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Abstract

This research proposes a new multi-membrane search algorithm (MSA) based on cell bio-

logical behavior. Cell secretion protein behavior and cell division and fusion strategy are the

main inspirations for the algorithm. In order to verify the performance of the algorithm, we

used 19 benchmark functions to compare the MSA test results with MVO, GWO, MFO and

ALO. The number of iterations of each algorithm on each benchmark function is 100, the

population number is 10, and the running is repeated 50 times, and the average and stan-

dard deviation of the results are recorded. Tests show that the MSA is competitive in unimo-

dal benchmark functions and multi-modal benchmark functions, and the results in

composite benchmark functions are all superior to MVO, MFO, ALO, and GWO algorithms.

This paper also uses MSA to solve two classic engineering problems: welded beam design

and pressure vessel design. The result of welded beam design is 1.7252, and the result of

pressure vessel design is 5887.7052, which is better than other comparison algorithms. Sta-

tistical experiments show that MSA is a high-performance algorithm that is competitive in

unimodal and multimodal functions, and its performance in compound functions is signifi-

cantly better than MVO, MFO, ALO, and GWO algorithms.

1. Introduction

In the past few decades, based on linear and non-linear programming methods optimization

algorithms have been used to solve various practical problems in engineering, science, busi-

ness, economics, etc. These methods may require larger gradient information, and usually

need to improve the solution near the starting point [1]. However, with the continuous expan-

sion of artificial intelligence applications, in the research of optimization problems, the travel-

ing salesman problem, assignment problem, and workshop scheduling problem are beyond

the capabilities of traditional optimization algorithms. These engineering problems are highly

non-linear, including complex objective functions with a large number of different variables

which are usually subject to many constraints [2]. Compared with traditional optimization

techniques, meta-heuristic algorithms are more suitable for solving practical problems with

unknown derivative information [3]. It is because meta-heuristic algorithms have good ran-

dom search capabilities. This mechanism avoids the stagnation of local optimal solutions.

Therefore, the meta-heuristic algorithm provides new solutions to some complex problems,

which has proved to be a successful idea [4].
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Regardless of the different sources of inspiration for the group meta-heuristic al-gorithm,

the search process is in two stages: exploration and development [5]. In the exploration phase,

the algorithm will continue to randomly explore the global area to expand the search area as

much as possible [6]. In the development stage, the algorithm is based on the global search

results and performs a local search for the are-as where the optimal solution may exist. Differ-

ent algorithms use their own search strategies, but whether they can maintain a balance

between exploration and development is an important criterion for optimization capabilities.

The literature [7] maintains the balance by increasing the diversity of candidate solutions, and

the literature [8] adjusts the mutation ratio of the algorithm. In addition, different algorithms

can be combined to obtain better balance ability [9, 10].

Inspired by cell membranes [11], the idea of membrane computing has first proposed by

Professor GP, an academician of the Romanian Academy of Sciences, in 1998. The essence of

membrane computing is to abstract the different functional organs of cells into membrane

functions, to realize the capability of computing like cells. By learning and simulating the way

cells, tissues, organs or other biological structures process chemical substances, a distributed

computing model with good computing capabilities is established. However, technological

advances in various fields of engineering and science have led to many challenging real-world

problems [12]. Such as: pressure vessel design, welded beam design, and many other engineer-

ing problems with equality and inequality constraints [13, 14]. Different meta-heuristic algo-

rithms show powerful computing power on various problems [15]. The fact has proved that

based on the "No Free Lunch" (NFL) theorem [16], there is no universal optimization algo-

rithm inspired by nature that can solve all real-world optimization problems in the best way

[17]. It means that a certain type of membrane calculation is suitable for solving a specific set

of problems, but it cannot effectively solve all types of problems.

This work has proposed the multi-membrane search algorithm (MSA), for solving con-

strained and global optimization problems. Cells usually have strong adaptability when the

environment changes [18]. We regard the function to be solved as the fitness function of the

algorithm. In the optimization process, the group individuals imitate the behavior of cell pro-

duction of protein, and the resulting multi-dimensional solution is used as the candidate solu-

tion generated by the algorithm as a function.

2. Multi-membrane search algorithm introduced

2.1 Inspiration

As shown in Fig 1, the basic function of biofilm is to partition. We call the outer cell membrane

the basic cell membrane, which is the basic operating unit of the multi-cell membrane element

heuristic algorithm. We call the intracellular organ membrane the sub-membrane. The differ-

ent transcription of RNA by the sub-membrane is the cause of individual differences in cells.

We abstract the functions of various organelles in the cell as sub-membrane structures. Dif-

ferent sub-membranes have different functions to mimic the functions of the organelles. The

optimal solution of the previous step is processed differently through different sub-mem-

branes, and each cell can choose between the new results produced by its sub-membrane.

Information exchange is carried out through the way of cell mating and reproduction, and

finally, highly parallel computing is realized.

2.2 Mathematical models

2.2.1 Mathematical model of cell population. Most group algorithms divide the search

process into two parts: exploration and development. We use the nucleus of a single cell to

guide the organelles to explore the process of intracellular protein synthesis and realize the
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development process of cells approaching the optimal individual through cell division and

fusion.

The MSA is introduced as follows:

M ¼ fC1 C2 � � � Ci � � � CIg; ð1Þ

Among:

M represents the MSA group optimization algorithm;

I Represents the number of individual cells;

Ci Represents the i-th cell in the MSA.

In this paper, I is set to 10, which means that each iteration of the MSA has a total of ten

cells to perform operations.

2.2.2 Single cell membrane model. The single-cell membrane system generally uses char-

acters or strings as objects, which is different from the binary encoding of the classic genetic

algorithm, and the MSA uses decimal encoding. Every cell has organelles used to synthesize

proteins. The functions of organelles are different. We abstract organelles as sub-membranes

in the single- cell membrane system of the MSA. In this way, different membranes have their

own set of rules, and due to the role of the membrane, these rule sets do not affect other sub-

membrane objects.

Ci structure is as follows:

Ci ¼

X1

X2
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7
7
7
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i

ð2Þ

Among:

Xj represents the j-th organelle submembrane in Ci;

J represents the number of organelle membranes in a single cell, and is also the number of

candidate solutions included in the single cell membrane system, and J = K+1.

Fig 1. Cell model.

https://doi.org/10.1371/journal.pone.0260512.g001
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2.2.3 Organelle model. As shown in Fig 2, the one organelle is often only responsible for

one type of function. For a submembrane, it only processes its own functions. For the MSA to

optimize the multi-objective optimization function, for each Ci, the real number combination

of the initial randomly generated array is used as the feasible solution of the function to be

optimized, and the individual with the optimal solution in these object combinations is used as

the RNA transcribed from the nucleus. We call the sub-membrane where the optimal solution

is located in the current step size as the nuclear membrane of the current system Ci, denoted

by xbest. Similar to cell life activities, different organelles can process proteins of different prop-

erties based on the same RNA. The xbest membrane outputs the optimal solution as RNA, and

each of the remaining sub-membranes uses the optimal solution as the processing basis.

As shown in Fig 3, each sub-membrane only rewrites the dimension of the optimal solution

related to its function, and gradually approaches the optimal solution of the current single-cell

Fig 2. Cell synthesis protein.

https://doi.org/10.1371/journal.pone.0260512.g002

Fig 3. Simplified diagram of the new solution model of MSA cell individual generation.

https://doi.org/10.1371/journal.pone.0260512.g003
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system for other dimensions, thereby generating new solutions. Therefore, the dimension of

the solution is the same as the number of functional organelles. At the same time, an additional

sub-membrane with collection rules is provided in the cell membrane, which can summarize

all the functions of rewriting information. Therefore, a single cell membrane system contains a

total of K+1 sub-membrane. After the processing of each sub-membrane is completed, the

obtained results are compared with the original optimal results to realize the function of cell

optimization.

For the organelle Xj in Ci:

Xj ¼ ðx1 x2 � � � xk � � � xKÞ; ð3Þ

Among:

Xj is a set of vectors, representing the solution in the j-th sub-film in Ci;

xk represents the k-th dimension of the current solution.

In order to be more intuitive, we can directly express Xj in Ci:

Ci ¼
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Among:

xjk represents the k-th dimension variable of the solution in the j-th sub-film;

J represents the number of sub-membranes in the cell Ci, and J = K+1.

Due to differences in cell organs, the nuclear membrane is the core control unit of the cell,

directing each organelle membrane to process only one parameter, and the remaining parame-

ters approach the optimal solution to increase the local search efficiency of the algorithm. The

update rules for the parameters in the sub-membrane are as follows:

When j6¼J:

xjk ¼
rand � ðxbestk � xjkÞ þ xjk j ¼ k

xbestk þHSP� ðrand � 0:5Þ � ðubk � lbkÞ j 6¼ K
; ð5Þ

(

When j = J:

XJ ¼ ½x
J
1 xJ2 � � � xJk � � � xJK �

ðxJ1 ¼ x1
1
; xJ2 ¼ x2

2
; � � � ; xJk ¼ xkk; � � � ; x

J
K ¼ xJ� 1

K Þ;
ð6Þ

Among:

xbestk represents the k-th variable of the optimal solution in the cell Ci;

rand represents a random number between 0–1;

ubk represents the upper bound of the k-th dimension variable;

lbk represents the lower bound of the k-th dimension variable;

The MSA abstracts missense mutations in the synthesis of new proteins in cell life activities

by setting rand random numbers. Most missense mutations are directly or indirectly caused

by affecting the folding, assembly, and transport of these proteins. Protein misfolding can lead
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to two situations: one is that the number of proteins that are correctly folded and transported

has reduced, resulting in loss of function; the other is that misfolding can abnormally gain

function. The MSA develops a search space by abstractly mimicking the way of missense muta-

tions in the synthesis of proteins by cells.

2.2.4 Protein activity model. HSP stands for the role of heat shock protein contained in

the single-cell system. In the process of cell secretion of proteins, under the action of HSP,

some genes are expressed under normal conditions, and some are expressed in large quantities

under elevated temperature or other stress conditions to protect cells and reduce abnormal

environmental damage. α represents the influence of temperature on HSP, which gradually

increases with the number of iterations, while HSP gradually decreases from the initial value.

The MSA uses this cell physiological characteristic to gradually converge the sub-membrane

optimization result to the vicinity of the optimal solution with the number of iterations to

obtain a more accurate local optimization. Here Q represents the activity constant of the

enzyme in the cell, which is an empirical value, and the enzyme activity affects the accuracy of

the algorithm optimization. The expressions of HSP and α are as follows:

a ¼ Q� ln
s
S

ð7Þ

HSP ¼ �
ea � 1

ea þ 1
ð8Þ

Among:

Q is an adjustable parameter;

s represents the current number of iterations;

S represents the maximum number of iterations.

HSP abstracts the gene expression effect of single-cell synthetic protein. Compared with

other optimization algorithms, the Q parameters provided by MSA can be adjusted by users.

As can be seen from the above Fig 4, the larger the value of Q, the greater the change of HSP
with the step size. For the MSA, the search range of Ci is larger, and its ability to jump out of

Fig 4. Variation curve of HSP with iteration under different values of Q.

https://doi.org/10.1371/journal.pone.0260512.g004
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the local optimal solution is stronger, but the optimization accuracy will be lower; when the Q
value is smaller, the change of HSP with the step size is smaller. For MSA, the search range of

Ci is smaller, and its ability to jump out of the local optimal solution will decrease, but the opti-

mization accuracy will increase. In this paper, we provide two empirical values. When unimo-

dal benchmark functions and multi-modal benchmark functions, Q is set to 0.015 to increase

the accuracy of the solution. In composite benchmark functions, Q is set to 0.6 to increase the

cell search range to avoid falling into a local optimal solution. Users can also set their own val-

ues according to actual problems to obtain the optimal performance of MSA for different

problems.

When the above update rule exceeds the parameter range, we assign the boundary to xjk. At

this time, the update rule is as follows:

xjk ¼
minðxjk; ubkÞ

maxðxjk; lbkÞ
ð9Þ

(

Among:

xjk represents the k-th dimensional variable of the solution in the j-th sub-membrane;

ubk represents the upper bound of the k-th dimension variable;

lbk represents the lower bound of the k-th dimension variable.

The pseudo code of MSA local search process is as follows:
Pseudo code:

for each membrane Ci indexed by i
for each membrane Xj indexed by j

for each membrane xk indexed by k
r2 = random[0,1]
if: j6¼J

if: j = k
xjk ¼ r2� ðxbestk � xjkÞ þ xjk

else
xjk ¼ xbestk þHSP� ðrand � 0:5Þ � ðubk � lbkÞ

end if
else

xJk ¼ xkk
end if
end for

end for
end for

In the MSA local search process, the HSP gradually decreases from the initial value as the

number of iterations increases. The MSA uses this cellular physiological characteristic to grad-

ually converge the optimization result to the vicinity of the optimal solution with the number

of iterations to obtain a more accurate local optimization. As MSA decreases with HSP, its

local search will gradually converge to the vicinity of the current optimal solution.

2.2.5 Intercellular information exchange model. As shown in Fig 5, cells exchange

genetic material through meiosis and sexual reproduction. We introduce the concepts of cell

meiosis and sexual reproduction as the global optimization scheme of the algorithm. The sig-

nificance of meiosis is that it cannot only effectively obtain the genetic material of the parents,

maintain the genetic stability of the offspring, but also increase more variation and ensure

biodiversity.

In the process of biological cell reproduction in nature, the optimal individual always has

the priority of reproduction. We take advantage of this feature to use the cell containing the

optimal solution in the population as the male parent for division and fusion, and the
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remaining cells as the female parent for fusion. As the algorithm continues to iterate, since the

population’s optimal child cell membrane individual exists as the parent, other cells will con-

tinue to evolve toward the optimal individual through reproductive behavior. We set the

threshold of 0.75. While ensuring evolution, it will retain certain mutations and improve the

ability of MSA to jump out of local optimal solutions. The advantages of this design will be

reflected in the subsequent optimization of complex functions.

The intercellular fusion rules are updated as follows:

Cbest
i ¼

rand� ðCbest � Cbest
i Þ þ Cbest

i ðrand � 0:75Þ

Cbest þ rand � ðCbest � Cbest
i Þ ðrand < 0:75Þ

ð10Þ

(

Among:

Cbest
i represents the optimal solution in the i-th single cell membrane system in the MSA;

Cbest represents the global optimal solution of the MSA;

rand represents a random number between 0–1.

The pseudo code of the information exchange model between cells is as follows:
Pseudo code:
for each membrane Ci indexed by i
r1 = random[0,1]
if: r1�0.75
Cbest

i ¼ r1� ðCbest � Cbest
i Þ þ Cbest

i

else
Cbest

i ¼ Cbest þ r1� ðCbest � Cbest
i Þ

end if
end for

The global search strategy of MSA seeks the best in the space between the global optimal

solution and the local optimal solution and does not converge with the number of iterations.

Fig 5. Meiotic fusion model.

https://doi.org/10.1371/journal.pone.0260512.g005
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3. Results and discussion

In this section, the MSA is based on 19 benchmark functions. The first 13 benchmark func-

tions are classic functions used by most meta-heuristic algorithm researchers [19–24].

Although these benchmark functions are relatively simple, they are representative and conve-

nient for comparison with other algorithms due to their wide application. In the test, the MSA.

The 13 benchmark functions can be divided into two categories, unimodal functions, and mul-

timodal functions.

These benchmark functions are listed in the following Tables 1 and 2. In the table, dim rep-

resents the depth of the function, Range represents the boundary of the function search space,

and fmin is the best value. In addition, the other test platforms we chose came from the six com-

plex functions of the CEC meeting. These composite functions are composite functions gener-

ated after displacement, rotation, and combination of classic functions. The detailed functions

of compound functions can be introduced in the CEC-2005 paper [25].

Table 1. Unimodal benchmark functions.

Function Dim Range fmin

F1ðxÞ ¼
Pn

i¼1
x2
i 15 [–100,100] 0

F2ðxÞ ¼
Pn

i¼1
jxij þ

Qn
i¼1
jxij 15 [–10,10] 0

F3ðxÞ ¼
Pn

i¼1
ð
Pi

j� 1
xjÞ

2 15 [–100,100] 0

F4ðxÞ ¼ maxifjxij; 1 � i � ng 15 [–100,100] 0

F5ðxÞ ¼
Pn� 1

i¼1
½100ðxiþ1 � x2

i Þ
2
þ ðxi � 1Þ

2
� 15 [–30,30] 0

F6ðxÞ ¼
Pn

i¼1
ð½xi þ 0:5�Þ

2 15 [–100,100] 0

F7ðxÞ ¼
Pn

i¼1
ix4

i þ random½0; 1� 15 [-1.28,1.28] 0

https://doi.org/10.1371/journal.pone.0260512.t001

Table 2. Multi-modal benchmark functions.

Function Dim Range fmin

F8ðxÞ ¼
Pn

i¼1
� xi sinð

ffiffiffiffiffiffi
jxij

p
Þ 15 [–500,500] 0

F9ðxÞ ¼
Pn

i¼1
½x2

i � 10cosð2pxiÞ þ 10� 15 [-5.12,5.12] 0

F10ðxÞ ¼ � 20expð� 0:2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

n

Pn
i¼1

x2
i

q
Þ � expð1n

Pn
i¼1

cosð2pxiÞÞ þ 20þ e 15 [–32,32] 0

F11ðxÞ ¼ 1

4000

Pn
i¼1

x2
i �

Qn
i¼1

cosð xiffiip Þ þ 1 15 [–600,600] 0

F12ðxÞ ¼
p

n
f10 sinðpy1Þþ

Pn
i¼1
ðyi � 1Þ

2
½1þ 10 sin2ðpyiþ1Þ� þ ðyn � 1Þ

2
g

þ
Pn

i¼1
uðxi; 10; 100; 4Þ

yi ¼ 1þ
xi þ 1

4

uðxi; a; k;mÞ ¼

( kðxi � aÞm xi > a

0 � a < xi < a

kð� xi � aÞm xi > � a

15 [–50,50] 0

F13ðxÞ ¼ 0:1fsin2ð3px1Þþ
Pn

i¼1
ðxi � 1Þ

2
½1þ sin2ð3pxi þ 1Þ� þ ðxn � 1Þ

2
½1þ sin2ð2pxnÞ�g

þ
Pn

i¼1
uðxi; 5; 100; 4Þ

15 [–50,50] 0

https://doi.org/10.1371/journal.pone.0260512.t002
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To verify the performance of the algorithm, we compare the MSA with the MVO algorithm,

GWO algorithm, MFO algorithm, and ALO algorithm. These algorithms are all newly pro-

posed meta-inspired optimization algorithms in recent years [26, 27]. They are widely used

[28, 29]. The number of iterations of each algorithm on each benchmark function is 100, the

number of clusters is 10, and the run is repeated 50 times, and the average and standard devia-

tion of the results are recorded.

In Fig 6, the first column represents the three-dimensional image of the tested function; the

second column represents the three-dimensional position change of the optimal individual’s

parameters during the optimization process of the MSA; The third column is the first-dimen-

sional parameter change of the optimal individual in the MSA; the fourth column represents

the fitness of the optimal individual in the MSA swarm optimization algorithm changes with

the iteration step; Since the algorithm is run 50 times repeatedly, the aforementioned parame-

ters are all averaged 50 times; the fifth column represents the fitness of the optimal individual

obtained by the MSA in 50 repetitions.

The MSA can provide competitive results. From the second column of the three-dimen-

sional map in above Fig 6, we can find that the MSA searches around the best point at the

beginning, and continues to converge to the best point with iterations. This is due to the design

of the MSA imitating the organelle, which makes a single cell Individuals have the ability to

seek advantages and avoid disadvantages so that areas of possible optimal solutions can be

quickly found in the cell population.

The fourth column of average fitness reflects that the algorithm can quickly converge. The

best individual in the population is used as the parent, and other individuals are fused with the

best individual to obtain the best individual solution information. This design can accelerate

the convergence in the process of unimodal function optimization, thereby increasing the con-

vergence speed of a single iteration; due to the number of local optimal solutions of unimodal

function and multimodal function is small, to improve the optimization accuracy, we have

adjusted the parameters down in the peak and multi-peak functions, which will explore the

space with smaller steps in the later iteration of the MSA to obtain more accurate optimization

results. In above Fig 6, the third column reflects the changing trend of the first-dimensional

parameters of the MSA. It can be seen from Fig 6. that although the starting point is not good,

there are large-scale mutations in the initial parameters of the MSA, and the mutation ampli-

tude is gradually reduced with the number of iterations. The design is conducive to the explo-

ration of the entire region in the early stage of the algorithm, and the targeted development is

carried out after determining the region where the optimal solution may exist in the later

stage.

From Table 3, it can be found that the MSA has better results than the other four algorithms

in the F1 and F6 functions, and good results can also be obtained in the F2 and F7 functions. It

is worth mentioning that the unimodal function reflects the ability of algorithm benchmark

development, which shows that the MSA is excellent in this respect.

Compared with the unimodal function, the multi-modal function has many local optimal

values, and the number of them increases exponentially with the dimension. These functions

are suitable for the exploration ability of the detection algorithm. As can be seen from the

above Table 4, the MSA has strong adaptability to multi-modal benchmark functions. From

the one-dimensional image in the third column, we can know that the data has multiple verti-

cal changes, which reflects the ability of the MSA to jump out of the local optimal solution. In

the first row and third column of Fig 6, the algorithm has a large mutation in the middle of the

iteration. This mid-term ultra-amplitude mutation ability benefits from the abstraction of the

concept of cell meiosis and sexual reproduction by the MSA. Using a mutation strategy to

maintain the diversity of algorithm solutions is an effective method [30], which allows MSA to
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effectively retain the optimal individual information during the iteration process, maintain the

stability of the algorithm optimization, and increase more mutations to improve the algorithm

of resisting local optimal solution capabilities.

According to the above Table 4, the MSA achieves better results than other algorithms on

the F11 function and also achieved competitive results in the F10 and F13 functions. It reflects

that MSA has a strong global exploration ability while retaining the ability to prevent falling

into local optimal solutions.

Fig 6. MSA search history of unimodal and multi-modal benchmark functions.

https://doi.org/10.1371/journal.pone.0260512.g006
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As shown in Table 5, The composite benchmark function is composed of multiple groups

of different functions, which is a very challenging test for the optimization algorithm. It can be

seen from the above Fig 7 that the local search space of MSA gradually shrinks with the step

size, which is similar to other group optimization algorithms. This design can help the algo-

rithm to conduct extensive exploration in the global stage in the early stage and can help the

algorithm to search in the region in the later stage.

However, limited by this design, the algorithm is easy to fall into the local optimal solution

in the later stage. But for the MSA, the method of information fusion does not change with the

step size as the inter-group communication rule, and its mutation ability always exists, which

ensures that MSA has a strong ability in the optimization of super-complex composite func-

tions. When the MSA falls into the local optimal solution, the search mechanism of the MSA

gives it the ability to escape the current space. When testing the multi-modal function above,

the parameter variation in the middle of the iteration has been reflected. The test of the com-

posite benchmark function highlights the role of this ability. Facts have proved that this mech-

anism not only effectively maintains the stability of excellent solutions but also can increase

more search and development capabilities.

The composite benchmark function used is usually a very challenging test platform for

meta-heuristic algorithms. It can detect the detection and development performance of the

algorithm at the same time. Since this function has a large number of local optimal solutions,

the ability of the function to avoid locally optimal solutions can be tested. According to the

above Table 6, MSA has achieved very competitive results while maintaining high computa-

tional stability.

The test provided in this article proves that the MSA has excellent optimization capabilities,

but it cannot be considered that the MSA is better than other test algorithms. With reference

to NFL theory, different algorithms show different capabilities in solving various problems.

Only in the specific benchmarks provided in this article, the MSA embodies very competitive

advantages in some aspects, which makes it used to solve practical problems.

Table 3. Results of unimodal benchmark functions.

F MSO MVO GWO ALO MFO

Ave SD Ave SD Ave SD Ave SD Ave SD

F1 8.7495e-04 3.2273e-04 10.2313 5.2546 0.0533 0.0571 4.8967e+03 2.1150e+03 1.6096e+03 2.2590e+03

F2 0.3055 0.6260 14.0613 18.0058 0.0386 0.0168 49.6471 14.3902 21.2112e+04 10.8184

F3 74.4146 116.8520 973.8978 438.9209 86.9044 77.6368 1.1807e+04 6.5782e+03 1.2120e+04 5.8021e+03

F4 2.8612 3.0346 10.1195 8.8488 0.8728 0.4719 34.9484 8.5643 62.1272 11.0091

F5 1.1816e+03 3.9738e+03 3.5711e+03 7.5622e+03 19.4736 15.6933 2.3029e+06 2.1211e+06 2.3087e+06 9.6379e+06

F6 7.6043e-04 2.6048e-04 8.9862 3.5897 1.7697 0.5089 4.9878e+03 2.6931e+03 2.0847e+03 2.3933e+03

F7 0.0863 0.0475 0.0752 0.0373 0.0254 0.0144 1.9431 1.0283 1.9560 3.0985

https://doi.org/10.1371/journal.pone.0260512.t003

Table 4. Results of multi-modal benchmark functions.

F MSO MVO GWO ALO MFO

Ave SD Ave SD Ave SD Ave SD Ave SD

F8 4.7462e+03 302.4690 3.7632e+03 408.1472 2.9235e+03 625.6863 2.8628e+03 477.2798 4.0958e+03 458.9983

F9 78.3987 38.0840 119.9696 44.5255 123.6363 40.8783 1.3525 0.8352 23.6579 7.0332

F10 3.5607 2.6745 6.3676 6.8130 0.0715 0.0444 15.4090 2.7799 15.5257 3.8678

F11 0.0218 0.0181 1.0751 0.0587 0.2089 0.1104 43.9563 19.4804 17.3948 21.6136

F12 8.6309 5.4757 3.9959 2.7825 0.6128 0.4580 1.4070e+06 3.1366e+06 1.5243e+06 3.3789e+06

F13 1.3219 4.4374 1.1764 1.0255 1.1853 0.4562 4.7577e+06 7.005e+06 1.1410e+07 1.8578e+07

https://doi.org/10.1371/journal.pone.0260512.t004
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4. MSA for classical engineering problems

In this section, two constrained engineering problems are adopted: welded beam design, pres-

sure vessel design. These problems have equality and inequality constraints. We provide con-

straint conditions by increasing the penalty factor [38].

Table 5. Composite benchmark functions.

Function Dim Range fmin

F14ðCF1Þ

f1; f2; f3; . . . ; f10 ¼ Sphere function

½s1; s2;s3; . . . ; s10� ¼ ½1; 1; 1; . . . 1�

½l1; l2; l3; . . . l10� ¼ ½5=100; 5=100; 5=100; . . . 5=100�

15 [–5,5] 0

F15ðCF2Þ

f1; f2; f3; . . . ; f10 ¼ Griewank0s function

½s1; s2;s3; . . . ; s10� ¼ ½1; 1; 1; . . . 1�

½l1; l2; l3; . . . l10� ¼ ½5=100; 5=100; 5=100; . . . 5=100�

15 [–5,5] 0

F16ðCF3Þ

f1; f2; f3; . . . ; f10 ¼ Griewank0s function

½s1; s2;s3; . . . ; s10� ¼ ½1; 1; 1; . . . 1�

½l1; l2; l3; . . . l10� ¼ ½1; 1; 1; . . . 1�

15 [–5,5] 0

F17ðCF4Þ

f1; f2 ¼ Ackley0s function

f3; f4 ¼ Rastrigin0s function

f5; f6 ¼Weierstrass function

f7; f8 ¼ Ackley0s function

f9; f10 ¼ Sphere function

½s1; s2;s3; . . . ; s10� ¼ ½1; 1; 1; . . . 1�

½l1; l2; l3; . . . l10� ¼ ½5=32; 5=32; 1; 1; 5=0:5; 5=100; 5=100; 5=100; 5=100�

15 [–5,5] 0

F18ðCF5Þ

f1; f2 ¼ Rastrigin0s function

f3; f4 ¼Weierstrass function

f5; f6 ¼ Griewank0s function

f7; f8 ¼ Ackley0s function

f9; f10 ¼ Sphere function

½s1; s2;s3; . . . ; s10� ¼ ½1; 1; 1; . . . 1�

½l1; l2; l3; . . . l10� ¼ ½1=5; 1=5; 5=0:5; 5=0:5; 5=100; 5=100; 5=32; 5=32; 5=100; 5=100�

15 [–5,5] 0

F19ðCF6Þ

f1; f2 ¼ Rastrigin0s function

f3; f4 ¼Weierstrass function

f5; f6 ¼ Griewank0s function

f7; f8 ¼ Ackley0s function

f9; f10 ¼ Sphere function

½s1; s2;s3; . . . ; s10� ¼ ½0:1; 0:2; 0:3; 0:4; 0:5; 0:6; 0:7; 0:8; 0:9; 1:0�

½l1; l2; l3; . . . l10� ¼ ½0:1� 1=5; 0:2� 1=5; 0:3� 5=0:5; 0:4� 5=0:5; 0:5� 5=100;

0:6� 5=100; 0:7� 5=32; 0:8� 5=32; 0:9� 5=100; 1� 5=100�

15 [–5,5] 0

https://doi.org/10.1371/journal.pone.0260512.t005
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4.1 Welded beam design

The design of welded beams is a classic engineering problem, which aims to reduce the

manufacturing cost of the welded beam structure. The welded beam structure shown in Fig 8

consists of beam A and the welding required to be connected to part B.

We realize the optimization of the problem by controlling the four structures of the welded

beam design structure: the thickness of the weld (h), the length of the clamping rod (l), the

height of the rod (t), and the thickness of the rod (b).

Fig 7. MSA search history of composite benchmark functions.

https://doi.org/10.1371/journal.pone.0260512.g007
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The constraints and problems of the welded beam design are shown in Table 7. The litera-

ture [33] uses the MVO algorithm, the literature [31] uses the MFO algorithm, and the litera-

ture [32] eta. used successive linear approximation methods to solve such problems. The

comparison results have shown in Table 8, and the MSA has found the lowest cost design.

4.2 Pressure vessel design problem

The purpose of this problem is to minimize the cost of material, molding, and welding of the

cylindrical container. As shown in Fig 9, the head of the container is hemispherical, and both

ends are designed with lids. The container design needs to consider four variables: Shell thick-

ness (Ts); Head thickness (Th); Inner diameter (R); Excluding the length of the cylindrical sec-

tion of the head (L).

Table 6. Results of composite benchmark functions.

F MSO MVO GWO ALO MFO

Ave SD Ave SD Ave SD Ave SD Ave SD

F14 22.1549 54.5508 161.0825 152.4570 232.0816 157.6860 947.0148 164.2346 203.8868 122.6354

F15 84.5699 77.4758 279.0466 137.0534 359.6516 136.7675 1.0774e+03 145.1174 242.2932 128.6801

F16 183.5834 37.7175 502.9318 167.7558 489.4202 162.6323 1.4215e+03 164.0751 454.9907 119.4715

F17 473.0368 135.4676 673.1883 115.3223 741.2412 152.7680 1.3797e+03 91.6158 717.0409 103.9583

F18 27.7213 35.4273 313.1734 256.5552 338.5649 252.2804 1.2528e+03 181.9147 194.3647 171.7738

F19 820.9068 134.9647 892.2839 101.1834 897.1799 14.2607 1.3389e+03 97.1536 893.0512 101.1834

https://doi.org/10.1371/journal.pone.0260512.t006

Fig 8. Design parameters of the welded beam design problem.

https://doi.org/10.1371/journal.pone.0260512.g008
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The constraints and problems of the pressure vessel design are shown in Table 9. Many

researchers have used different algorithms to solve this design problem, such as MFO [31],

MVO [33], GA [34], HS [35], etc. Table 10 gives a comparison of the best solutions so far

obtained through MSA and other algorithms, which have previously been reported in the liter-

ature on pressure vessel design problems, and the MSA has found the lowest cost design.

Table 7. Constraint condition of welded beam.

Welded beam design

Consider:

x!¼ ½x1; x2; x3; x4� ¼ ½h; l; t; b�
Minimize:

f ð x!Þ ¼ 1:10471x2
1
x2þ

0:04811x3x4ð14:0þ x2Þ

Subject to the following constraints:

g1ð x
!Þ ¼ tð x!Þ � tmax � 0

g2ð x
!Þ ¼ sð x!Þ � smax � 0

g3ð x
!Þ ¼ x1 � x4 � 0

g4ð x
!Þ ¼ 1:10471x2

1
þ

0:04811x3x4ð14:0þ x2Þ � 5:0 � 0

g5ð x
!Þ ¼ 0:125 � x1 � 0

g6ð x
!Þ ¼ dð x!Þ � dmax � 0

g7ð x
!Þ ¼ P � PCð x

!Þ � 0

Variable range:

0.1�x1�2

0.1�x2�10

0.1�x3�10

0.1�x1�2

Where the other auxiliary formula:

t x!
� �

¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ððt0Þ
2
þ ðt@Þ

2
Þ þ

2t0t@x2

2R

q

; t0 ¼
pffiffi

2
p

x1x2

t@ ¼ MR
J ;M ¼ PðLþ x2

2
Þ; R ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x1þx3

2

� �2
þ

x2
2

4

q

J ¼ 2f
ffiffiffi
2
p

x1x2

x2
2

12
þ

x1þx3

2

� �2
h i

g; s x!
� �

¼ 6PL
x4x2

3

d x!
� �

¼ 4PL3

Ex4x3
3

; Pc x!
� �

¼
4:013

ffiffiffiffiffiffiffiffiffi
EGx2

3
x6
4

36

q

L2 1 � x3

2L

ffiffiffiffi
E

4G

p� �

Related parameters:

P ¼ 6000lb;L ¼ 14in:; dmax ¼ 0:25in:;E ¼ 30� 106 psi
G ¼ 12� 106 psi; tmax ¼ 13600psi;smax ¼ 30000psi

https://doi.org/10.1371/journal.pone.0260512.t007

Table 8. Comparison results of the welded beam.

Algorithm Optimum variables Optimum cost

h l t b
MSA 0.2055 3.4756 9.0365 0.2057 1.7252

MFO [31] 0.2035 3.4430 9.2302 0.2123 1.7325

GWO [32] 0.2056 3.4783 9.0368 0.2057 1.7262

MVO [33] 0.2056 3.4721 9.0409 0.2057 1.7254

ALO 0.2757 5.0746 8.9974 0.3020 2.9198

GA [34] 0.1641 4.0325 10.0000 0.2236 1.8739

HS [35] 0.2442 6.2231 8.2915 0.2443 2.3807

Radom [36] 0.4575 4.7313 5.0853 0.6600 4.1185

https://doi.org/10.1371/journal.pone.0260512.t008
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5. Conclusions and future work

The meta-heuristic algorithm proved to be an effective method to solve optimization prob-

lems. With the continuous development of artificial intelligence, in the field of optimization,

Fig 9. Pressure vessel.

https://doi.org/10.1371/journal.pone.0260512.g009

Table 9. Constraint condition of pressure vessel.

Pressure

Consider:

x!¼ ½x1; x2; x3; x4� ¼ ½Ts;Th;R; L�
Minimize:

f ð x!Þ ¼ 0:6224x1x3x4 þ 1:7781x2x2
3
þ 3:1661x2

1
x4 þ 19:84x2

1
x3

Subject to the following constraints:

g1ð x
!Þ ¼ � x1 þ 0:0193 x3 � 0

g2ð x
!Þ ¼ � x3 þ 0:00954 x3 � 0

g3 x!
� �

¼ � px2
3
x4 �

4

3
px3

3
þ 1296000 � 0

g4ð x
!Þ ¼ x4 � 240 � 0

Variable range:

0�x1�99

0�x2�99

10�x3�200

10�x1�200

https://doi.org/10.1371/journal.pone.0260512.t009

Table 10. Comparison results of pressure vessel.

Algorithm Optimum variables Optimum cost

Ts Th R L
MSA 0.7783 0.3851 40.3283 199.9008 5887.7052

MFO [31] 0.8352 0.4098 43.5786 152.2152 6055.6378

GWO [32] 0.8125 0.4345 42.0891 176.7587 6051.5639

MVO [33] 0.8457 0.4185 43.8162 156.3816 6011.5148

PSO [37] 0.8125 0.4375 42.0984 176.6365 6059.7143

GA [34] 0.7523 0.3995 40.4525 198.0026 5890.3279

HS [35] 1.0995 0.9065 44.4563 179.6588 6550.0230

https://doi.org/10.1371/journal.pone.0260512.t010
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the objective function of nonlinear engineering design optimization problems often contains

many local optimal solutions. However, designers are always concerned about finding the

global optimal solution. To solve this problem, this paper proposes a multi-membrane search

algorithm (MSA) inspired by cell behavior. And through 19 benchmark functions to test the

MSA, and compared with the emerging meta-inspired optimization algorithms MVO, GWO,

MFO, and ALO in recent years, the following conclusions are drawn.

1. MSA has efficient convergence capabilities on unimodal functions and multimodal func-

tions, which shows that MSA has better global optimization capabilities and faster search

efficiency than other tested algorithms.

2. By introducing the concepts of cell meiosis and sexual reproduction, the algorithm main-

tains stability while increasing the diversity of candidate solutions. This makes MSA better

than other tested algorithms in the composite function, which shows that MSA can achieve

a good dynamic balance between exploration and development. Compared with other

tested algorithms, MSA is less likely to fall into a local optimal solution.

3. The MSA is also competitive in solving classic engineering problems. A result of 1.7252 was

obtained in the design problem of welded beams, and a result of 5887.7052 was obtained in

the design problem of pressure vessels. Compared with other algorithms, MSA found a

lower cost design, which proved that the MSA is effective in practical applications. Other

researchers can try to use the MSA to solve similar engineering problems.

For future work, we will implement the MSA through FPGA and apply it to the field of par-

allel computing.
Pseudo code:
Create random Multi-membrane M
Initialize HSP, α, and S.
while(s�S)

Evaluate the fitness of all Ci
Update Cbest and Cbest

i

for each membrane Ci indexed by i
r1 = random[0,1]
if: r1�0.75

Cbest
i ¼ r1� ðCbest � Cbest

i Þ þ Cbest
i

else
Cbest

i ¼ Cbest þ r1� ðCbest � Cbest
i Þ

end if
end for

for each membrane Ci indexed by i
for each membrane Xjindexed by j

for each membrane xk indexed by k
r2 = random[0,1]
if: j6¼J

if: j = k
xjk ¼ r2� ðxbestk � xjkÞ þ xjk

else
xjk ¼ xbestk þ HSP� ðrand � 0:5Þ � ðubk � lbkÞ

end if
else

xJk ¼ xkk
end if
end for

end for
end for

PLOS ONE Multi-membrane search algorithm

PLOS ONE | https://doi.org/10.1371/journal.pone.0260512 December 6, 2021 18 / 20

https://doi.org/10.1371/journal.pone.0260512


Update HSP indexed by Eq (8)
Update α indexed by Eq (7)
Update S indexed by s = s+1

end while
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