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Since Late-Gadolinium Enhancement (LGE) of cardiac magnetic resonance (CMR) visualizes myocardial infarction, and the
balanced-Steady State Free Precession (bSSFP) cine sequence can capture cardiac motions and present clear boundaries;
multimodal CMR segmentation has played an important role in the assessment of myocardial viability and clinical diagnosis,
while automatic and accurate CMR segmentation still remains challenging due to a very small amount of labeled LGE data and
the relatively low contrasts of LGE. The main purpose of our work is to learn the real/fake bSSFP modality with ground truths
to indirectly segment the LGE modality of cardiac MR by using a proposed cross-modality multicascade framework: cross-
modality translation network and automatic segmentation network, respectively. In the segmentation stage, a novel
multicascade pix2pix network is designed to segment the fake bSSFP sequence obtained from a cross-modality translation
network. Moreover, we propose perceptual loss measuring features between ground truth and prediction, which are extracted
from the pretrained vgg network in the segmentation stage. We evaluate the performance of the proposed method on the
multimodal CMR dataset and verify its superiority over other state-of-the-art approaches under different network structures and
different types of adversarial losses in terms of dice accuracy in testing. Therefore, the proposed network is promising for
Indirect Cardiac LGE Segmentation in clinical applications.

1. Introduction

Multimodal CMR imaging is an essential tool in clinics for
the screening and diagnosis of cardiac diseases. Different
imaging modalities contain different sorts of useful informa-
tion for cardiac disease screening task; the combination of
different imaging modalities can overcome the limitations
of an individual modality. The contrast agent for the LGE
MR imaging is injected for 10-20 minutes; LGE images with
distinctive locally brightness compared with the healthy tis-
sues can enhance myocardial necrosis or scarring, which is
a standard practice to evaluate cardiac structure, cardiac
function, myocardial perfusion, and myocardial activity. Dif-
ferent from LGE images, the bSSFP can highlight the high
signal area of the fluid but appear a uniform signal for other
tissues; e.g., the large blood vessels and coronary arteries can
be observed clearly in bSSFP because of more obvious con-
trast in the heart muscle and blood pool. T2-weighted MRI

is effective in reducing false-positive results. Considering dif-
ferent MRI modalities is thus important for the acquisition of
accurate cardiac information [1].

Segmentation of multimodal CMR images is a critical
step in the process for the following diagnosis and surgical
planning. However, it takes 20 minutes/case for an experi-
enced doctor to manually segment the LGE images, it is
extremely time-consuming to manually identify and delin-
eate the corresponding structure in cardiac, and the result
depends on the professional ability of doctors and varies
from person to person. Therefore, the development of auto-
matic and reliable LGE image segmentation algorithms is of
high clinical values for patients suffering from myocardial
infarction.

Tao and Der Geest proposed a method for segmenting
the LGE images using myocardial morphological informa-
tion [2]. Popescu et al. used a mask SLIC clustering method
and Otsu threshold to segment LGE images [3]. In recent
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years, deep learning has achieved remarkable success in com-
puter vision. More and more image processing methods are
based on the CNN model [4, 5]. Chen et al. [6] proposed to
use the domain adaption to fuse the features of unlabeled
LGE images and then use the fused features to train the seg-
mentation network. In addition, many approaches based on
attention mechanisms [7, 8] and multiview methods [9] have
been developed recently for segmenting medical images.
Yang et al. combined multiview and attention mechanism
to segment cardiac LGE images [10]. An automatic cardiac
LGE segmentation algorithm based on the CNN is far more
efficient and robust, and commonly more accurate than tra-
ditional methods [11, 12], so it is necessary to automatically
segment the LGE images.

However, automatic LGE CMR segmentation is still
arduous. Besides the great variations of the location and
geometry of the heart region across different patients, Zhuang
[1] pointed three major challenges related to the intensity distri-
butions of the LGE CMR modality: (i) the intensity range of
myocardium in LGE imaging leads to indistinguishable bound-
aries from its adjacent organs; (ii) the pathologies result in het-
erogeneous intensity of the myocardium, making the
assumption of a simple distribution such as the single compo-
nent Gaussian density invalid; and (iii) the preprocessing
enhancement for the LGE CMR modality can be complex. So
it is more difficult to segment directly LGE modality, especially
in case of a small amount of labeled LGE data.

GAN was first proposed by Goodfellow et al. [13] for
image synthesis, which uses a generator network and dis-
criminator network, to pit one against the other (thus the
“adversarial”) in order to generate fake synthetic instance
that can pass for real data. Here, the generator generates a
fake image by random noise, the discriminator judges
whether the input data is true (data comes from real labels)
or false (the data comes from the output of the generator).
The aim of GANs is to learn the underlying distribution of
training data in order to generate data that the discriminator
cannot distinguish. At the same time, the game between the
generator and the discriminator reaches the Nash equilib-
rium, i.e., the generated data distribution pg is equal to real

data distribution pd . With the development of GANs [14],
such models are widely used in image processing, including
image and video generation [15], image segmentation [16],
image synthesis [17], and image super resolution [18].

In this work, we propose a novel cross-modality multi-
cascade framework for indirect LGE segmentation
(CMMCSegNet), which is trained on multimodal cardiac
MR data with a very small amount of LGE labels (for the
LGE modality in Multisequence Cardiac MR Segmentation
Challenge 2019 datasets [1], only five patients are labeled).
The main contributions of this work are clarified as follows:

(1) We develop a novel indirect LGE segmentation
framework based on multimodal images; one of the
primary components is to translate the LGE modality
that needs to be segmented but only has very small
amount of labeled data, into the bSSFP modality that
is easy to be segmented by our proposed method

(2) We propose a multicascade pix2pix network for
image segmentation; that is, the generator is formed
by cascading multiple subnetworks. In the segmenta-
tion network, we regard segmentation as the transla-
tion process from the original image to the
segmentation target

(3) We employ the perceptual loss that uses a pretrained
VGG19 network to compare the feature differences
between the labels and generation during the pro-
posed multicascade pix2pix network training

The rest of this work is organized as follows. We first give
some preliminaries in Section 2. We describe our CMMCSeg-
Net in details in Section 3.We give experimental results in Sec-
tion 4. Finally, we conclude this work in Section 5.

2. Related Works

Tissue or organ segmentation plays an important role in the
field of medical image processing. Medical image segmenta-
tion has been explored extensively; however, challenges in
generality, robustness, and efficiency still remain. For brevity,
we only focus below on the most closely related works.

2.1. Cascade Structure. A cascading network is to connect
multiple subnetworks together to form a multilevel network.
The cascading method has been effectively used in many
vision applications like classification [19], image translation
[20], detection [21], super resolution [22], and semantic seg-
mentation [23]. For example, Cui et al. proposed a deep cas-
cade network for image super resolution [22]. Cai and
Vasconcelos proposed the use of cascade structure for object
detection [21]. Zhao et al. proposed the recursive cascaded
networks for medical image registration [24]. Armanious
et al. proposed the use of cascaded generator network for
image translation [20]. Havaei et al. proposed a new cascade
architecture for brain tumor segmentation [23]. Li et al. [25]
proposed to classify easy regions in a shallow network and
train deeper networks to deal with hard regions. Lin et al.
[26] proposed a top-down architecture with lateral connec-
tions to propagate deep semantic features to shallow layers.

Different from previous cascade networks, the multicas-
cade pix2pix network proposed in this paper is a multiple
U-net cascade structure for image segmentation, which
allows an innovative way to supervise each generator individ-
ually for pix2pix GANs. To our best knowledge, this is an
early and original attempt to adopt a cascade architecture
in pix2pix GAN-based medical image segmentation. We will
introduce more details in Section 3.

2.2. Multimodal Cardiac MR Image Segmentation. Recent lit-
erature suggests two main approaches to complete multi-
modal CMR image segmentation. One popular approach is
about the GAN strategy based on cross-modality image trans-
lation that refers to the translation of images with modalityX
into images with modality Y, which plays an increasingly
important role in computer vision. Isola et al. [18] proposed
the use of conditional GAN to implement a paired image-to-
image translation. Ben-Cohen et al. used CT images to
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synthesize PET images based on the pix2pix network [27].
Cycle-GAN [28] was proposed for unpaired image-to-image
translation. BiCycle-GAN [29] solved the translation process
from single image to multicategory image. In addition, some
GAN networks including DualGAN [30] and UNIT [31] were
also proposed for unpaired image-to-image translation.

In CMR datasets [1], MR images of the different modali-
ties are not strictly matched, so the classical unpaired image-
to-image translation [32] can be applied to cross-modality
CMR segmentation. Chen et al. [33] proposed to use UNIT
to translate bSSFP images into LGE images and then train
the segmentation network where the LGE images are pro-
vided by the translation architecture. Campello et al. also
proposed to use Cycle-GAN to translate bSSFP images into
LGE images but train the U-net network [34] for LGE seg-
mentation. Tao et al. [35] proposed to integrate the transla-
tion network (Cycle-GAN) with the segmentation network
to achieve LGE image segmentation.

Another promising approach is about the strategy on
image registration. Roth et al. proposed to register LGE
images with ground truths into LGE images without ground
truths, after multiatlas label fusion by majority voting; they
obtained a noisy LGE label and then trained a LGE segmen-
tation network [36]. Liu et al. proposed a registration method
for histogram matching to achieve augmentation of the LGE
images [37].

3. Proposed Cross-Modality SegNet

The goal of this work is to achieve cardiac segmentation
for LGE modality where a small amount of samples are
labeled. Our CMMCSegNet (https://github.com/wangyu719/
CmmcSegNet) framework is designed to facilitate indirect seg-
mentation for the multimodal CMR images. The total frame-
work is shown in Figure 1, including a training architecture
and a testing architecture.

Our datasets are from Multisequence Cardiac MR Seg-
mentation Challenge 2019 datasets (MS-CMRSeg 2019) [1].
In this work, we use LGE modality with 45 patients and
bSSFP modality with 35 annotated patients (see Figure 2
for more details). Only five ground truth annotations are
available in LGE modality of MS-CMRSeg 2019 datasets;
hence, it is difficult to directly segment LGE modality using
deep CNN-based methods. Figure 2 shows the differences
between LGE and bSSFP images from the same patient. Fur-
thermore, it is found that the bSSFP modality has a more
obvious contrast than LGE modality, so we believe that the
bSSFP is easier to be segmented. Besides, the bSSFP modality
has a large number of images (35 patients) with ground truth
annotations, so it is not difficult to train the bSSFP modality
using the deep learning-based method.

3.1. Cross-Modality Image Translation. One of the primary
components in training architecture is a cross-modality
translation network, which can be trained end-to-end with
unpaired modalities. Before segmenting the bSSFP images
to achieve indirect segmentation of LGE images, we first
present a Cycle-GAN architecture of translating LGE into
bSSFP images.

Inspired by the knowledge distillation between unpaired
image-to-image translation networks [32], we employ
Cycle-GAN to achieve cross-modality image translation for
CMR datasets. Let X ,Y be two image domains that repre-
sent the LGE and bSSFP modalities, respectively. Gt

A : X
⟶Y and Gt

B : Y ⟶X are two generators of the cross-
modality translation network such that Gt

A and Gt
B are

inverse mappings of each other; that is, Gt
BðGt

AðIXÞÞ ≈ IX ,
Gt
AðGt

BðIYÞÞ ≈ IY for any unpaired images IX ∈X , IY ∈Y .
Dt

A and Dt
B are the discriminators of the cross-modality

translation network, to distinguish that the input of discrim-
inator is real or fake.

The Cycle-GAN architecture implementing cross-
modality image translation for unpaired LGE/bSSFP datasets
consists of two cycles: LGE cycle and bSSFP cycle. In the LGE
cycle, the first generator ðGt

AÞ is trained to transform LGE
modality into fake bSSFP modality, the second generator ð
Gt
BÞ is trained to transform the generated fake bSSFP modal-

ity back to the original LGE modality, and the discriminator
Dt

A discriminates between real and synthesized bSSFP
modalities. In fact, enlightened by the activation-based atten-
tion transfer strategies, the discriminator Dt

A is designed to
extract the supervision information that modulates the learn-
ing of the generator Gt

A. In the bSSFP cycle, real bSSFP was
transformed to fake LGE by using the generator Gt

B, the gen-
erator Gt

A transforms the generated LGE to the original
bSSFP, and the discriminator Dt

B discriminates between real
and fake bSSFP modality. Finally, the network framework is
shown in Figure 1(b).

The overall training loss of our translation network is
defined as

Gt∗
A ,Gt∗

B ;Dt∗
A ,Dt∗

B

� �
= arg min max Gt

A ,Gt
Bð Þ, Dt

A ,Dt
Bð Þ L t Gt

A, Gt
B ;Dt

A,Dt
B

� ��
≕ λ1Lcyc Gt

A, Gt
B

� �
+Lgan Gt

A,Dt
A,X ,Y

� �
+Lgan Gt

B,Dt
B,X ,Y

� ��
,

ð1Þ

whereLganðGt
A,Dt

A,X ,YÞ andLganðGt
B,Dt

B,X ,YÞ are two
adversarial losses defined by

Lgan Gt
A,Dt

A,X ,Y
� �

= EIY~pd IYð Þ log Dt
A IY
� �� �� �

+ EIX~pd IXð Þ log 1 −Dt
A Gt

A IXð Þ� �� �� �
,

Lgan Gt
B,Dt

B,X ,Y
� �

= EIX~pd IXð Þ log Dt
B IXð Þ� �� �

+ EIY~pd IYð Þ log 1 −Dt
B Gt

B IY
� �� �� �� �

,

ð2Þ

and the generation similarity LcycðGt
A,Gt

BÞ is defined by

Lcyc Gt
A,Gt

B

� �
= EIX~pd IXð Þ Gt

B Gt
A IXð Þ� �

− IX
�� ��

1

h i
+ EIY~pd IYð Þ

� Gt
A Gt

B IY
� �� �

− IY
�� ��

1

h i
,

ð3Þ
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and λ1 is the weight parameter for balancing the contribu-
tions of the generation lossLcycðGt

A,Gt
BÞ and the two adver-

sarial losses LganðGt
A,Dt

A,X ,YÞ and LganðGt
B,Dt

B,X ,YÞ.

3.2. Multicascade pix2pix Segmentation. Recently, the GAN-
based framework is proposed to segment the retinal vessel
[38]. We understand image segmentation as the translation
from paired image to image (from an original image to a pre-
dicted segmentation results); hence, we propose a new image
segmentation method using a multicascade technique and
pix2pix structure, which we call a multicascade pix2pix
network.

3.2.1. Multicascade Network. Our multicascade pix2pix seg-
mentation network shown in Figure 1(c) is based on the
GAN architecture, which consists of multiple generators Gs

k
(k = 1,⋯, n) and a shared discriminator Ds.

Cycle-GAN
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(c) The multicascade pix2pix architecture

Figure 1: The proposed cross-modality multicascade SegNet flowchart of indirect segmentation for LGE modality. bSSFP images are
important in distinguishing the cardiac structure from all enhanced areas. Accordingly, the two imaging modalities are treated differently
in the proposed method. Cross-modality translation from LGE to bSSFP is chosen as Stage I of the proposed architecture having a greater
impact on the LGE segmentation results. bSSFP is regarded as the assistant modality completing the LGE segmentation.

(a) LGE (b) bSSFP

Figure 2: Different modalities of CMR imaging from the same
patient (the two images are unpaired). LGE can enhance
myocardial necrosis or scarring, which can evaluate effectively
cardiac structure, cardiac function, myocardial perfusion, and
myocardial activity, while bSSFP can highlight clearly the large
blood vessels and coronary arteries because of more obvious
contrast in the heart muscle and blood pool. To better adapt to
cardiac structure segmentation, we will build a cross-modality
translation network based on Cycle-GAN (Figure 1(b)).
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The generator Gs
1:Y ⟶ S translates IY to I1S , where the

original input IY ∈Y is 1 × 256 × 256 real or fake bSSFP
image, and the first generation I1S ∈ S is a prediction for the
corresponding label. The other generators Gs

k: S ⟶ S

ðk = 2,⋯, nÞ furtherly improve the previous predicted prob-
ability Ik−1S to obtain more optimal prediction

IkS ≔Gs
k ∘G

s
k−1∘⋯∘Gs

1 IY
� �

, ð4Þ

where IY and IkS have the same size. In this work, Gs
k is

formed by the U-net [5] or ResNet [39] network for the pur-
pose of more accurate segmentation. In experimental evalua-
tion, we will compare the effects of different generator
networks on the segmentation results. The purpose of this

network is to obtain the final segmented result I fS of the
original input IY , which also is the result of the LGE seg-
mentation. Therefore, the generated prediction obtained
from the multicascade pix2pix segmentation network can
be denoted as

I fS ≔ InS =Gs
n ∘G

s
n−1∘⋯∘Gs

1 IY
� �

: ð5Þ

The discriminator Ds is a binary classifier based on
pixels or patch-images which provides a network
learning-based stopping criterion during generating. For
the discriminator Ds in our multicascade pix2pix segmen-
tation network, we employ a convolutional Patch-GAN
[18] to distinguish real or fake between the prediction IkS

and the ground truth IL , where IkS is divided into ℓ × ℓ
patches with overlapping images, and each patch is dis-
criminated with those of the ground truth IL , respectively;
finally, a 2D probability map is obtained as the discrimi-
nator outputs.

To train an optimal segmentation network, the mea-
sures between IkS and target label IL can be estimated
and minimized to update discriminator Ds that enforces
to discriminate the generation and the ground truth. The
segmentation network we propose is a conditional version
of pix2pix GAN with the multicascade architecture, so the
adversarial input in Ds is mainly composed of there compo-
nents, where the first component is the source image IY used

as the condition and the others are the generation IkS and the
ground truth IL . At the same time, each generator Gs

k is also
optimized to generate domain-invariant representations IkS
that confuses the discriminator Ds.

3.2.2. Loss Functions in Segmentation Stage. The dice score
and Jaccard index are commonly used as metrics for the

(a) From top to bottom: original LGE, fake bSSFP, and reconstructed LGE

(b) From top to Bottom: original bSSFP, fake LGE, and reconstructed bSSFP

Figure 3: Performance evaluations of Cycle-GAN cross-modality translation.

Table 1: Performance evaluations of Cycle-GAN cross-modality
translation.

Translation Evaluation SSIM PSNR MI

Ar ⟶ Bf ⟶Af Ar , Af

� �
0.944 29.557 0.484

Br ⟶ Af ⟶ Bf Br , Bf

� �
0.962 28.911 0.493
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evaluation of image segmentation task. CNNs trained for
image segmentation task are usually optimized by minimiz-
ing a weighted cross-entropy. In this work, we employ a spe-
cially designed loss function L s to simultaneously measure
the generation similarity and the adversarial error, which
contains three types of loss functions: adversarial loss Lgan,
L1 loss, and perceptual loss Lvgg.

The original adversarial loss (Vanilla GAN loss) is given
by the Kullback-Leibler (KL) divergence score as

Lgan Gs
1,⋯,Gs

nf g,Dsð Þ = 〠
n

k=1
ω
Lg

k EIY ,IL~pd IY ,ILð Þ log Ds IY , IL
� �� �� �	

+ EIY~pd IYð Þ log 1 −Ds IY , IkS
	 
	 
h i


,

ð6Þ

where ω
Lg

k ðk = 1,⋯, nÞ is the given weight enforcing the
trade-off between the n cascade cross-entropy losses and IY
is a condition input of each convolutional Patch-GAN in
our multicascade pix2pix segmentation network. Recently,
the most commonly used adversarial losses are WGAN-GP
[40] and LSGAN [41]. In the next section, we will compare
the performances of three different adversarial losses in our
experiments.

L1 loss is a weighted sum of the absolute distance
between the calculated output data IkS in the k-th cascade

block and the ground truth IL , which can make the segmen-
tation results closer to the real results [18], and is defined by

L1 Gs
1,⋯,Gs

nð Þ = 〠
n

k=1
ωL1
k EIY~pd IYð Þ IL − IkS

��� ���
1

h i	 

, ð7Þ

where ωL1
k ðk = 1,⋯, nÞ are weight constants. Without loss of

generality, we will take ω
Lg

k = ωL1
k for all k = 1,⋯, n in our

experiments.
Besides, we also employ the perceptual loss in our multi-

cascade pix2pix segmentation network, which is composed of
a pretrained VGG19 network and is first proposed in image
super resolution application [42]. The perceptual loss focuses
on feature maps between the output data and the ground
truth [43]. It can hence be computed by

Lvgg IL , Gs
1,⋯,Gs

nf gð Þ = 〠
n,M,Ni

k,i,j=1
〠

wij ,hij

p,q=1

S
ij,k
pq

wijhij

0
@

1
A, ð8Þ

where S ij,k
pq =Dðφi,jðILÞpq − φi,jðIkSÞpqÞ and φi,j represents the

feature map of the j-th feature channel of the i-th feature
layer (after activation) [42],Ni is the number of feature chan-
nels in the i-th feature layer and M is the number of convo-
lution layers, and wij and hij represent the size of the
feature map in the VGG19 network. Here, D is the error

Table 2: Indirect segmentation performance comparisons between CMMCSegNet models based on U-net and ResNet generator blocks using
different training losses, where only one cascade generation block is used, “P-Lcosine” means to add cosine similarity perceptual loss into
training loss, and “P-Lmanh” means to add Lmanh perceptual loss into training loss.

Block Loss LV MYO RV

U-net

Vanilla GAN loss 0:8038 ± 0:2068 0:7463 ± 0:0534 0:8208 ± 0:0304
Vanilla GAN loss + P‐Lcosine 0:8575 ± 0:1153 0:7580 ± 0:0573 0:8459 ± 0:0306
Vanilla GAN loss + P‐Lmanh 0:8815 ± 0:0833 0:7412 ± 0:0630 0:8600 ± 0:0279

WGAN-GP loss 0:8420 ± 0:1068 0:7169 ± 0:0814 0:8448 ± 0:0584
WGAN-GP loss + P‐Lcosine 0:8162 ± 0:1106 0:7485 ± 0:0486 0:8563 ± 0:0349
WGAN-GP loss + P‐Lmanh 0:8363 ± 0:1393 0:7436 ± 0:1204 0:8422 ± 0:0779

LSGAN loss 0:8938 ± 0:0775 0:7542 ± 0:0601 0:8541 ± 0:0267
LSGAN loss + P‐Lcosine 0:9038 ± 0:0619 0:7513 ± 0:0739 0:8693 ± 0:0287
LSGAN loss + P‐Lmanh 0:9018 ± 0:0674 0:7606 ± 0:0645 0:8631 ± 0:0362

ResNet

Vanilla GAN loss 0:8326 ± 0:1063 0:7486 ± 0:1019 0:8306 ± 0:0771
Vanilla GAN loss + P‐Lcosine 0:8762 ± 0:0812 0:7612 ± 0:0866 0:8524 ± 0:0246
Vanilla GAN loss + P‐Lmanh 0:8787 ± 0:0977 0:7742 ± 0:0687 0:8568 ± 0:0210

WGAN-GP loss 0:7665 ± 0:2210 0:7729 ± 0:0498 0:8357 ± 0:0299
WGAN-GP loss + P‐Lcosine 0:8158 ± 0:1355 0:7504 ± 0:0805 0:8710 ± 0:0236
WGAN-GP loss + P‐Lmanh 0:8589 ± 0:1137 0:7804 ± 0:04781 0:8574 ± 0:0210

LSGAN loss 0:8663 ± 0:1265 0:7406 ± 0:0982 0:8558 ± 0:0888
LSGAN loss + P‐Lcosine 0:8831 ± 0:0899 0:7533 ± 0:0775 0:8737 ± 0:0289
LSGAN loss + P‐Lmanh 0:8814 ± 0:1109 0:7566 ± 0:1065 0:8534 ± 0:0966
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measure of the vgg/ResNet feature maps between the ground
truth IL and prediction IkS . The most widely used feature dis-
tances also contain the manhattan distance Dmanh and the
cosine similarity Dcosine difined by

Dmanh X, Yð Þ =〠 X − Yk k1,

Dcosine X, Yð Þ = 1 − X, Yð Þ
Xk k2 Yk k2

,
ð9Þ

where X and Y are feature maps.
The total proposed segmentation model is trained by

jointly minimizing the total lossL s for the three parts as fol-
lows:

Gs
1,⋯,Gs

nf g,Dsð Þ∗ = arg min max Gs
1,⋯,Gs

nf g,Dsð Þ Ls Gs
1,⋯,Gs

nf g,Dsð Þf
≕ λlL1 Gs

1,⋯,Gs
nð Þ +Lgan Gs

1,⋯,Gs
nf g,Dsð Þ

+ λvggLvgg IL , Gs
1,⋯,Gs

nf gð Þ�,
ð10Þ

where the λl and λvgg are two given weight parameters.

4. Results and Discussion

The proposed CMMCSegNet framework is implemented
using PyTorch. The experiments are conducted on a single
GeForce RTX 2080Ti GPU with 11GB RAM. To identify
the model design, we performed several ablation experi-
ments. They are described as follows.

4.1. Dataset and Experimental Setting. To demonstrate our
CMMCSegNet framework, we use MS-CMRSeg 2019 data-
sets [1], which contain three different modalities: LGE with
45 patients but only 5 patients being labeled and bSSFP with
35 annotated patients and T2-weighted. The goal of CMR
segmentation challenge is to achieve LGE image segmenta-
tion. Since there are fewer T2-weighted slices for each patient

in the dataset (about 3-7 slices for each patient), we only use
bSSFP modality and LGE modality in our experiments.

The cross-modality translation network is trained for 200
epochs, and the model that performs best on the validation
set was selected for translation from LGE to bSSFP in the
proposed CMMCSegNet framework. The dataset training
the segmentation network contains two parts, most of them
are from real annotated bSSFP images (slices from the 25
patients), and a small amount of fake bSSFP images are trans-
lated from the annotated LGE images (slices from about two
patients) by the Cycle-GAN translation network.

We also train 200 epochs for the segmentation network.
The both models are trained using Adam optimization with
a minibatch size of 1, a decayed learning rate with an initial
value 1:0e − 2, the size nD = 70 of patch D in the discrimina-
tor based on Patch-GAN, and the weight hyperparameters
λ1 = 10, λgan = 1, λl = 100, and λvgg = 1.

4.2. Performance of Cross-Modality Translation. We first use
Cycle-GAN to achieve translation between LGE and bSSFP
modalities; we also employ three evaluation metrics, includ-
ing Structural Similarity (SSIM), Peak Signal To Noise Ratio
(PSNR), and Mutual Information (MI), to evaluate the per-
formance of Cycle-GAN translation network, which is tested
on the whole LGE and bSSFP images. Many randomly cho-
sen results from the translated (fake) LGE or bSSFP modali-
ties are shown in Figure 3. In Table 1, our translation model
also leads to a comparable synthesis quality between LGE and
bSSFP modalities for the whole datasets, where Ar , Af , Br ,
and Bf denote real LGE, fake LGE, real bSSFP, and fake
bSSFP, respectively.

4.3. Comparisons for Different Choices of Adversarial Loss
and Perceptual Loss. After the cross-modality translation,
two fake bSSFP patients with annotated masks (obtained
from the cross-modality translation of two LGE patients
with the ground truth) and fully real labeled bSSFP patients
(35 patients) are used to train our proposed segmentation

Table 3: Performance comparisons for the number of cascade generators on the multicascade pix2pix segmentation network, where “P-
Lmanh” means to use Lmanh perceptual loss and “simple” means to use cascade generator with the simplified U-net version (where the
number of upsampling/downsampling layers in the middle part of the U-net generators is reduced from (8, 8, 8) to (2, 4, 5) for generators
(Gs

2,Gs
3, G

s
4), respectively).

Number of cascades LV MYO RV

1 0:8938 ± 0:0775 0:7542 ± 0:0601 0:8541 ± 0:0267
+P-Lmanh 0:9018 ± 0:0674 0:7606 ± 0:0645 0:8631 ± 0:0362
2 0:8824 ± 0:0632 0:7608 ± 0:0647 0:8631 ± 0:0273
+P-Lmanh 0:8929 ± 0:0853 0:7690 ± 0:0662 0:8831 ± 0:0310
+P-Lmanh+simple 0:8966 ± 0:0808 0:7732 ± 0:0768 0:8841 ± 0:0295
3 0:8527 ± 0:0659 0:7202 ± 0:0911 0:8248 ± 0:0284
+P-Lmanh 0:8762 ± 0:0769 0:7901 ± 0:0538 0:8874 ± 0:0175
+P-Lmanh+simple 0:8931 ± 0:0557 0:7664 ± 0:0520 0:8739 ± 0:0299
4 0:8778 ± 0:0905 0:7899 ± 0:0545 0:8764 ± 0:0177
+P-Lmanh 0:8944 ± 0:0770 0:7561 ± 0:0735 0:8815 ± 0:0252
+P-Lmanh+simple 0:9019 ± 0:0634 0:7690 ± 0:0706 0:8911 ± 0:0233
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network. Next, we did several different comparison exper-
iments for segmentation evaluations of fake bSSFP with-
out annotated data (obtained from the cross-modality
translation).

Table 2 shows the dice score of cardiac LGE segmentation
in using different adversarial losses (Vanilla GAN, LSGAN,
and WGAN-GP) and different CMMCSegNet generator
blocks (U-net and ResNet) and with/without perceptual loss
(Lmanh or Lcosine). We can also see that the overall segmen-
tation performance of the U-net generator is slightly better
than that of the ResNet generator using 6 different losses in
terms of the LV (left ventricle), MYO (myocardium), and
RV (right ventricle). For the U-net generator, the model

using LSGAN loss yields better diagnostic performance than
those of both Vanilla GAN and WGAN-GP losses. Besides,
the Lmanh perceptual loss or Lcosine perceptual loss added
for kernel feature comparisons can guarantee that the net-
work learn relevant high feature levels and content features,
which will improve the segmentation results for Vanilla
GAN and LSGAN. However, the dice score of LV and RV
segmentation slightly decreases when WGAN-GP with the
Lmannh perceptual loss is used, while in the ResNet gener-
ation network, the models with the perceptual loss
(Lmannh or Lcosine) achieve higher segmentation perfor-
mance in all three terms and outperform those without
the perceptual loss.

Table 4: Performance comparisons of indirect segmentation prediction IiS with different generation loss weights and U-net block, where the
LSGAN adversarial loss and vgg Lmanh perceptual loss are employed.

Loss weight IiS LV MYO RV

1/3, 1/3, 1/3ð Þ
I1S 0:8792 ± 0:0846 0:7855 ± 0:0601 0:8580 ± 0:0279
I2S 0:8818 ± 0:0779 0:7960 ± 0:0574 0:8830 + 0:0215
I3S 0:8762 ± 0:0769 0:7901 ± 0:0539 0:8874 ± 0:0176

1/6, 1/3, 1/2ð Þ
I1S 0:8860 ± 0:0764 0:7569 ± 0:0849 0:8532 ± 0:0384
I2S 0:8881 ± 0:0683 0:7668 ± 0:0791 0:8460 ± 0:0326
I3S 0:8631 ± 0:0846 0:7661 ± 0:0895 0:8535 ± 0:0377

1
2 ,

1
3 ,

1
6

� � I1S 0:9001 ± 0:0714 0:7332 ± 0:0932 0:8481 ± 0:0369
I2S 0:9039 ± 0:0661 0:7472 ± 0:0879 0:8669 ± 0:0344
I3S 0:8973 ± 0:0686 0:7308 ± 0:0847 0:8640 ± 0:0346

1
3 ,

1
2 ,

1
6

� � I1S 0:9037 ± 0:0633 0:7410 ± 0:0799 0:8579 ± 0:0283
I2S 0:9061 ± 0:0593 0:7459 ± 0:0853 0:8733 ± 0:0273
I3S 0:8726 ± 0:0585 0:7204 ± 0:0888 0:8513 ± 0:0214
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Figure 4: Qualitative comparisons of our CMMCSegNet for different number of cascade blocks on fake bSSFP translated from LGEmodality.
From left to right: LGE, bSSFP translated by Cycle-GAN, ground truth with zoom-in views, and prediction results with zoom-in views using
1-4 cascade blocks.
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Figure 5: Continued.
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4.4. Comparisons of the Cascade Generators. High-level
semantic features in each branch contain sufficient localiza-
tion information of corresponding region. To make full use
of the features, we propose the multicascade architecture to
extract implicitly geometrical and textural information that

guides the cardiac segmentation. In order to enhance the
competitiveness of the proposed architecture, we evaluate
the performances by running a pix2pix segmentation on
the training dataset (real/fake bSSFP images with ground
truths). Final results are achieved with an ensemble of 1-4

(b) CMMCSegNet predictions IkS in different loss weights ω
Lg
k = ωL1

k ðk = 1, 2, 3Þ

Figure 5: Comparisons of the loss weights of different cascade prediction IkS in proposed CMMCSegNet, where the LSGAN adversarial loss

and vgg Lmanh perceptual loss are employed and the loss weight parameters ðωL1
1 , ωL1

2 , ωL1
3 Þ = ðωLg

1 , ωLg

2 , ωLg

3 Þ = ð1/3, 1/2, 1/6Þ are
manually given. (a) the LGE image and the corresponding ground truth; (b) from left to right: the predicted results fIkSg under different
loss weights ð1/3, 1/3, 1/3Þ, ð1/6, 1/3, 1/2Þ, ð1/2, 1/3, 1/6Þ, and ð1/3, 1/2, 1/6Þ, from top to bottom: I1S , I2S , I3S .

Table 5: Performance comparisons between direct and indirect segmentation of LGE modality using different techniques, where the LSGAN

adversarial loss and vgg Lmanh perceptual loss are employed and the loss weight parameters ðωL1
1 , ωL1

2 , ωL1
3 Þ = ðωLg

1 , ωLg

2 , ωLg

3 Þ = ð1/3, 1/
2, 1/6Þ are manually given.

Strategy Network LV MYO RV

Direct

FCNs [4] 0:4223 ± 0:2124 0:4696 ± 0:2174 0:6020 ± 0:2908
U-net [5] 0:5746 ± 0:3062 0:4475 ± 0:2576 0:6876 ± 0:2291

U-net++ [44] 0:5534 ± 0:3467 0:4294 ± 0:3541 0:6208 ± 0:3098
Attention U-net [45] 0:6022 ± 0:1596 0:4544 ± 0:2376 0:6698 ± 0:2328

Indirect

FCNs [4] 0:7595 ± 0:1321 0:6113 ± 0:1689 0:8731 ± 0:0677
U-net [5] 0:8505 ± 0:0991 0:7708 ± 0:0765 0:9151 ± 0:0441

U-net++ [44] 0:8459 ± 0:1060 0:7470 ± 0:1030 0:9163 ± 0:0409
Attention U-net [45] 0:8438 ± 0:1060 0:7593 ± 0:0953 0:9133 ± 0:0355

CMMCSegNet 0:8762 ± 0:0769 0:7901 ± 0:05386 0:8874 ± 0:0176
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cascades using corresponding LSGAN’s adversarial loss and
perceptual loss. Comparisons with different number of cas-
cades are shown in Table 3; we can see that the number of
cascades is increased from one to four and the dice values
of some terms dropped slightly for the model with/without
perceptual loss. The reason for this may be that the increase
in the number of cascades may cause a lot of edge informa-
tion to be lost in the original fake bSSFP images. As we can
see from Figure 1, when the first segmentation network Gs

1
obtains the segmentation result of the input fake bSSFP
images, if original fake bSSFP image IY is not used as a con-

ditional input in the later Gs
k+1, modifying the previous result

IkS , G
s
k+1 extracts fewer features comparing with the Gs

1. To
optimize the computational costs, starting from the second
generator, we reduce the number of upsampling/downsam-
pling layers in the middle part of the U-net generators from
(8, 8, 8) to (2, 4, 5) for generators (Gs

2,Gs
3,Gs

4), respectively.
From Table 3, we observe that the proposed network with
the simplified U-net versions can improve the segmentation
results. Figure 4 shows the original LGE images, the translated
bSSFP images, the corresponding ground truths, and the pre-
diction results with varying the numbers of cascades.
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(a) Direct segmentation for the LGE modality
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(b) Indirect segmentation for fake bSSFP translated from LGE modality

Figure 6: Qualitative comparisons of our CMMCSegNet with the other four state-of-the-art CNN-based segmentation methods, where the

LSGAN adversarial loss and vgg Lmanh perceptual loss are employed and the loss weight parameters ðωL1
1 , ωL1

2 , ωL1
3 Þ = ðωLg

1 , ωLg

2 , ωLg

3 Þ
= ð1/3, 1/2, 1/6Þ is manually given. (a) Direct segmentation, from left to right: LGE, ground truths with zoom-in views and prediction
results with zoom-in views using FCNs, U-net, U-net++, and Attention U-net for segmentation on real LGE modality; (b) indirect
segmentation, from left to right: LGE, fake bSSFP, ground truths with zoom-in views, and prediction results with zoom-in views using
FCNs, U-net, U-net++, Attention U-net, and our CMMCSegNet for segmentation on fake bSSFP modality translated from LGE modality.
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4.5. Comparisons of the Weights ω
Lg

k and ωL1
k of

Multicascade Blocks. The performance of the multicascade
architecture may be directly limited by the loss weight
parameter of each cascade generator Gs

k. We compare the

choice of the weights ω
Lg

k and ωL1
k , and IkS represents the out-

put of the k-th generator Gs
k. From Table 4, the model with

LSGAN adversarial loss and vgg perceptual loss is optimized

solely using loss weights ðωL1
1 , ωL1

2 , ωL1
3 Þ = ðωLg

1 , ωLg

2 , ωLg

3 Þ
= ð1/3, 1/2, 1/6Þ and achieves the better results on the evalu-
ation dice of I2S . Due to the efficiency of the multicascade
technique, the proposed segmentation network automatically
improves image multilevel features that benefits the segmen-
tation performance. Figure 5 shows the results of different
generators in a multicascade pix2pix network with different
weights; Gs

2 can further modify the details of I1S making the
output result closer to ground truth.

4.6. Comparison to Conventional Methods. Table 5 bench-
marks the performance of the proposed framework against
the direct and indirect LGE segmentation networks. First,
we compare the performance of the four direct segmentation
methods, including FCNs [4], U-net [5], U-net++ [44], and
Attention U-net [45] networks by directly training a segmen-
tation network from a small number of annotated LGE
images. As reported in Table 5, although U-net performs bet-
ter than others, it produces low dice value. Figure 6(a) visual-
izes the segmentation results by direct methods. We also
compare the performance of the five indirect segmentation
methods, including FCNs, U-net, U-net++, and Attention
U-net networks and the proposed CMMCSegNet by indi-
rectly training networks from a small number of annotated
fake bSSFP images and fully real bSSFP annotated images.
As shown in Table 5, the proposed technique provides the
highest dice score of LV and MYO and the fair value in
RV. This means that our proposed CMMCSegNet outper-
forms the other techniques. Figure 6(b) further illustrates a
more detailed comparison between the proposed and other
techniques; our proposed CMMCSegNet has obvious advan-
tages that it is easier to learn the location information of the
target area.

5. Conclusion

In this work, we proposed a CMMCSegNet framework based
on multimodal cardiac MR images for indirect LGE segmen-
tation. Firstly, we utilized Cycle-GAN to translate LGE
modality into bSSFP modality and then segmented the
translated (fake) bSSFP images to achieve indirect segmen-
tation of LGE images. The advantage of this method is
that only a small number of annotated LGE images can
be required to achieve accurate segmentation of LGE by
employing many annotated bSSFP images. This indirection
also solved the problem of LGE images itself having a low
contrast. Compared with the direct segmentation of LGE
images, the indirect segmentation method has better seg-
mentation performance.

For the multicascade pix2pix network, we regard the seg-
mentation as a translation from image to ground truth; the

purpose of multicascade architecture is to better improve
the previous prediction through several generators. We also
compared the use of different adversarial losses, the experi-
mental results show LSGAN loss is better than the Vanilla
GAN and WGAN-GP, and WGAN-GP loss is not signifi-
cantly better than the Vanilla GAN loss. To improve the
training effect of the model, the perceptual losses based on
Lmanh and Lcosine measures are also used to optimize the
features of each feature layer. In addition, we investigated
the influence of the weights of the generation loss of multi-
cascade structures, where the optimal weight coefficient is
set to (1/3, 1/2, 1/6) for 3 cascade generation networks.

We also demonstrated the effectiveness of the proposed
CMMCSegNet by comparing with FCNs, U-net, U-net++,
and Attention U-net. In the future, we will consider the
end-to-end segmentationmethod to segment the multimodal
cardiac MR, combining the translation and segmentation
together.
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.github.io/mscmrseg19/). This challenge is aimed at creating
an open and fair competition for various research groups to
test and validate their methods, particularly for the multise-
quence ventricle and myocardium segmentation. Also refer
to publication [1].

Conflicts of Interest

The authors declare that they have no known competing
financial interests or personal relationships that could have
appeared to influence the work reported in this paper.

Acknowledgments

This work was supported by the National Natural Science
Foundation of China (NSFC Project number 11771369)
and also partly by grants from the Outstanding Young
Scholars of Education Bureau of Hunan Province, PR China
(number 17B257), and Natural Science Foundation of
Hunan Province, PR China (numbers 2018JJ2375,
2017SK2014, and 2018XK2304).

References

[1] X. Zhuang, “Multivariate mixture model for myocardial seg-
mentation combining multi-source images,” IEEE Transac-
tions on Pattern Analysis and Machine Intelligence, vol. 41,
no. 12, pp. 2933–2946, 2019.

[2] Q. Tao and R. J. V. Der Geest, “Automated myocardium seg-
mentation in late gadolinium enhanced mr images,” Journal
of Cardiovascular Magnetic Resonance, vol. 16, p. 346, 2014.

[3] I. A. Popescu, A. Borlotti, E. Dall’Armellina, and V. Grau,
“Automated lge myocardial scar segmentation using maskslic
supervoxels- replicating the clinical method,” in Medical
Image Understanding and Analysis, M. Valdés Hernández
and V. González-Castro, Eds., pp. 229–236, Springer Interna-
tional Publishing, Cham, Switzerland, 2017.

12 Computational and Mathematical Methods in Medicine

https://zmiclab.github.io/mscmrseg19/
https://zmiclab.github.io/mscmrseg19/


[4] J. Long, E. Shelhamer, and T. Darrell, “Fully convolutional net-
works for semantic segmentation,” in 2015 IEEE Conference on
Computer Vision and Pattern Recognition (CVPR), pp. 3431–
3440, Boston, MA, USA, 2015.

[5] O. Ronneberger, P. Fischer, and T. Brox, “U-net: convolutional
networks for biomedical image segmentation,” in Medical
Image Computing and Computer-Assisted Intervention–MIC-
CAI 2015, N. Navab, J. Hornegger, W. M. Wells, and A. F.
Frangi, Eds., pp. 234–241, Springer International Publishing,
Cham, Switzerland, 2015.

[6] J. Chen, H. Zhang, Y. Zhang et al., “Discriminative consistent
domain generation for semi-supervised learning,” in Medical
Image Computing and Computer Assisted Intervention –MIC-
CAI 2019. MICCAI 2019, pp. 595–604, Springer, 2019.

[7] Y. Liu, G. Yang, S. A. Mirak et al., “Automatic prostate zonal
segmentation using fully convolutional network with feature
pyramid attention,” 2019, http://arxiv.org/abs/1911.00127.

[8] Y. Wu, S. Hatipoglu, D. Alonso-Álvarez et al., “Fast and auto-
mated segmentation for the three-directional multi-slice cine
myocardial velocity mapping,” Diagnostics, vol. 11, no. 2,
p. 346, 2021.

[9] M. Li, C. Wang, H. Zhang, and G. Yang, “Mv-ran: Multiview
recurrent aggregation network for echocardiographic
sequences segmentation and full cardiac cycle analysis,” Com-
puters in Biology and Medicine, vol. 120, p. 103728, 2020.

[10] G. Yang, J. Chen, Z. Gao et al., “Simultaneous left atrium anat-
omy and scar segmentations via deep learning in multiview
information with attention,” Future Generation Computer Sys-
tems, vol. 107, pp. 215–228, 2020.

[11] S. Moccia, R. Banali, C. Martini et al., “Development and test-
ing of a deep learning-based strategy for scar segmentation on
cmr-lge images,” Magnetic Resonance Materials in Physics
Biology and Medicine, vol. 32, no. 2, pp. 187–195, 2019.

[12] Q. Yue, X. Luo, Q. Ye, L. Xu, and X. Zhuang, “Cardiac segmen-
tation from lge mri using deep neural network incorporating
shape and spatial priors,” in Medical Image Computing and
Computer Assisted Intervention – MICCAI 2019. MICCAI
2019, pp. 559–567, Springer, 2019.

[13] I. Goodfellow, J. Pouget-Abadie, M. Mirza et al., “Generative
adversarial nets,” in Advances in Neural Information Process-
ing Systems 27, Z. Ghahramani, M. Welling, C. Cortes, N. D.
Lawrence, and K. Q. Weinberger, Eds., pp. 2672–2680, Curran
Associates Inc., 2014.

[14] M. Mirza and S. Osindero, “Conditional generative adversarial
nets,” 2014, http://arxiv.org/abs/1411.1784.

[15] M. Nishio, C. Muramatsu, S. Noguchi et al., “Attribute-guided
image generation of three-dimensional computed tomography
images of lung nodules using a generative adversarial net-
work,” Computers in Biology and Medicine, vol. 126,
p. 104032, 2020.

[16] C. Decourt and L. Duong, “Semi-supervised generative adver-
sarial networks for the segmentation of the left ventricle in
pediatric mri,” Computers in Biology and Medicine, vol. 123,
p. 103884, 2020.

[17] Z. Qin, Z. Liu, P. Zhu, and Y. Xue, “A Gan-based image synthe-
sis method for skin lesion classification,” Computer Methods
and Programs in Biomedicine, vol. 195, article 105568, 2020.

[18] P. Isola, J. Zhu, T. Zhou, and A. A. Efros, “Image-to-image
translation with conditional adversarial networks,” in 2017
IEEE Conference on Computer Vision and Pattern Recognition
(CVPR), pp. 5967–5976, Honolulu, HI, USA, 2017.

[19] V. N. Murthy, V. Singh, T. Chen, R. Manmatha, and
D. Comaniciu, “Deep decision network for multi-class image
classification,” in 2016 IEEE Conference on Computer Vision
and Pattern Recognition (CVPR), pp. 2240–2248, Las Vegas,
NV, USA, 2016.

[20] K. Armanious, C. Jiang, M. Fischer et al., “Medgan: medical
image translation using gans,” Computerized Medical Imaging
and Graphics, vol. 79, p. 101684, 2020.

[21] Z. Cai and N. Vasconcelos, “Cascade r-cnn: delving into high
quality object detection,” in 2018 IEEE/CVF conference on
computer vision and pattern recognition, pp. 6154–6162, Salt
Lake City, UT, USA, 2018.

[22] Z. Cui, H. Chang, S. Shan, B. Zhong, and X. Chen, “Deep net-
work cascade for image super-resolution,” in Computer
Vision–ECCV 2014, D. Fleet, T. Pajdla, B. Schiele, and T. Tuy-
telaars, Eds., pp. 49–64, Springer International Publishing,
Cham, Switzerland, 2014.

[23] M. Havaei, A. Davy, D. Wardefarley et al., “Brain tumor seg-
mentation with deep neural networks,” Medical Image Analy-
sis, vol. 35, pp. 18–31, 2017.

[24] S. Zhao, Y. Dong, E. Chang, and Y. Xu, “Recursive cascaded
networks for unsupervised medical image registration,” in
2019 IEEE/CVF International Conference on Computer Vision
(ICCV), pp. 10600–10610, Seoul, Korea, 2019.

[25] X. Li, Z. Liu, P. Luo, C. C. Loy, and X. Tang, “Not all pixels are
equal: difficulty-aware semantic segmentation via deep layer
cascade,” in 2017 IEEE Conference on Computer Vision and
Pattern Recognition (CVPR), pp. 3193–3202, Honolulu, HI,
USA, 2017.

[26] T. Lin, P. Dollar, R. Girshick, K. He, B. Hariharan, and
S. Belongie, “Feature Pyramid Networks for Object Detection,”
in 2017 IEEE Conference on Computer Vision and Pattern Rec-
ognition (CVPR), pp. 936–944, Honolulu, HI, USA, 2017.

[27] A. Ben-Cohen, E. Klang, S. P. Raskin, M. M. Amitai, and
H. Greenspan, “Virtual pet images from ct data using deep
convolutional networks: initial results,” in Simulation and Syn-
thesis in Medical Imaging, S. A. Tsaftaris, A. Gooya, A. F.
Frangi, and J. L. Prince, Eds., pp. 49–57, Springer International
Publishing, Cham, 2017.

[28] J. He, C. Wang, D. Jiang, Z. Li, Y. Liu, and T. Zhang, “Cyclegan
with an improved loss function for cell detection using partly
labeled images,” IEEE Journal of Biomedical and Health Infor-
matics, vol. 24, no. 9, pp. 2473–2480, 2020.

[29] J. Y. Zhu, R. Zhang, D. Pathak et al., “Toward multimodal
image-to-image translation,” in Advances in Neural Informa-
tion Processing Systems 30, I. Guyon, U. V. Luxburg, S. Bengio,
H. Wallach, R. Fergus, S. Vishwanathan, and R. Garnett, Eds.,
pp. 465–476, Curran Associates Inc., 2017.

[30] Z. Yi, H. Zhang, P. Tan, and M. Gong, “Dualgan: unsupervised
dual learning for image-to-image translation,” in 2017 IEEE
International Conference on Computer Vision (ICCV),
pp. 2868–2876, Venice, Italy, 2017.

[31] M. Liu, T. M. Breuel, and J. Kautz, “Unsupervised image-to-
image translation networks,” 2017, http://arxiv.org/abs/1703
.00848.

[32] J. Zhu, T. Park, P. Isola, and A. A. Efros, “Unpaired image-to-
image translation using cycle-consistent adversarial net-
works,” in 2017 IEEE International Conference on Computer
Vision (ICCV), pp. 2223–2232, Venice, Italy, 2017a.

[33] C. Chen, C. Ouyang, G. Tarroni et al., “Unsupervised multi-
modal style transfer for cardiac MR segmentation,” in Statistical

13Computational and Mathematical Methods in Medicine

http://arxiv.org/abs/1911.00127
http://arxiv.org/abs/1411.1784
http://arxiv.org/abs/1703.00848
http://arxiv.org/abs/1703.00848


Atlases and Computational Models of the Heart. Multi-Sequence
CMR Segmentation, CRT-EPiggy and LV Full Quantification
Challenges. STACOM 2019, pp. 209–219, Springer, 2019.

[34] V. M. Campello, C. Martín-Isla, C. Izquierdo, S. E. Petersen,
M. A. G. Ballester, and K. Lekadir, “Combining multi-
sequence and synthetic images for improved segmentation of
late gadolinium enhancement cardiac mri,” in Statistical
Atlases and Computational Models of the Heart. Multi-
Sequence CMR Segmentation, CRT-EPiggy and LV Full Quan-
tification Challenges, M. Pop, M. Sermesant, O. Camara, X.
Zhuang, S. Li, A. Young, T. Mansi, and A. Suinesiaputra,
Eds., pp. 290–299, Springer International Publishing, Cham,
Switzerland, 2020.

[35] X. Tao, H. Wei, W. Xue, and D. Ni, “Segmentation of multi-
modal myocardial images using shape-transfer Gan,” in Statis-
tical Atlases and Computational Models of the Heart. Multi-
Sequence CMR Segmentation, CRT-EPiggy and LV Full Quan-
tification Challenges, M. Pop, M. Sermesant, O. Camara, X.
Zhuang, S. Li, A. Young, T. Mansi, and A. Suinesiaputra,
Eds., pp. 271–279, Springer International Publishing, Cham,S-
witzerland, 2020.

[36] H. R. Roth, W. Zhu, D. Yang, Z. Xu, and D. Xu, “Cardiac seg-
mentation of lge mri with noisy labels,” in Statistical Atlases
and Computational Models of the Heart. Multi-Sequence
CMR Segmentation, CRT-EPiggy and LV Full Quantification
Challenges. STACOM 2019, pp. 228–236, Springer, 2019.

[37] Y. Liu, W. Wang, K. Wang, C. Ye, and G. Luo, “An automatic
cardiac segmentation framework based on multi-sequence mr
image,” in Statistical Atlases and Computational Models of the
Heart. Multi-Sequence CMR Segmentation, CRT-EPiggy and
LV Full Quantification Challenges. STACOM 2019, pp. 220–
227, Springer, 2019.

[38] J. Son, S. J. Park, and K. Jung, “Retinal vessel segmentation in
fundoscopic images with generative adversarial networks,”
2017, http://arxiv.org/abs/1706.09318.

[39] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for
image recognition,” in 2016 IEEE Conference on Computer
Vision and Pattern Recognition (CVPR), pp. 770–778, Las
Vegas, NV, USA, 2016.

[40] I. Gulrajani, F. Ahmed, M. Arjovsky, V. Dumoulin, and
A. Courville, “Improved training of Wasserstein gans,” 2017,
http://arxiv.org/abs/1704.00028.

[41] X. Mao, Q. Li, H. Xie, R. Y. K. Lau, Z. Wang, and S. P. Smolley,
“Least squares generative adversarial networks,” in 2017 IEEE
International Conference on Computer Vision (ICCV),
pp. 2813–2821, Venice, Italy, 2017.

[42] C. Ledig, L. Theis, F. Huszár et al., “Photo-realistic single image
super-resolution using a generative adversarial network,” in
2017 IEEE Conference on Computer Vision and Pattern Recogni-
tion (CVPR), pp. 105–114, Honolulu, HI, USA, 2017.

[43] X. Wang, K. Yu, S. Wu et al., “Esrgan: enhanced super-
resolution generative adversarial networks,” in Computer
Vision–ECCV 2018 Workshops, L. Leal-Taixé and S. Roth,
Eds., pp. 63–79, Springer International Publishing, Cham,
Switzerland, 2019.

[44] Z. Zhou, M. M. R. Siddiquee, N. Tajbakhsh, and J. Liang,
“Unet++: redesigning skip connections to exploit multiscale
features in image segmentation,” IEEE Transactions on Medi-
cal Imaging, vol. 39, no. 6, pp. 1856–1867, 2020.

[45] O. Oktay, J. Schlemper, L. L. Folgoc et al., “Attention u-net:
learning where to look for the pancreas,” 2018, http://arxiv
.org/abs/1804.03999.

14 Computational and Mathematical Methods in Medicine

http://arxiv.org/abs/1706.09318
http://arxiv.org/abs/1704.00028
http://arxiv.org/abs/1804.03999
http://arxiv.org/abs/1804.03999

	CMMCSegNet: Cross-Modality Multicascade Indirect LGE Segmentation on Multimodal Cardiac MR
	1. Introduction
	2. Related Works
	2.1. Cascade Structure
	2.2. Multimodal Cardiac MR Image Segmentation

	3. Proposed Cross-Modality SegNet
	3.1. Cross-Modality Image Translation
	3.2. Multicascade pix2pix Segmentation
	3.2.1. Multicascade Network
	3.2.2. Loss Functions in Segmentation Stage


	4. Results and Discussion
	4.1. Dataset and Experimental Setting
	4.2. Performance of Cross-Modality Translation
	4.3. Comparisons for Different Choices of Adversarial Loss and Perceptual Loss
	4.4. Comparisons of the Cascade Generators
	4.4. Comparisons of the Cascade Generators
	4.5. Comparisons of the Weights ωkLg and ωkL1 of Multicascade Blocks
	4.6. Comparison to Conventional Methods

	5. Conclusion
	Data Availability
	Conflicts of Interest
	Acknowledgments

