibroblastic reticular cells (13), all components of LNs, have 
also been described. In LNs, CCL19 and CCL21 direct T cells 
and DCs to the paracortical region, and CXCL13 directs B cells 
to the B cell follicles. These chemokines and cells that express 
their receptors are also expressed in TLOs (7). TLOs can be dis-
tinguished from acute inflammation; they generally include few 
granulocytes, and they are not necessarily destructive, although 
they may transform into tissue damaging entities. The plasticity 
of TLOs is seen in the case of the infiltrates in the pancreas in 
type 1 diabetes in the NOD mouse. Initially, the cellular infiltrates 
are disorganized and lack HEVs; then the infiltrates assume the 
characteristics of TLOs, with T and B compartmentalization 
and HEVs and LVs (14, 15); later, the lymphoid cells become 
activated, β cells are destroyed, and eventually the inflammation 
and thus, the TLO, is resolved as antigen is eliminated.

Tertiary lymphoid organs differ from LNs in that they gener-
ally do not have a capsule, they are not confined to a fixed location 
in the body, they develop postnatally, and as noted above, they 
exhibit plasticity. This is not to say that LNs do not respond to 
their environment; they most certainly do with proliferation and 
changes in vasculature and cell and antigen accessibility in the 
course of inflammation [see, e.g., Ref. (16)].

Functions
Tertiary lymphoid organ functions vary depending on the 
location, stimulus and kinetics of inflammation, and cellular 
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activation. The strongest evidence that TLOs are harmful in exac-
erbating autoimmune disease derives from studies in rheumatoid 
arthritis. In some patients, evidence that somatic mutation and 
affinity maturation occur in the locus of the TLO in the joint 
provides support for a harmful role leading to determinant 
spreading. On the other hand, the presence of Tregs in some 
TLOs (17) suggests that they can play a beneficial role by 
limiting inflammation. Additional evidence for a beneficial 
role is provided from several clinical studies of cancer, which 
indicate that the presence of TLOs in tumors in breast, colon, 
or lung predicts a favorable outcome, suggesting that the TLO 
site provides a locus for antigen activation and destruction of 
tumor, reducing dissemination of the malignant cells through 
the body (18). Nevertheless, Tregs in tumor TLOs can act as 
brakes on their defensive role (19, 20).

Hevs: CHARACTeRiSTiCS, FUnCTiOnS, 
AnD ReGULATiOn in TLOs

Characteristics
The presence of HEVs could be considered an essential trait dis-
tinguishing TLOs from acute inflammation. The endothelial cells 
in postcapillary venules in TLOs, as in LNs, tonsils, and Peyer’s 
patches, exhibit a typical cuboidal appearance. LN HEVs express 
a particular set of genes that facilitate their interactions with 
blood stream naïve and central memory cells that result in rolling, 
firm adhesion, and transmigration from the vessel into the paren-
chyma. HEVs in TLOs express the same molecules: CCL21 (7), 
ICAM-1 (4), and peripheral and/or mucosal addressins, PNAd 
(10) and MAdCAM-1 (4). Expression of these proteins allows the 
egress from the blood stream into the parenchyma of LNs of cells 
of the naïve and central memory phenotype that express CCR7, 
LFA-1, L-selectin (CD62L), and α4β7.

Functions
The evidence is quite strong that HEVs in TLOs function 
similarly to those in LNs, allowing naïve and central memory 
cells to leave the blood stream and enter into the parenchyma 
of the tissue where they can interact with their cognate antigen. 
First, as noted above, they express the molecules that allow naïve 
and central memory cells to interact. Second, cells expressing 
CCR7, LFA-1, L-selectin (CD62L), and α4β7, the ligands for the 
receptors on HEVs, are found in TLOs. Third, several instances of 
T cell activation and memory generation occurring directly in the 
TLO have been described. These include generation of memory 
cells for graft rejection in skin TLOs (21) and presentation and 
activation of Teffector or Treg cells (19, 22). In vivo imaging of the 
transit of naïve cells into TLOs and their interaction with antigen-
presenting cells will solidify the conclusion that HEVs function 
similarly in LNs and TLOs, and that HEVs in TLOs are the sites 
of entrance of naïve cells to undergo activation and differentiation 
and generation of memory cells.

Regulation
High endothelial venules are regulated similarly in TLOs 
and  SLOs. LTα alone induces MAdCAM-1 in endothelial cells 

in vitro (23, 24), in vivo in mesenteric LN HEVs (16), and in HEVs 
in TLOs (23) through TNFR1 (25). Abluminal PNAd in LN HEVs 
is generated through modification of a variety of glycoproteins. 
These modifications include sulfation, which is essential for 
PNAd (also called L-selectin ligand) interaction with its receptor, 
L-selectin (CD62L) that is expressed on the surface of naïve and 
central memory lymphocytes. Sulfation is induced in peripheral 
LN HEVs by sulfotransferases (26, 27). LTαβ regulates the HEV 
sulfotransferase in both LNs (16, 28) and TLOs (10) through the 
alternative NFκB pathway (29).

Lvs: CHARACTeRiSTiCS, FUnCTiOnS, 
AnD ReGULATiOn in TLOs

Characteristics
Lymphatic vessels play key roles in the body in fluid and lipid 
balance. They are crucial in the immune system in providing 
communication of the lymphoid organs with the rest of the 
body. Lymphatic capillaries are thin-walled, blind-ended 
vessels that express CCL21, LYVE-1, PROX-1, podoplanin, 
VEGFR-2, and VEGFR-3 and are the initial entry point into 
LNs from the tissues for antigen and antigen-presenting 
cells. The endothelial cells on the tips of lymphatic capillaries 
are most frequently in a zipper-like arrangement (30). They 
connect to collecting vessels whose cells exhibit a button-like 
arrangement that are usually low or negative for LYVE-1, but 
do express PROX-1. The latter is especially highly expressed 
in valves that are characteristic of collecting vessels. A layer 
of smooth muscle cells surrounding collecting vessels contrib-
utes to their pumping action. Afferent collecting vessels carry 
substances to LNs, whereas efferent vessels allow egress of 
activated cells from the LN into the next LN in the chain and 
eventually into the blood stream via the right or left subclavian 
veins. In addition to serving as routes of fluid, lipid, cell, and 
cytokine transport, recent publications attest to the ability of 
LN LVs to present self or foreign antigens, either directly or by 
transfer to antigen-presenting cells (31–34).

Thin-walled vessels that are positive for lymphatic markers, 
including LYVE-1, PROX-1, podoplanin in mouse and human 
or D2-40 in human have been noted in many TLOs [summarized 
in Ref. (12)]. These include chronic kidney rejection (35, 36), 
cardiac allografts (37), transgenic mouse models (38), age-related 
Sjögren’s-like disease in the mouse (11), and a transgenic model 
of primary Sjögren’s in the mouse (Truman et al., in preparation). 
Confusingly, a reduced number of LVs in kidneys of mouse strains 
with a higher preponderance of spontaneous kidney TLOs have 
been noted (39). However, the latter report did not indicate the 
actual location of the LVs (i.e., in the vicinity or not of the TLO). 
CCL21-expressing TLO-associated vessels have been described 
in rheumatoid arthritis, Crohn’s disease, Sjögren’s syndrome, 
chronic allograft rejection (40), and pancreatic infiltrates in NOD 
(15) and RIPLTα mice (7). Nevertheless, much still needs to be 
learned. Collecting vessels with valves and smooth muscle cells 
neither have been specifically identified entering or leaving TLOs 
nor have the vessel walls been characterized with regard to their 
zipper or button-like morphology.
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Functions
Do the LVs in TLOs carry out the same functions as those in 
LNs? It is likely that they contribute to fluid drainage, although 
this has not been carefully analyzed. Do LVs carry antigen 
and cells to TLOs and cells away from TLOs, as do afferent 
and efferent vessels in LNs? TLO LVs frequently contain cells 
(11, 39), supporting the concept that they act as transporters 
as does their expression of CCL21 indicating they interact with 
CCR7-expressing cells. However, the fact that LVs in some 
TLOs appear to be packed with cells suggests that there could 
be a defect in cellular drainage and that their efferent function 
is compromised. Sphingosine-1 phosphate (S1P) is expressed in 
lymph and downregulates its receptor (S1P1) on lymphocytes. 
Lymphocytes in LNs reexpress the receptor and migrate toward 
the S1P in lymph and egress from the LN. FTY720 (fingolimod) 
is an agent that is used in transplantation and multiple sclerosis 
treatment that acts as an agonist for the receptor, causing its 
internalization resulting in lymphocyte accumulation in LNs 
(41), thus acting as an immunosuppressant. When NOD mice 
with pancreatic TLOs are treated with this agent, they are pro-
tected from islet destruction and diabetes, consistent with the 
concept that their LVs carry out an efferent function (42). In our 
hands, this treatment inhibits disease only at the time that the 
mice exhibit TLOs (15), although others have determined that 
FTY720 treatment is partially effective even after the develop-
ment of elevated blood sugar (43). The pancreatic TLOs exhibit 
an increased insulitis score after FTY720 treatment, indicating 
that cells are trapped in these structures. Within days of cessation 
of drug treatment, islet destruction and diabetes occurs (15, 42). 
These data are consistent with the concept that the S1P gradient 
affects lymphocyte trafficking in TLO LVs. Further supporting 
the concept that the FTY720 effects are at least partially due to 
an effect on the TLOs is the observation that FTY720 treatment 
inhibits cellular migration from inflamed tissues into afferent 
LVs (44, 45). It must be noted that FTY720 treatment is also most 
likely affecting trafficking from LNs in this context, complicating 
interpretation of the data. This needs to be evaluated in situations 
where the events in TLOs can be isolated from LNs, as was done 
in a previous transplantation model (21). A straightforward 
test of these conclusions would be to determine if LVs in TLOs 
produce S1P as they do in LNs (46). If so, systemic inhibitors of 
lymphocyte trafficking may function directly at the TLO site by 
preventing traffic to the LNs from the TLO, a potential site of self 
antigen presentation.

Lymphatic vessels transport soluble or cell-associated antigens 
into LNs. Recently, it has become apparent that plasmalemma 
vesicle-associated protein (PLVAP), visualized by reactivity with 
the MECA-32 antibody, heretofore considered limited to blood 
vessels, is also expressed on the lymphatic endothelial cells in the 
lymphatic sinus in the LN. PLVAP positive lymphatic endothelial 
cells contribute to sieving of lymphocytes and high molecular 
weight antigens entering the LN via the conduits (47). Since TLOs 
include conduits (13), it seems reasonable to ask whether LVs in 
TLOs perform antigen and cell transport and sieving functions 
similar to those in LNs. Antigen transport may be less important 
than in SLOs because the antigen is an actual component of the 
TLO. As long as antigen-presenting cells are in the TLO (as they 

usually are), the issue is moot. Proteins such as insulin in the 
pancreatic islet are in immediate proximity or, as constituents 
of β cells, even contribute to the structure of the TLO in type 
1 diabetes. With regard to the sieving function, an analysis of 
expression of PLVAP in TLOs by co-staining with MECA-32 and 
LYVE-1 or PROX-1 should be fairly straightforward. Functional 
analysis by crossing PLVAP-deficient mice to mice with TLOs or 
MECA-32 inhibition of migration of cells or labeled antigen to 
TLOs could address the function of LVs in TLOs. As noted above, 
LVs in LNs present self antigens (31–34), either directly through 
their expression of MHC molecules or by passing antigen on 
to “classical” antigen-presenting cells. Such presentation of self 
antigen by LVs (31) could be a way to induce either tolerance or 
T cell activation in LNs or in TLOs. The ability of TLO LVs to 
present antigen to induce either of these outcomes has not been 
investigated. Tregs are found in tumor TLOs and can inhibit 
cytotoxic T cells from attacking the tumor (19), indicating that 
understanding the mechanisms of self and tumor presentation to 
both potential effector T cells and Tregs is crucial to our ability 
to harness TLOs for both prophylaxis and therapy of cancer and 
autoimmune diseases.

Regulation
The most commonly accepted scenario for the development of 
LVs in ontogeny is that they sprout from veins (48) under the 
influence of SOX18, PROX-1, growth factors and their recep-
tors (VEGF-C and VEGF-D and VEGFR-2 and VEGFR-3), and 
platelets (49) [reviewed in Ref. (50)]. Although the evidence is 
quite strong for this mechanism in the case of the LVs sprouting 
from the cardinal vein, it has become apparent that the situation 
is somewhat more complex. The first indication that additional 
mechanisms of lymphangiogenesis existed was the discovery 
of lymphangioblasts that could be distinguished from blood 
endothelial cells, in developing animals as distinct as tadpoles 
(51), chickens (52), and mice (53–55). Several recent studies have 
revealed that the origin of LVs is quite heterogeneous. Mahadevan 
et al. reported that LVs in the intestine are derived from arteries, 
rather than veins (56); Stanczuk et al. described hemangiogenic 
precursors that contribute to mesenteric LVs (57); Martinez-
Corral et al. described the non-venous origin of dermal LVs in 
a process these authors termed lymphvasculogenesis (58); Klotz 
et al. also described a non-venous origin of cardiac LVs (59); and 
Nicenboim et  al. reported that LVs derive from angioblasts in 
zebra fish (60).

Given the rapidly emerging data regarding the heterogeneity 
and the likelihood of organ-specific regulation of lymphangi-
ogenesis in ontogeny (61), it becomes more important, and 
perhaps even more daunting, to understand the regulation of 
lymphangiogenesis in inflammation, particularly in chronic 
inflammation in TLOs. Do LVs in TLOs arise from veins? The 
presence of angiogenesis and platelets in inflammation supports 
such a scenario, as does the existence of vessels that express both 
HEV and LV markers in the inflamed LN (16). On the other 
hand, host-derived bone marrow precursors have been noted in 
association with LVs in the TLOs of chronically rejecting kid-
neys (36) suggesting a non-venous origin. Lymphangiogenesis 
in inflammation could occur by sprouting from existing LVs. But 
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what cells orchestrate these events? DCs, macrophages, T and 
B cells have been implicated in the regulation of LVs in acute 
inflammation (16, 62–64), but different cells may be important 
at different times in different tissues. For example, B cells appear 
to be important in stimulating lymphangiogenesis that occurs 
in LNs during inflammation, but only at the early stages after 
immunization (16, 62) suggesting that they may be of lesser 
importance in chronic inflammation in TLOs. The participation 
of macrophages in lymphangiogenesis in acute inflammation 
has been documented, although the precise nature of their role 
is controversial. Various possibilities include integration into 
LVs, trans differentiation into lymphatic endothelial cells (65), 
and provision of growth factors [summarized in Ref. (66)] and 
cytokines. The expression of LYVE-1 by macrophages is sup-
portive evidence for the former possibility; on the other hand, 
the expression of this marker on both macrophages and LECs 
may be serendipitous.

Several studies have evaluated the negative and positive roles 
of cytokines in lymphangiogenesis, although the bulk of these 
studies have evaluated acute inflammation rather than TLOs. 
There have been reports of negative regulation of lymphangi-
ogenesis by IFNγ (67) and TH2 cytokines IL-4 and IL-13 (68) 
and positive regulation by IL-17 (69), LTα, and TNF (38, 70). LT 
is crucial for both lymphoid organ development and TLOs, and 
LTα3 contributes to lymphangiogenesis in development (38). 
LVs are apparent in RIPLT TLOs even in the absence of LTβ and 
before extensive cellular infiltration, suggesting a direct activ-
ity of the cytokine (38). On the other hand, LVs are inhibited 
by treatment with a LTβR–Ig in a CXCL13-induced model of 
a thyroid TLO (71). Further analysis of lymphangiogenesis in 
spontaneous TLOs, such as Sjögren’s syndrome, rheumatoid 
arthritis, and type 1 diabetes, may reveal which cytokines regu-
late this process. Additional studies in vivo and in vitro should 
reveal the mechanism of cytokines’ regulation as direct effects on 
lymphatic endothelial cells and/or as indirect effects through the 
facilitation of lymphatic growth factor producing cells.

Recent research reveals LV plasticity in gene function and 
regulation. It is obvious that their different environments (mesen-
tery, skin, etc.) influence their gene expression. Inflammation in 
these diverse locales also contributes to changes in cytokine and 
growth factor expression. TNF and oxazolone treatment induce 
higher levels of CCL21 on dermal LVs, and presumably enhance 
cellular migration (72). Immunofluorescence and microarray 

studies revealed an increase in several additional inflamma-
tory genes (73), although some genes, including VEGFR-3 
and PROX-1, are downregulated. As yet, no such comparisons 
have included TLO LECs, which would be of particular interest 
because of the chronic nature of stimulation. Recently described 
methods to isolate LVs by virtue of their transgenically induced 
expression of a tomato red fluorescent protein should allow direct 
comparison of gene expression and function of LVs from differ-
ent sites and acute and chronic inflammation (74, 75) and provide 
precise characterization of TLO LVs.

COnCLUDinG ReMARKS

In this communication, I have provided background from a per-
sonal perspective of the development of the TLO field, and more 
particularly the role of the vasculature present and employed in 
TLOs. Although questions remain concerning the precise func-
tions of HEVs and LVs in TLOs, the evidence is quite strong that 
they do behave as they do in LNs. The appropriate experimental 
tools (in vivo imaging, mice with fluorescent HEVs and LVs) are 
available to address these issues. The answers to these questions 
will provide insight, not only into TLOs but also into processes 
of antigen presentation in LNs and tissue destruction in acute 
inflammation. This is turn will provide understanding and 
methods to induce or inhibit TLOs in autoimmunity, microbial 
infection, organ rejection, and cancer.
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