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A comprehensive analysis of gene 
expression changes in a high 
replicate and open‑source dataset 
of differentiating hiPSC‑derived 
cardiomyocytes
Tanya Grancharova1,9, Kaytlyn A. Gerbin1,9, Alexander B. Rosenberg2,3, Charles M. Roco3,4, 
Joy E. Arakaki1, Colette M. DeLizo1, Stephanie Q. Dinh1, Rory M. Donovan‑Maiye1, 
Matthew Hirano2, Angelique M. Nelson1, Joyce Tang1, Julie A. Theriot1,5, Calysta Yan1, 
Vilas Menon6, Sean P. Palecek7, Georg Seelig2,8 & Ruwanthi N. Gunawardane1*

We performed a comprehensive analysis of the transcriptional changes occurring during human 
induced pluripotent stem cell (hiPSC) differentiation to cardiomyocytes. Using single cell RNA-seq, 
we sequenced > 20,000 single cells from 55 independent samples representing two differentiation 
protocols and multiple hiPSC lines. Samples included experimental replicates ranging from 
undifferentiated hiPSCs to mixed populations of cells at D90 post-differentiation. Differentiated 
cell populations clustered by time point, with differential expression analysis revealing markers 
of cardiomyocyte differentiation and maturation changing from D12 to D90. We next performed 
a complementary cluster-independent sparse regression analysis to identify and rank genes that 
best assigned cells to differentiation time points. The two highest ranked genes between D12 and 
D24 (MYH7 and MYH6) resulted in an accuracy of 0.84, and the three highest ranked genes between 
D24 and D90 (A2M, H19, IGF2) resulted in an accuracy of 0.94, revealing that low dimensional 
gene features can identify differentiation or maturation stages in differentiating cardiomyocytes. 
Expression levels of select genes were validated using RNA FISH. Finally, we interrogated differences 
in cardiac gene expression resulting from two differentiation protocols, experimental replicates, and 
three hiPSC lines in the WTC-11 background to identify sources of variation across these experimental 
variables.

Single cell RNA-sequencing (scRNA-seq) has revolutionized the study of heterogeneous cell populations and 
cell state transitions at the single cell level, including during differentiation and development. ScRNA-seq data-
sets enable identification and characterization of transcriptionally distinct cell types and transitions in vivo 
and in vitro by revealing the expression of cell type-specific genes or gene modules1–5. This has allowed for the 
identification of unique cell types and transient states, including rare types that were previously undetectable 
by bulk sequencing methods4,6–8.

Cell state transitions during the differentiation of human pluripotent stem cells to cardiomyocytes have also 
been profiled by scRNA-seq9,10 and are characterized by some of the same gene expression programs found dur-
ing in vivo development6,11–13. Transcriptional profiling of in vitro-derived cardiomyocytes after extended time 
in culture or after perturbations can serve as a benchmark, classifying maturation states and marker genes that 
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are associated with cell function and phenotype14–16. Identifying cardiac maturation state is important in settings 
where the utility of in vitro derived cardiomyocytes is limited by their immaturity and heterogeneity, such as 
in vivo cell transplantation where immature cells can be pro-arrhythmogenic17–19 and drug testing and phenotyp-
ing platforms where the degree of functional maturation affects cell performance14,20. Despite the importance of 
characterizing populations of more mature cardiomyocytes, most scRNA-seq studies have captured only time 
points early in differentiation (up to two to four weeks10,15,21,22, or up to eight weeks9,20,23.

Furthermore, in vitro differentiation systems are prone to biological and technical variability influenced by 
replicates and differentiation protocols24,25, resulting in differences in cell phenotype, as well as cardiac purity 
with the presence of other differentiated cell types in the population. Without extensive experimental and tech-
nical replicates in these types of transcriptomic studies, identification and validation of genes for more focused 
downstream analysis may be obscured or confounded by non-physiologically relevant factors. These issues have 
historically been challenging to address due to technical limitations in extended sample collection and storage, 
scRNA-seq experimental bottlenecks, and need for batch correction26,27.

To profile the dynamic cell populations during differentiation of hiPSCs to cardiomyocytes and their in vitro 
maturation after extended time in culture, we performed scRNA-seq on cells undergoing directed differentiation 
at Days 0, 12, 24, and 90. Differential expression analysis on de novo-identified cell clusters is often an important 
first step in scRNA-seq analysis to identify marker genes that distinguish cell types and cell states beyond the lim-
ited set of previously established markers28,29. We complemented this type of cluster-based differential expression 
analysis with a cluster-independent, time point-based penalized regression method30,31 that ranks and prioritizes 
genes based on how well they can predict the differentiation time point. The expression patterns of top-ranked 
genes were validated in replated cardiomyocytes by imaging using RNA fluorescence in situ hybridization (RNA 
FISH). While some of the top-ranked genes were expected given their roles in cardiomyocyte development, this 
time point-based method allowed us to identify short lists of candidate genes that distinguished between D12, 
D24, and D90 cardiomyocytes with high accuracy. These data indicated that gene sets as small as two to twelve 
genes may be informative in staging cardiomyocyte maturation and differentiation state during extended culture.

In addition to characterizing transcriptional changes that occur during in vitro differentiation and maturation 
of cardiomyocytes, we explored the technical and biological variability arising from in vitro differentiation experi-
ments. We sequenced cells from a total of 55 samples from multiple independent differentiation experiments with 
two endogenously fluorescently-tagged cell lines and their unedited parental line, each differentiated using two 
differentiation protocols. This reproducibility analysis was performed at the two earlier time points (D12, D24) 
with samples that were processed in a single batch to limit downstream batch effects. The differentiation experi-
ments, cell lines, and protocols were correlated at the population level. However, we identified some variation in 
cardiomyocyte profiles within and across differentiation experiments. While fluorescent tags did not affect the 
transcriptional profiles of in vitro differentiated cardiomyocytes, we observed differences in the timing of key 
gene expression changes between cardiomyocytes based on differentiation protocol. Taken together, this work 
provides a comprehensive analysis of gene expression changes in a highly replicable and open-source dataset of 
differentiating cardiomyocytes.

Results
Single cell RNA‑sequencing reveals distinct cell types and cardiomyocyte differentiation 
states after cardiac differentiation.  To identify and characterize the distinct cell types and transcrip-
tional states present during in vitro differentiation of hiPSC-derived cardiomyocytes, we performed scRNA-seq 
on cell populations spanning four stages of the cardiac differentiation process: undifferentiated hiPSCs (Day 0; 
D0), early- and intermediate-stage cardiomyocytes (Day 12 and Day 24; D12 and D24), and an aged cardiomyo-
cyte population that served as a benchmark for more mature cardiomyocytes (Day 90; D90)32–34. We used the 
scRNA-seq method SPLiT-Seq35 for parallel processing of all D12/D24 samples, including those from two dif-
ferentiation protocols, three cell lines, and multiple independent differentiation experiments (sample overview 
shown in Supplementary Fig. S1 and Supplementary Table S1).

Figure 1.   Unsupervised clustering reveals distinct cell types and cardiomyocyte clustering by time point. (A) 
Sample collection schematic highlighting D0 hiPSCs and cell populations collected after 12, 24, and 90 days of 
cardiomyocyte differentiation with Protocol 1. (B) Undifferentiated hiPSCs and hiPSC-derived cells present 
during cardiomyocyte (CM) differentiation collected at 3 time points (D0 = 1764 cells, D12 = 3538 cells, 
D24 = 2854 cells, D90 = 3,463 cells; n = 11,619 total cells) were clustered using the Jaccard-Louvain method 
(14 clusters indicated by colors) and visualized using Uniform Manifold Approximation and Projection 
(UMAP). Cluster IDs were assigned after clustering based on cluster size, with C0 containing the most cells 
and C13 containing the least. Square icon identifies the cluster of undifferentiated hiPSCs (C2), triangles 
identify cardiomyocyte clusters (TNNT2 + ; C0, C1, C3, C7) including the proliferative cardiomyocyte cluster 
(TNNT2 + /MKI67 + ; C12), and circles identify non-cardiomyocyte differentiated cell clusters (i.e., all other 
TNNT2- clusters). (C) Same UMAP as B colored by transcript abundance of the cardiomyocyte marker cardiac 
troponin T (TNNT2). Of the differentiated cells (D12, D24, D90), 72% are TNNT2 + cardiomyocytes. (D) Violin 
plots showing normalized transcript abundance of cell type marker genes by cluster (max value = maximum 
value of log1p normalized counts; dot = median). Bar beneath each cluster indicates cluster size (# of cells) and is 
colored by time point. CM = cardiomyocyte, PCM = proliferative CM, STR = stromal-like, EC = endothelial-like, 
SM = smooth muscle-like, END = endodermal, ECT = ectodermal. (E) Representative RNA FISH image showing 
TNNT2 and MKI67 transcripts in replated cardiomyocytes imaged at D30. Nuclei are labeled with DAPI (cyan). 
Scale bar = 20 µm.
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We first focused our analysis on cells differentiated with a small molecule protocol (referred to as Protocol 
1; Fig. 1A, Supplementary Fig. S1B,D) collected from all four time points (D0, D12, D24, D90; n = 11,619 cells), 
thereby establishing the baseline of cell types and gene expression patterns before expanding the analysis to 
the entire dataset. Unsupervised clustering identified 14 clusters representing three major categories of cells: 
undifferentiated hiPSCs, cardiomyocytes, and differentiated non-myocytes (Fig. 1B). The cluster corresponding 
to undifferentiated hiPSCs (C2) was identified by expression of the pluripotency transcription factor POU5F1 
(OCT-4) (Fig. 1B-D). Five of the 14 clusters contained cardiomyocytes based on the presence of the classic car-
diomyocyte gene TNNT2 (cardiac troponin T; C0, C1, C3, C7, C12; Fig. 1C-D), comprising the majority (~72%) 
of the differentiated cell populations. Parallel measurement of cardiac troponin T protein by flow cytometry in 
the same samples prior to sequencing confirmed the fraction of TNNT2+ cells (R2 = 0.81; Fig. 2B). We observed 
cardiomyocytes with cell cycle activity (C12; co-expression of the proliferation marker MKI67 and TNNT2) 
from all three differentiation time points (D12/D24/D90), with the number of TNNT2+/MKI67+ cardiomyo-
cytes decreasing with differentiation time point (n = 84 cells, 2.9% of D12 cardiomyocytes; 65 cells, 3.0% of D24 
cardiomyocytes; and 42 cells, 2.0% of D90 cardiomyocytes; Fig. 1D). RNA FISH on replated cardiomyocytes was 
used to confirm the presence of TNNT2+/MKI67+ cardiomyocytes by imaging (Fig. 1E). 

Non‑cardiomyocyte populations are distinct at the early and late time points.  Consistent 
with previous studies of cardiac populations in vitro9,10,36 and the developing human heart in vivo6,37,38, we also 
observed non-cardiomyocytes (28% of cells across D12/D24/D90 by scRNA-seq) in the differentiated popula-
tions (Figs. 1C-D, 2B, Supplementary Table S1). In the two intermediate time points (D12/D24), non-cardio-
myocytes were predominantly categorized into 4 clusters: FN1+ stromal cells (C9), smooth muscle-like cells 
expressing TRPM3 and CTNNA2 (C11), an endodermal subset expressing both FN1 and AFP (C8), and an 
ectodermal cluster expressing GRHL2 and FN1 (C6; Fig. 1D, Supplementary Fig. S2A-B, D-E). There was also a 
small yet distinct cluster of endothelial cells, marked by the expression of EGFL7 (C13; Fig. 1D, Supplementary 
Fig. S2A). D90 non-cardiomyocytes were generally distinct from the D12 and D24 non-cardiomyocyte clusters, 
with C5, C10, and C4 indicative of stromal, ectodermal, and smooth muscle-like cells respectively (Fig. 1D, 
Supplementary Fig. S2A). Across all time points, the smooth muscle-like population (C11, D12/D24; C4, D90) 
expressed high levels of TRPM3, with high expression of CTNNA2 in the D12/D24 time points (Fig. 1D, Sup-
plementary Fig. S2B). Unlike at D12/D24, there was no dominant endodermal cluster in the late D90 population 
(C8, D12/D24; Fig. 1D).

In some cases, cell types were challenging to define due to the presence of multiple classical marker genes 
associated with cardiomyocytes and a secondary cell type within the same cluster. Specifically, C7 contained 
TNNT2 + cardiomyocyte-like cells that also expressed TRPM3 (Fig. 1D, Supplementary Fig. S2D), and C5 was 
comprised of cells expressing stromal (FN1) and ECM genes (OGN)6,39 with about half of these cells also express-
ing the cardiomyocyte marker TNNT2 (Fig. 1D, Supplementary Fig. S2C,E).

Gene expression changes during extended culture of immature cardiomyocytes are consist‑
ent with maturation over time.  Immature cardiomyocytes continue to undergo gene expression changes 
after differentiation concurrent with the aging and maturation of cells in vivo and in vitro6,40–43. Within the 
cardiomyocyte (TNNT2+) populations, cells clustered along this temporal axis of differentiation with two domi-
nant clusters of early/intermediate cardiomyocytes from D12/D24 (C0 and C1) and a distinct cluster of aged 
cardiomyocytes from D90 (C3; Figs. 1B, 2A). Transcriptional changes associated with these extended culture 
transitions were identified using standard pairwise differential expression comparisons between the four largest 
TNNT2+ clusters (C0-C3; Figs. 1B, D, 2C). As expected, there was a significant transcriptional shift between the 
undifferentiated hiPSC cluster (C2) and the three main cardiomyocyte clusters (C0, C1, C3), reflecting changes 
in cell proliferation (downregulated MKI67) and loss of stemness (downregulated LIN28A, DPPA4; Fig. 2C). 
Across all three differentiated cardiomyocyte time points, there was a broadly-expressed set of genes that was not 
temporally-regulated and included known cardiomyocyte structural genes TNNT2 (cardiac troponin T), TTN 
(the sarcomere-spanning protein titin), and MYOM1 (Myomesin-1; Fig. 2C). Consistent with the progression of 
genes associated with cardiomyocyte aging and maturation11,44–46, differentially expressed genes between early 
and intermediate stage cardiomyocytes (D12 and D24) related to the continuation of cardiac development and 
differentiation (i.e., gene ontology categories of “heart morphogenesis”, “regulation of membrane potential”, and 
“extracellular matrix organization”; Supplementary Fig. S3C, Supplementary Table S4). Between the interme-
diate and late stage cardiomyocytes (D24 to D90), enriched gene ontology categories included “cell-substrate 
adhesion” and “extracellular matrix organization” in addition to “heart development” (Supplementary Fig. S3C, 
Supplementary Table S4).

Although measurably distinct from each other (Figs. 1B, 2C), the changes in gene expression between D12 
and D24 were less pronounced than those seen between D24 and D90 with relatively modest shifts in median 
transcript levels between these two intermediate time points (Figs. 2A, 2C-F, Supplementary Fig. S3C-D and 
Supplementary Table S2). The myosin heavy chain genes MYH6 and MYH7 were among the relatively small set 
of genes with expression changes greater than two-fold (Log2 fold > 1 or < − 1) from D12 to D24 (Fig. 3A, Sup-
plementary Table S2). Across the population, MYH6 was more abundant at D12, and MYH7 was more abundant 
at D24 (Fig. 2C,D), indicative of an expression switch associated with the maturation of human ventricular 
cardiomyocytes47,48. C1 (mostly D24) also showed an increase in expression of the gene encoding cardiac cal-
cium regulator phospholamban (PLN; Fig. 2C) and a decrease in expression of the gene encoding the voltage-
dependent calcium channel Cav1.3 (CACNA1D) compared to cells in C0 (mostly D12; Fig. 2F).

The early/intermediate D12/D24 (C0, C1) to late D90 (C3) cardiomyocyte transition was marked by expres-
sion changes in cardiac muscle myosin genes often used to stage cardiac maturation, including the transition 
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in expression from MYH6 to MYH7 and MYL7 to MYL2 in ventricular cardiomyocytes49–51 (Fig. 2C,D). In 
addition, we observed shifts from D24 to D90 in the ventricular and slow skeletal myosin light chain MYL3, 
which decreased in expression, as well as smooth muscle myosin light chain MYL9, which increased in expres-
sion over time in culture (Fig. 2D). Members of the SMAD family, which mediate TGF-beta signaling and are 
involved in early stage cardiac development and cardiomyocyte differentiation52, decreased in expression over 
time, while SMAD negative regulator LDLRAD4 increased in expression during extended culture (Fig. 2F, Sup-
plementary Fig. S3D). We observed other changes in expression in genes encoding components of signaling 
pathways including cyclic nucleotide (cAMP/cGMP) signaling (PDE3A, PDE10A, PDE1C, ADCY5), and ion 
channels (CACNA1C, SCN5A and KCNQ1; Supplementary Fig. S3D). Several collagens were upregulated in D90 
cardiomyocytes (Fig. 2E), which is consistent with previous observations of collagen expression by cardiomyo-
cytes during early in vivo heart development11,53. The collagen COL2A1, a marker of atrial cardiomyocytes6,54, 
decreased with age (Fig. 2E). Consistent with the known metabolic switch from glycolysis in hiPSCs to fatty 
acid oxidation in mature cardiomyocytes, D90 cardiomyocytes (C3) exhibited down-regulation of the glucose 
transporter SLC2A3 and up-regulation of three metabolism associated genes: the long-chain fatty acid transport 
protein SLC27A6, the fatty acid binding protein FABP311, and glucose response IGF-binding protein 5 (IGFBP5; 
Fig. 2F, Supplementary Fig. S3D).

A complementary approach to identify subsets of differentially expressed genes for down‑
stream analysis.  Pairwise differential expression analysis (as shown above) is often used to identify genes of 
interest for downstream analysis such as functional validation or imaging28. This approach is cluster-dependent, 
with genes that differ between clusters identified at a pre-specified fold change or significance level (e.g. Log2 
fold > 1). We sought an alternative, complementary method to rank differentially-expressed genes and prioritize 
markers for downstream biological assays to reduce the number of genes that need to be tested experimen-
tally. To accomplish this, we used a time point-based bootstrapped sparse regression statistical approach30,31 to 
identify and rank a subset of genes based on their ability to correctly assign individual cells to either the D12 
or D24 cardiomyocyte time points in a training dataset (see Methods; Fig. 3A,B, Supplementary Fig. S4A-B, 
Supplementary Table S3). Using only the expression level of the highest-ranked gene (MYH7) as input, a sim-
ple logistic model correctly assigned the cells in the holdout dataset to D12 or D24 with an accuracy of 0.81 
(Fig. 3B). Including the expression level of MYH6, the second ranked gene, improved the time point prediction 
accuracy for a given cell to 0.84 (Fig. 3B—red dot). The ranking of MYH6 and MYH7 as the top two genes is 
consistent with their changes in expression during early cardiomyocyte development47,48. Expanding the list 
to include the top 12 ranked genes raised prediction accuracy to 0.94 (Fig. 3B—blue dot). These included the 
cardiac calcium regulator phospholamban (PLN) as well as non-classical cardiac gene VCAN. The top 40 genes 

Figure 3.   Bootstrapped sparse regression analysis identifies and ranks top differentially expressed genes for 
downstream analysis of D12 and D24 cardiomyocytes. (A) Top 40 ranked genes identified as good predictors 
of cell age (D12 vs. D24) in bootstrapped sparse regression analysis with training dataset are highlighted in a 
scatter plot of log2 fold change (LFC) between D12 and D24 vs. scRNA-seq mean transcript abundance (log1p 
of normalized counts; see Methods). Red, blue, and purple indicate gene sets selected at different values of 
the regularization parameter, lambda (red = 2 gene set at lambda = 0.487; blue = 12 gene set at lambda = 0.213; 
purple = 40 gene set at lambda 0.0494; selected gene sets are nested so that the 12 and 40 gene sets include the 
2 and 12 gene sets, respectively). The remaining 23,625 genes that were not selected at any value of lambda 
are shown in gray. The dotted lines indicate 5% and 95% quantiles of log2 fold change. (B) All unique selected 
gene sets (resulting from different values of the regularization parameter lambda) were used to calculate the 
prediction accuracy of cell age in the scRNA-seq bootstrapped sparse regression holdout dataset (see Methods). 
X-axis shows each unique gene set size, and y-axis shows cell age prediction accuracy in holdout data. Color 
of selected gene set sizes are as follows: red = 2 gene set at lambda = 0.487; blue = 12 gene set at lambda = 0.213; 
purple = 40 gene set at lambda 0.0494; gray = all other gene set sizes. The prediction accuracy for a set of highly 
variable genes (n = 1877) between D12 and D24 is shown as the dot to the right of the x-axis break. Prediction 
accuracies for random gene sets of the same size are shown as box plots with outliers omitted (selected gene sets 
ranged in size from 1 to 83 genes, and for each gene set size, 100 random gene samples were used for accuracy 
calculation). Dashed line at 0.68 indicates lower threshold for accuracy (holdout dataset was 0.68 D12 and 0.32 
D24 cells). (C) scRNA-seq transcript abundance distributions for genes ranked in the top 40 in the D12 vs. 
D24 bootstrapped sparse regression analysis (labeled with an “*”) and other genes of interest for downstream 
RNA FISH experiments. (D) RNA FISH was performed on cardiomyocytes (images shown in panel E and 
Supplementary Fig. S5) that were replated onto glass at 12 days post-differentiation and allowed to recover for 
five to six days (D18, early time point; blue), or aged an additional 18 days (D30, intermediate time point; pink). 
RNA FISH transcript density (count/µm2) is shown for 11 genes (shown in panel C) in cardiomyocytes at the 
early and middle time point. Genes chosen from the bootstrapped sparse regression analysis are labeled with 
an “*”. Number of cells per probe target: MYH6: D18 = 418, D30 = 382; MYH7: D18 = 418, D30 = 382; VCAN: 
D18 = 169, D30 = 157; H19: D18 = 148, D30 = 117; COL2A1: D18 = 169, D30 = 157; MYL7: D18 = 539, D30 = 478; 
MYL2: D18 = 687, D30 = 595; MEIS2: D18 = 372, D30 = 283; ESRRG​: D18 = 349, D30 = 291; FABP3: D18 = 148, 
D30 = 117; TNNT2: D18 = 405, D30 = 443. (E) Representative images showing RNA FISH transcripts (white) for 
genes quantified in panel D with nuclei stained with DAPI (cyan). Representative fields of view are shown for 
both D18 and D30 time points. MYH6 and MYH7; and VCAN and COL2A1 were probed as pairs, and the same 
FOVs are shown for each pair. See Supplementary Fig. S5B for merged images of each pair. Images for additional 
genes are shown in Supplementary Fig. S5A. Scale bars = 20 µm.
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resulted in a prediction accuracy of 0.97 (Fig. 3B—purple dot) and using 1877 of the most highly variable genes 
between D12 and D24 cardiomyocytes led to a prediction accuracy of 0.98 (Fig. 3B). Thus, small numbers of 
genes can accurately classify differentiation time points, with diminishing returns by including additional genes 
in the model. One hundred percent of the top 12 ranked genes and 70% of the top 40 ranked genes were also 
identified as differentially expressed between C0 (D12) and C1 (D24) cardiomyocyte clusters, showing that the 
bootstrapped sparse regression method is consistent with standard cluster-based differential expression while 
providing additional ranking and prioritization of genes (Supplementary Table S2, Supplementary Table S3).

Of the top ranked genes at D12/D24, many showed a continued progression of up- or down-regulation 
between D24 and the D90 time point, indicating that their expression levels may be informative in identifying 
differentiation and maturation states at later time points (Fig. 3C). To further evaluate this, we repeated the 
bootstrapped sparse regression analysis on D24 and D90 cardiomyocytes and found similar prediction accuracy 
results with different genes (Supplementary Fig. S4C-F). The top three selected genes were able to assign cells 
to D24 or D90 with an accuracy of 0.94 and included A2M, a plasma protein secreted by cardiac fibroblasts, 
the maternally imprinted long non-coding RNA H19, and insulin-like growth factor IGF2 (Supplementary 
Fig. S4C,H, Supplementary Table S3). The top 12 selected genes predicted the differentiation time point with 
over 0.98 accuracy, and the top 40 genes increased accuracy to 0.99 (Supplementary Fig. S4D). H19 was the only 
gene shared in the top 12 of both the D12/D24 and D24/D90 analyses, and only four others, COL2A1, BMPER, 
PRTG​, and MYH6, were shared in the top 40 genes across both D12/D24 and D24/D90 analyses (Fig. 3A-B, Sup-
plementary Fig. S4C-D, Supplementary Table S3). Overall, this feature selection analysis indicates that a small 
subset of genes contains most of the relevant information that discriminates between the transcriptional profiles 
of D12/D24 and D24/D90 cardiomyocyte populations.

Validation of select genes using RNA FISH.  We used RNA FISH to validate the expression patterns of 
select genes by quantifying transcripts in cardiomyocytes replated on glass for high-resolution imaging55–59. Due 
to the technical challenges of culturing single cells out to D90, we performed RNA FISH only at the early and 
intermediate time points (Fig. 3E, Supplementary Fig. S5; cells were replated at D12 and allowed to recover for 
five to six days (D18 time point), or aged an additional 18 days (D30 time point); see Methods). We targeted 11 
genes for follow-up by RNA FISH to confirm expression in replated cardiomyocytes, with five genes chosen from 
the D12/D24 top 40 bootstrapped sparse regression list: MYH6, MYH7, VCAN, COL2A1, and H19. The remain-
ing genes were chosen for being differentially expressed between cardiomyocyte clusters (C0/D12, C1/D24, C3/
D90) and for their known roles in cardiomyocyte development (Fig. 3C). Transcript abundance was quantified 
in segmented cells at each time point, and most assayed genes showed trends consistent with the scRNA-seq 
data (Fig. 3C-E). Of the top two performing genes predictive of D12/D24 in the bootstrapped sparse regression 
analysis (MYH6 and MYH7), RNA FISH showed an expression change for MYH6, which decreased in expres-
sion between D18 and D30 (Fig. 3D). MYH7 did not show a large expression change with RNA FISH. While the 
sample time points are similar, replating cells for RNA FISH delays the time points relative to scRNA-seq (D18/
D30 vs. D12/D24) and places the cells on a stiffer substrate50. Furthermore, while MYH6 continued to decrease 
after D24 in the scRNA-seq data (Fig. 3C) and was among the top ranked genes between D24 and D90, MYH7 
was not a top ranked gene in the bootstrapped sparse regression analysis between D24 and D90 (Supplementary 
Fig. S4C, Supplementary Table S3). This is consistent with the switch from MYH6 to MYH7 expression occur-
ring before D18 and the observed stable expression of MYH7 between the D18 and D30 RNA FISH time points. 
The scRNA-seq analysis revealed a range of MYH6 and MYH7 expression that was largely anti-correlated in sin-
gle cells, and this cell-to-cell heterogeneity was also confirmed by RNA FISH (Supplementary Fig. S4G, Fig. 3D). 
Finally, the RNA FISH confirmed the expression of non-classical cardiac genes such as H19 in differentiated and 
replated cardiomyocytes (Fig. 3E).

Expanding early and intermediate time point analysis to explore reproducibility of differen‑
tiation.  Analysis of differentiated cell populations from Protocol 1 revealed distinct cell types and changes 
in gene expression over the time course of differentiation and established a baseline for applying these inter-
pretations to a broader dataset. In vitro differentiation systems are prone to biological and technical variability, 
potentially arising from variables including hiPSC line, culture conditions, and differentiation protocol steps. 
To assess the robustness of our protocols and analysis methods, we expanded our dataset to characterize the 
reproducibility of cardiomyocyte differentiation in different protocols and hiPSC clones. We sequenced samples 
from the two intermediate time points that were differentiated with a second differentiation protocol that used 
a combination of cytokines and small molecules (Protocol 2). While cells for both protocols were collected on 
the same day, the nomenclature reflects a two day difference (i.e., D12 for Protocol 1 is the same as D14 for 
Protocol 2, D24 for Protocol 1 is the same as D26 for Protocol 2; see Methods). We also collected samples from 
multiple cell lines in the WTC-11 background and independent differentiation experiments. This resulted in 
a total of 15,878 D12/D14/D24/D26 sequenced cells (n = 7987 cells in Protocol 1, n = 7891 cells in Protocol 2), 
representing 48 independent samples (Fig. 4A-D, Supplementary Fig. S1C, E; seven samples from D0/D90 are 
not included here). To limit downstream batch effects that might affect this comparison, only the 48 samples 
processed in a single library preparation and sequencing batch were evaluated in this section (e.g. the early 
and intermediate time points).

We found that D12/D14/D24/D26 cells clustered into four non-proliferative cardiomyocyte clusters (c0, c1, 
c2, c3; TNNT2+, clusters in this analysis are distinguished with a lowercase “c” in Figs. 4, 5, and Supplementary 
Figs. S6, S7), one proliferative cardiomyocyte cluster (c7; TNNT2+/MKI67+), and six TNNT2- non-cardiomyo-
cytes clusters (c4, c5, c6, c8, c9, c10) (Fig. 4B-D). c1 was almost exclusively composed of D24 and D26 cells and 
had the highest median MYH7 level and lowest median MYH6 level among the cardiomyocyte clusters (Fig. 4D), 
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consistent with changes in expression of MYH6 and MYH7 during ventricular cardiomyocyte development. The 
other three non-proliferative cardiomyocyte clusters (c0, c2, c3) were dominated by D12/D14 cells and differed 
in their median level of MYH7 expression with c2 being the lowest and c0 being the highest (Fig. 4D).

Contribution of cell line and experimental replicates to variability in differentiation.  We cal-
culated gene-wise coefficients of determination (R2) for variables of interest (time point, cell line, protocol, dif-
ferentiation experiment) to quantify sources of variation and found that time point was the major source of 
variation as expected. While differentiation protocol and differentiation experiment also contributed to variance 
in gene expression, cell line was not a major contributor (Fig. 5A, Supplementary Fig. S6A). The D12/D14 and 
D24/D26 samples included three hiPSC lines in the same genetic background (two clonal gene-edited lines with 
endogenous fluorescent tags: AICS-0011 TOMM20-mEGFP and AICS-0037 TNNI1-mEGFP, and their parental 
line WTC-11). Expression profiles across the three cell lines were highly correlated at the population level, and 
cells did not cluster by cell line, indicating that the presence of a fluorescent tag on TOMM20 or TNNI1 genes 
and the clonal selection process used to generate these lines did not alter the differentiation potential of hiPSCs 
or the transcriptional profiles of differentiated tagged cardiomyocytes (Figs. 4D, 5A).

Gene expression in samples derived from independent differentiations were also correlated at the population 
level (Supplementary Fig. S6B). To explore experimental differences that may be obscured in the global analysis, 
we independently clustered cardiomyocytes from each time point (clusters c0, c1, c2, c3, and c7 in Fig. 4B-D) and 
evaluated the extent to which cells clustered by experiment (Fig. 5C,D, Supplementary Fig. S6C-E; see Fig. 5B 
for definition of differentiation experiment). Overall, most clusters contained cells from a mix of multiple dif-
ferentiation experiments, however a few clusters were dominated by one or two differentiation experiments at 
each time point (D12 time point is shown in Fig. 5C,D, all others in Supplementary Fig. S6C-E). These clusters 
did not appear to represent distinct cardiomyocyte cell types, but rather committed cardiomyocytes at differ-
ent stages along the cardiomyocyte maturation trajectory. This conclusion was supported by differences in the 
ratio of expression of MYH6 to MYH7 between clusters (Fig. 5D, Supplementary Fig. S6C-E). Additional dif-
ferentially expressed genes within time points included smooth muscle genes (TAGLN and MYL9) and early 
atrial genes (NPPA and ACTC1), both of which tended to be higher in the Exp1 and Exp4 populations at D12 
(c0) compared to Exp2, Exp3, and Exp5 at D12 (Fig. 5D,E). Despite these differences, cardiac troponin T levels, 
as detected by flow cytometry and by TNNT2 + expression, were similar across these samples, suggesting that 
cardiac troponin T alone may not sufficiently capture the biological variation across independent differentia-
tion experiments and that more refined descriptors of cardiomyocyte state are needed (Fig. 5D, Supplementary 
Fig. S6C-E, Supplementary Table S1).

Cell types and gene expression are generally reproducible across two differentiation protocols 
with variable timing of the MYH6/MYH7 expression switch.  Finally, we compared the composi-
tion of cell populations and gene expression between samples collected from two cardiomyocyte differentiation 
protocols. At the population level, gene expression profiles were well-correlated for the two protocols at both 
the early (D12/D14) and middle (D24/D26) collection time points (rS = 0.97 at D12/D14, and rS = 0.96 at D24/
D26; Supplementary Fig. S7A). While both protocols showed similar TNNT2 transcript levels (Figs. 4D, 5G, 
Supplementary Fig. S7C-F), Protocol 1 generated more non-cardiomyocytes in our experiments (24% cells for 
Protocol 1 vs. 11% cells for Protocol 2: Fig. 4D, black vs. gray bars). Some of the non-cardiomyocyte clusters 

Figure 5.   Comparison of gene expression between cell lines, differentiation experiments, and differentiation 
protocols. (A) Scatter plots of population transcript abundances between three different cell lines; two clonal 
gene-edited lines with endogenous fluorescent tags: AICS-0011 TOMM20-mEGFP and AICS-0037 TNNI1-
mEGFP, and their parental line WTC-11. Each point represents a gene. Spearman correlations are shown in 
upper right. Plots on the diagonal show marginal density distributions of population transcript abundances 
for each cell line. UMAPs on right highlight cells from each cell line in red. (B) Differentiation experiment 
schematic. One differentiation experiment includes all plates set up on that experiment date and may include 
multiple cell lines, protocols, and/or time points. One plate or one half-plate was set up for each intended 
collection time point per cell line and protocol. Differentiation experiments were seeded on different days using 
an independent source plate of hiPSCs. Each scRNA-seq sample originates from a single well in a differentiation 
plate; in some cases, multiple wells/samples were collected per plate but were never pooled. See Methods. 
(C) Cardiomyocytes (TNNT2 + cells) from all collected D12 samples (from each of the five differentiation 
experiments) were independently clustered and visualized using UMAP. Lower right UMAP is colored by 
cluster, and each other UMAP highlights in red cells from one of the five differentiation experiments. (D) 
Group violin plot showing distributions of marker genes in D12 clusters with cluster breakdown by experiment 
and cell line shown in the bar plots below. (E) Heat map of top differentially expressed genes between the four 
non-proliferative (MKI67-) D12 cardiomyocyte clusters (c0, c1, c2, c3). Normalized transcript abundance was 
centered and scaled across each row (z-score color scale below heatmap; red = standard deviations above mean; 
blue = standard deviations below mean; white = mean; for visualization purposes, 4 was set as the maximum 
z-score, and z-scores > 4 were set to 4). The dendrogram is based on hierarchical clustering of genes. Each 
column corresponds to one cell. (F) Experiment 5 cardiomyocytes were independently clustered to compare 
differentiation protocols. Top: UMAP colored by day of differentiation (Protocol 1 = D12, D24; Protocol 
2 = D14, D26). Bottom: UMAP colored by cluster. (G) Group violin plot showing distributions of marker 
genes in Experiment 5 cardiomyocyte clusters with cluster breakdown by day and by sample shown below. (H) 
Distributions of MYH6 (top) and MYH7 (bottom) transcript abundance in Experiment 5. Protocol 1 = D12, 
D24; Protocol 2 = D14, D26.
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were protocol-specific, with smooth muscle (c9; Protocol 1, CTNNA2 positive), ectodermal cells (c5; Protocol 1, 
GRHL2 positive), endodermal cells (c4; Protocol 1, AFP positive), and endothelial cells (c10; Protocol 1, EGFL7 
positive; Fig. 4D) all being more prevalent in Protocol 1. The stromal population (c8, both protocols, FN1 posi-
tive) was generated by both protocols (Fig. 4D).

We next independently re-clustered cardiomyocytes from the largest differentiation experiment, Exp5 
(Fig. 5F,G), to focus on protocol-specific differences within a high-replicate experimental setup. We found that 
cells clustered by differentiation protocol, and at the D24/D26 time point, there was a distinct trend for higher lev-
els of MYH7 and lower levels of MYH6 in Protocol 1 compared to Protocol 2 (Fig. 5G-H). This trend of reduced 
MYH7 expression in Protocol 2 was also found for the earlier time point (D12/D14) and was observed in three of 
the other independent experiments (Supplementary Fig. S7C-F). While these results do not indicate that the two 
protocols generate distinct cardiomyocyte cell types, they suggest that the timing of the MYH6/MYH7 switch may 
be slightly different between the protocols within the first few weeks of differentiation. This difference may result 
from different inductive factors provided to the differentiating cells in the two protocols or from the presence of 
different types and numbers of non-cardiomyocytes in the differentiating populations. To further compare the 
gene expression changes in cardiomyocytes generated from both protocols, we repeated the bootstrapped sparse 
regression analysis to identify genes that best discriminated between D14 and D26 cardiomyocytes derived from 
Protocol 2. We found that many of the top genes overlapped with those identified in the analysis of Protocol 1 
(MYH6, MYH7, VCAN, BMPER, CTNT5, H19, COL2A1, PLN, PRSS35, MEF2C; Supplementary Fig. S7B, Supple-
mentary Table S3), many of which were also among the top differentially-expressed genes between all four early/
intermediate cardiomyocyte time points (D12/D14/D24/D26, Fig. 2C, Supplementary Fig. S3A, Supplementary 
Fig. S7G). These data suggest that the cells from both protocols undergo a similar progression of differentiation 
and maturation in these first few weeks and that there is a subset of genes that can robustly distinguish between 
time points across both differentiation protocols.

Discussion
In this study, we used single cell RNA-sequencing to profile the cell populations present during hiPSC dif-
ferentiation to cardiomyocytes and in vitro maturation after extended time in culture. Analysis of the early 
and intermediate time points revealed cell types and transitions consistent with previously reported studies, 
with cardiomyocytes clustering predominantly by time point and the presence of distinct non-cardiomyocyte 
clusters10,23. Extending the sample collection to 90 days post-differentiation provided insight into changes in 
population composition and gene expression at the single cell level in more mature cardiomyocytes. The tran-
sition between D24 and D90 cardiomyocytes encompassed changes in many of the structural, metabolic, and 
signaling transcriptional programs that are activated during in vivo cardiomyocyte development9. We identified 
several clusters that suggest in vitro cardiomyocyte maturation. Interestingly, we observed a subpopulation of 
D90 cardiomyocytes with upregulated expression of collagens and extracellular matrix-associated genes (C5, 
Supplementary Fig. S2A). This observation is consistent with previous findings of collagen expression dur-
ing early in vivo heart development, perhaps indicative of a transient subpopulation of cardiomyocytes with 
extracellular-matrix related gene expression in the heart during early cardiac development11,53, but could also be 
a technical artifact resulting from doublets produced during sample processing. At D90, we observed multiple 
clusters displaying co-expression of classical cardiomyocyte genes and another secondary cell type, including 
a mixed cardiomyocyte-like population expressing the cardiac smooth-muscle TRP channel gene TRPM3 (C7, 
Fig. 1D, Supplementary Fig. S2A,D). The TRPM3 channel is activated by thermal and hypotonic conditions38, 
thus we postulate that co-expression in this context may be a consequence of the in vitro culture conditions.

In vitro cardiomyocyte differentiation is prone to biological and technical variability that may be driven by 
factors such as the genetic background of cell lines, the batch of cells and other reagents used at the outset of an 
experiment, cell cycle and density of undifferentiated hiPSCs, and the protocols used for cell culture and directed 
differentiation9,60–64. This variability is a challenge for data reproducibility and makes it difficult to draw conclu-
sions about cell types or states based on a limited number of samples and conditions. Historically, evaluation of 
cardiomyocyte differentiation performance and quality control has been evaluated using a single metric: expres-
sion of cardiac troponin T by flow cytometry or immunochemistry63. However, differentiated populations vary 
not only in the percent of cells expressing cardiac troponin T, but also exhibit variation in functional phenotypes 
including contractility, sarcomere organization, and electrophysical properties63–65.To probe the robustness of 
transcriptional profiles at the single cell level, we multiplexed the single cell sequencing and analysis of > 15,000 
cells from 48 independent samples, spanning two differentiation protocols, three edited cell lines, and numer-
ous experimental replicates. We found that while population level gene expression was well-correlated across 
experimental replicates, cell lines, and protocols, there were some differences that were not fully captured by 
pre-sequencing analysis of cardiac troponin T by flow cytometry. This heterogeneity included expression dif-
ferences in MYH6 and MYH7 across experimental replicates and differences in genes associated with atrial or 
ventricular specification and smooth muscle (Fig. 5C-H, Supplementary Figs. S6C-E, S7C-F).

Transcriptional differences in cardiomyocytes between differentiation time points were evaluated using 
pairwise, cluster-based differential expression analysis, a common approach in analyzing scRNA-seq data. We 
complemented this analysis with a time point based, cluster-independent penalized regression method, which 
enabled ranking and prioritization of genes based on how well they predicted the differentiation time point. 
While some of the top genes identified were of known importance in cardiomyocyte biology, we observed a num-
ber of genes that have little to no previously reported role in cardiac differentiation or maturation. For example, 
the top three genes in the D24/D90 analysis were a plasma protein secreted by cardiac fibroblasts (A2M), long 
non-coding RNA H19, and insulin-like growth factor (IGF2). While the collective role of these three genes in 
cardiac maturation has not been robustly established, H19 and IGF2 are co-expressed during development66–68. 
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Furthermore, H19 has been found to inhibit the abundance of the cardiac maturation-inducing let-7 micro-
RNAs69, and A2M has been reported to promote cardiomyocyte hypertrophy in ventricular cardiomyocytes70. 
Their performance in this prediction model suggests they may be important for distinguishing cardiomyocyte 
maturation states in other studies. Notably, this analysis revealed that gene sets as small as two to twelve genes 
enabled prediction of time point with high accuracy, similar to the accuracy achieved by using over 1000 of 
the most highly variable genes. These data indicate that a small subset of carefully-chosen gene targets may be 
informative for downstream studies where gene set size is limited, such as in functional knock-out assays, in vivo 
experiments, or image-based RNA FISH studies71.

In summary, we used scRNA-seq to profile gene expression in cardiomyocytes and non-cardiomyocytes 
during cardiomyocyte differentiation and extended culture in vitro. We tested the robustness of our conclusions 
by sequencing 55 total samples from numerous differentiation experiments, differentiation protocols, and cell 
lines. We found that while cell types and gene expression were generally correlated at the population level, there 
were differences in cardiomyocyte gene expression by differentiation protocol and experimental replicate. Using 
a cluster-independent regression analysis, we identified sets of two to forty genes that predict cardiomyocyte 
time point with high accuracy. This shows that a limited number of genes can be used to benchmark the stage 
of cardiomyocyte differentiation and maturation, providing insight into the quality of cardiomyocytes for use 
in subsequent in vitro models or in vivo therapeutic applications.

Methods
Human induced pluripotent stem cell culture.  All human induced pluripotent stem cell (hiPSC) work 
was approved by internal oversight committees and conducted in accordance with NIH, NAS, and ISSCR guide-
lines. Cell lines used in this manuscript were: AICS-00 (WTC-11 unedited parental line, generously provided 
by Dr. Bruce R. Conklin, The Gladstone Institute72); and edited lines generated as described previously73,74: 
AICS-0011 cl.27 (TOMM20-mEGFP), AICS-0037 cl.172 (TNNI1-mEGFP). Edited cell lines can be obtained 
through the Allen Cell Collection (www.​allen​cell.​org/​cell-​catal​og), and the unedited WTC-11 parental line 
can be obtained from Coriell (GM25256). Undifferentiated hiPSC lines were maintained on plates coated with 
growth-factor-reduced matrigel (Corning #354230) in mTeSR1 (Stem Cell Technologies #85850) supplemented 
with 1% penicillin/streptomycin (P/S) (Gibco #15070063). Cells were passaged after reaching 70–85% conflu-
ency (every 3–4 days) using Accutase (Gibco #A11105-01) to disperse into single cells and replated in mTeSR1 
supplemented with 1% P/S containing 10 µM Rock Inhibitor (Y-27632, Stem Cell Technologies #72,308). A full 
protocol is available at the Allen Cell Explorer (www.​allen​cell.​org/​sops SOP: WTC culture v1.7.pdf).

Cardiomyocyte differentiation using two protocols.  Two differentiation protocols were used, 
referred to as “Protocol 1” and “Protocol 2” in the text. Protocol 1 is based on a previously reported small 
molecule differentiation method with modifications75,76 as described in Gerbin et al.71. HiPSC cultures were dis-
sociated into single cells using Accutase and plated into matrigel-coated 6 well-plates at 125–350 k cells per well 
in mTeSR1 supplemented with 1% P/S and 10 µM Rock Inhibitor (Day -3). Media was replaced for 2 days, and 
differentiation was initiated on the third day (Day 0) by replacing media with RPMI-1640 (Invitrogen #A10491-
01) supplemented with B27 without insulin (Invitrogen #A1895601) and 6 µM CHIR99021 (Cayman Chemical 
#13122). Media was replaced after 48 h (Day 2) with RPMI-1640 supplemented with B27 without insulin and 
5 µM IWP2 (R&D Systems #3533). Media was again replaced after an additional 48 h (Day 4) by RPMI-1640 
supplemented with B27 without insulin. Every 2–3 days thereafter (starting on Day 6), media was replaced with 
RPMI-1640 supplemented with B27 containing insulin (Invitrogen #12587010) and 1% P/S. Cardiomyocyte 
samples at Day 90 were differentiated using an optimized version of Protocol 1 with Chiron and IWP2, both at 
7.5 µM. A full protocol is available at the Allen Cell Explorer (https://​www.​allen​cell.​org/​sops, SOP: Cardiomyo-
cyte differentiation methods_v1.2.pdf).

Protocol 2 is a previously reported method using a combination of cytokines and small molecules to induce 
cardiac differentiation77. Briefly, hiPSCs were dissociated into a single cell suspension using Accutase and seeded 
into matrigel-coated 6 well-plates at 1 × 106–2 × 106 cells per well in mTeSR1 supplemented with 1% P/S, 10 µM 
Rock inhibitor, and 1 µM CHIR99021 (denoted as Day -1). Differentiation was initiated the following day (Day 
0) with the addition of RPMI-1640 supplemented with B27 without insulin, 100 ng/mL ActivinA (R&D Sys-
tems #338-AC), and 1:60 diluted growth-factor-reduced Matrigel. After 17 h (Day 1), media was replaced with 
RPMI-1640 supplemented with B27 without insulin and containing 1 µM CHIR99021 and 5 ng/ml BMP4 (R&D 
systems #314-BP). After an additional 48 h (Day 3), media was replaced with RPMI-1640 supplemented with 
B27 without insulin and 1 µM XAV 939 (Tocris Biosciences #3748). After an additional 48 h (Day 5), media was 
again replaced with RPMI-1640 supplemented with B27 without insulin, and cultures were fed with RPMI-1640 
supplemented with B27 containing insulin and 1% P/S every 2–3 days thereafter (starting on Day 7).

Across both differentiation protocols, spontaneous beating was generally observed between Days 7–12. We 
have recently updated our protocols and recommend the use of RPMI-1640 (Invitrogen #11875-093) and B27 
supplement (Gibco #17504044) for cardiac differentiation using both protocols.

Experimental design for scRNA‑seq studies.  Each differentiation experiment encompassed all plates 
set up at one experiment date, and one source plate of hiPSCs was dissociated and seeded concurrently for both 
differentiation protocols, thus keeping the input hiPSCs the same within an experiment. Differentiation experi-
ments were seeded on different days using an independent source plate of hiPSCs. Samples were collected on 
the same day for each paired collection time point listed in the scRNA-seq dataset, from both protocols (D12/
D14, D24/D26). The difference in reported day (i.e., Day 12 vs. 14) is due to the delay in differentiation initia-
tion (Day 0) between the two protocols, as described above in the “Cardiomyocyte differentiation using two 

https://www.allencell.org/cell-catalog
https://www.allencell.org/sops
https://www.allencell.org/sops
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protocols” section above. Samples were collected 15 days after seeding (denoted as D12 for Protocol 1, D14 for 
Protocol 2) or 27 days later (denoted as D24 for Protocol 1, D26 for Protocol 2). Samples referred to as D90 were 
independently derived and were collected 93–96 days after initiating differentiation using a modified version of 
Protocol 1 as described above. Each scRNA-seq sample originates from a single well in a differentiation plate. 
In some cases, multiple wells/samples were collected per plate but were never pooled. Stem cell (D0) samples 
for scRNA-seq were independently cultured and were not used as a source plate for any of the differentiation 
setups. There was a total of 55 samples included in this study; all scRNA-seq sample metadata can be found in 
Supplementary Table S1.

Single cell dissociation for scRNA‑seq.  Stem cells were dissociated to single cells as described above 
and processed for RNA sequencing following the protocol detailed in the “scRNA-seq library preparation and 
sequencing” section below. All differentiated sample wells were visually inspected at the desired cardiomyocyte 
collection time point for successful cardiac differentiation on the basis of high cardiac purity, spontaneous beat-
ing, and morphology; wells that passed these criteria were collected for downstream analysis. For single cell dis-
sociation, cardiomyocyte wells were washed with 1X DPBS (Gibco #14190-144) and incubated with pre-warmed 
2X TrypLE Select (Gibco #A12177) diluted in Versene (Gibco #15040-066) for 8–10 min at 37 °C. Monolayers 
were gently dissociated using a P1000 micropipette to obtain single cells, collected, and added to 5 mL of resus-
pension media—RPMI-1640 containing B27 supplement, 1% P/S, 10 µM Rock Inhibitor and 200 U/mL DNAse 
I (Millipore Sigma #260913-10MU). Wells were washed twice with an additional 1 mL of resuspension media, 
and the cell suspension was centrifuged at 300 g for 5 min at 4 °C. The single cell suspension was gently resus-
pended in 5 mL of resuspension media and counted twice on a hemocytometer to obtain a total cell count for 
each sample.

Flow cytometry of scRNA‑seq samples.  An aliquot was taken from each cell sample at the time of sin-
gle cell dissociation for cardiac Troponin T (cTnT) analysis by flow cytometry. Briefly, sample aliquots were fixed 
with 4% paraformaldehyde (Electron Microscopy Sciences #15710) in DPBS for 10 min. After fixation, samples 
were stained for 30 min in BD Perm/Wash™ buffer (BD Biosciences #512091KZ) with anti-cardiac Troponin T 
AlexaFluor® 647 (BD Biosciences #565744) or an equal mass of AF647 lgG1 κ isotype control (BD Biosciences 
#565571). Fixed cells were resuspended in 5% FBS (Gibco #10437028) in DPBS with 2 µg/mL DAPI, followed 
by processing and data acquisition on a CytoFLEX S (Beckman Coulter). Analysis was performed using FlowJo 
software V. 10.2 (Treestar).

scRNA‑seq library preparation and sequencing.  ScRNA-seq was performed using the SPLiT-seq 
method35. After single cell dissociation (see “Single cell dissociation for scRNA-seq”) samples were prepared for 
library preparation by centrifuging the cell suspension at 300 g for 5 min at 4 °C and then resuspending in 1 mL 
of cold RNAse-free PBS containing 0.05 U/µL Superase IN (Invitrogen #AM2696) and 0.05 U/µL Enzymatics 
RNAse Inhibitor (Qiagen #Y9240L) (mixture referred to throughout as PBS + RI). On ice, resuspended cells 
were passed through a 40 µm filter and fixed with 3 mL of 1.33% formaldehyde (Electron Microscopy Sciences 
#15710) for 10 min. Fixed cells were permeabilized with 160 µL of 5% Triton X-100 (MilliporeSigma #T8787-
50ML) + RNase Inhibitor for 3 min. Permeabilized cells were then centrifuged at 500 g for 5 min at 4 °C and 
resuspended in 500 µL of PBS + RI and mixed with an additional 500 µL of 100 mM Tris–HCL (ThermoFisher 
#AM9855G) and then 20 µL 5% Triton X-100. Cells were then centrifuged at 500 g for 5 min at 4 °C and the 
pellet resuspended in 300 µL 0.5X PBS + RI, then passed through a 40 µm filter. Filtered cells were counted using 
a hemocytometer and diluted to 1 × 106 cells/mL in 0.5X PBS + RI. Labeled tubes were placed in a room tempera-
ture Mr. Frosty (Thermo Fisher #5100–0001) and transferred into a − 80 °C freezer for storage.

In-cell reverse transcription, ligation barcoding, lysis, and library preparation were carried out according to 
the protocol described in Rosenberg and Roco et al.35. Vials were thawed by placing tubes in a 37 °C water bath, 
and vial contents were pipetted into wells containing barcoded, well-specific reverse transcription primers and a 
reverse transcription reaction mix. Each well contained a mixture of random hexamer and anchored poly(dT)_15 
barcoded RT primers. Two different sequencing experiments were conducted. Sequencing Experiment 1 con-
tained samples across D12/D14 and D24/D26, while Sequencing Experiment 2 contained samples across D0-Stem 
Cells, D90, and one re-sequenced sample each of D12 and D24 that had been included in Sequencing Experiment 
1 to control for sequencing batch variability. Sample metadata including sequencing experiments can be found 
in Supplementary Table S1. For Sequencing Batch 1 (48 samples; see Supplementary Table S2), each sample was 
placed in a single well (4,000 cells per input sample) for a total of 192,000 cells. For Sequencing Batch 2 (9 sam-
ples, see Supplementary Table S1), each D0 and D90 sample was split over 6 wells (24,000 input cells per sample). 
The D12 and D24 samples in Sequencing Batch 2 were each split into 3 wells (12,000 input cells per sample). In 
both sequencing batches, after three rounds of barcoding, the cells were counted and divided into sub-libraries 
of 5000 cells before lysis. These sub-libraries were barcoded with a fourth unique barcode each and processed 
for sequencing on an Illumina NextSeq.

scRNA‑seq data processing.  Sequence alignment and quantification of intronic and exonic UMI (unique 
molecular identifier) counts were performed as described in Rosenberg et  al.35 using STAR​78 for alignment, 
TagReadWithGeneExon from Drop-seq tools to assign reads to genes, and Starcode79 to collapse UMIs. Per 
gene intronic and exonic UMI counts were collapsed prior to generating the count matrix. To filter out ambient 
RNA barcodes, the number of UMIs per barcode were plotted with barcodes ordered by number of UMIs in 
descending order. The inflection point (or knee) in the plot was used as the threshold to separate barcodes origi-
nating from intact cells and barcodes originating from ambient RNA; all barcodes that fell below this thresh-
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old were removed. The remaining cells were further filtered for mitochondrial content (percent of UMI counts 
coming from mitochondrial genes) to remove low quality cells and total UMI counts to remove potential dou-
blets with very large counts. The two sequencing batches were filtered separately. For Sequencing Batch 1 (D12, 
D14, D24, D26; see Supplementary Table S1), cells within the highest 5% of percent mitochondrial and total 
UMI counts distributions were removed. For Sequencing Batch 2 (D0, D90; see Supplementary Table S1), D90 
cells had higher percentage mitochondrial UMIs than D0, which is consistent with previous studies showing 
an increase in mitochondrial content and number during cardiomyocyte maturation80,81. D90 cells also had a 
decrease in total UMI counts compared to D0, which is consistent with other studies indicating a decrease after 
differentiation82. Prompted by these observations, we used the same filtering approach (removing the highest 
5% of cells based on UMI and mitochondrial distributions) but applied it independently to each time point (D0, 
D12, D24 and D90), which led to different maximum cutoffs being used for each time point. For both sequenc-
ing batches, genes detected in less than 10 cells and cells with less than 200 transcribed genes were removed from 
the matrix prior to clustering and visualization.

scRNA‑seq clustering and visualization of D0 and Protocol 1 D12, D24, and D90 samples.  Cells 
were clustered and visualized using the R (version 3.5.1) package Seurat (version 2.3.4)83. Normalized transcript 
abundance for each gene was calculated by dividing counts by the total counts per cell, multiplying by a scaling 
factor (10,000) and log transforming the result using log1p (NormalizeData function in Seurat). For stem cell 
(D0) and Protocol 1 samples (D12, D24, D90), highly variable genes to be used for dimensionality reduction and 
clustering were identified using FindVariableGenes with the following parameters: mean.function = ExpMean, 
dispersion.function = LogVMR, x.low.cutoff = 0.05, x.high.cutoff = 4, y.cutoff = 0.5 (these parameters were cho-
sen to define outlier genes after manual inspection of mean expression vs. dispersion plot). Counts were scaled 
using ScaleData with default parameters without regressing out any variables. Principal component analysis 
(PCA) was performed on the normalized and scaled matrix (with highly variable genes only) using RunPCA. 
Standard deviations of the principal components were plotted to determine the number of components to retain 
for clustering and visualization, and principal components above the inflection point in the plot were retained. 
Cells were clustered using the Jaccard-Louvain method84, which is based on shared nearest neighbor modular-
ity optimization (FindClusters function with resolution = c(0.3, 0.4, 0.5, 0.6, 0.8, 1) and the following standard 
parameters: algorithm = 1 (original Louvain algorithm), modularity.fxn = 1 (standard modularity function)). 
Uniform Manifold Approximation and Projection (UMAP)85 was used to visualize cells in a two-dimensional 
space (RunUMAP function with default parameters). In Figs. 1–2 and Supplementary Fig. S2, where only Pro-
tocol 1 is shown (D0, D12, D24, D90; n = 11,619 cells), clustering with resolution 0.5 was used for visualization, 
differential expression, and other downstream analyses. Pearson correlation was calculated for cardiac troponin 
T transcript and protein abundance between flow cytometry-based abundance (% cTnT positive cells, described 
in “Flow cytometry of scRNA-seq samples”) and scRNA-seq based abundance (% of TNNT2 positive cells) 
(Fig. 2B). Flow cytometry and scRNA-seq were performed on different cells obtained from the same differentia-
tion sample (same differentiation well). Plots were created using R package ggplot2 (version 3.3.0)86, and violin 
plots were created using R package scrattch.vis (version 0.0.210)87.

scRNA‑seq clustering and visualization of D12, D14, D24, D26 samples.  To compare differentia-
tion protocols, cell lines, and differentiation experiments, Protocols 1 and 2 early and intermediate time point 
cells (D12, D14, D24, D26; n = 15,878 cells) were clustered independently using the Seurat workflow described 
above (clustering with resolution 0.4 is shown, and clusters are numbered c0-c10; Fig. 4). Pairwise Spearman 
rank correlation coefficients were calculated between the three cell lines, five differentiation experiments, and 
two differentiation protocols (Fig. 5A, Supplementary Fig. S6B, S7A). For independent clustering of time points 
and differentiation experiments, clustering with resolution 0.4 is shown in Fig. 5C-G, Supplementary Fig. S6C-
E, Supplementary Fig. S7C-G). Per gene variance explained (R2/coefficient of determination) for variables of 
interest (day of differentiation, protocol, differentiation experiment, differentiation protocol, cell line, # of genes 
detected, # of UMIs detected) was calculated using getVarianceExplained in R package scater (version 1.14.6)88. 
Distribution of variance explained for variables of interest is plotted for the top 5% of highly variable genes (602 
genes identified using getTopHVGs from R packager scran version 1.14.6)89 in the D12, 24, 24, and 26 popula-
tion.

scRNA‑seq differential expression analysis.  Differentially expressed (DE) genes between clusters were 
identified by performing pairwise comparisons with edgeR (version 3.26.0)90,91. RNA composition normalization 
was performed with calcNormFactors, and negative binomial dispersions were estimated with estimateDisp. DE 
genes were identified by fitting gene-wise generalized linear models (glmFit; did not include intercept term in 
design) and performing a likelihood ratio test (glmLRT with contrasts). We retained genes with an absolute log2 
fold change >  = 1 and Benjamini–Hochberg adjusted p-value < 0.05). To remove potential false positives caused 
by dropouts in low depth data (i.e., gene expressed very highly in only a few cells within a cluster), we calculated 
the fraction of cells positive for each gene and retained only genes where the up-regulated group had at least 
30% of cells positive for that gene. Heatmaps of top differentially expressed genes (Figs. 2C, 5E, Supplementary 
Fig. S2A, Supplementary Fig. S7G) were created using R package pheatmap (version 1.0.12)92 and show scaled 
transcript abundance (normalized counts for each gene were scaled and centered). Dendrograms in heatmaps 
show hierarchical clustering of genes. For visualization purposes, maximum scaled transcript abundance cutoffs 
were applied in some cases (see heatmap figure legends), and cells are grouped by cluster. Biological Process (BP) 
gene ontology (GO) enrichment analysis was performed on differentially expressed genes between the following 
clusters: (1) C2/D0 + C0/D12, (2) C0/D12 + C1/D24, and 3) C1/D24 + C3/D90 using enrichGO function in the 
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R package clusterProfiler (version 3.14.0)93. Redundancy in enriched GO terms was removed using the simplify 
function in clusterProfiler, and the top 10 simplified terms from each pairwise comparison are visualized in Sup-
plementary Fig. S3C. All statistical calculations were performed in R 3.5.1, and plotting was performed using 
ggplot2 (version 3.3.0)86.

scRNA‑seq feature selection analysis.  In addition to differential expression analysis based on pairwise 
cluster comparisons, an orthogonal clustering-independent method was used for identifying genes that change 
between early and intermediate differentiation time points (D12 and D24) and intermediate and late differentia-
tion time points (D24 and D90). We fit generalized linear models with an elastic net penalty using the glmnet R 
package (version 2.0–13)30,31 with alpha = 0.5 and a sequence of 100 values of lambda, the regularization param-
eter. The response variable was time point (D12 vs. D24 and D24 vs. D90 for Protocol 1 and D14 vs. D26 for 
Protocol 2). The input count matrix was filtered down to gene symbols that had a corresponding Entrez Gene ID, 
and cells were filtered to include only cardiomyocytes (cells positive for cardiomyocyte marker gene TNNT2). 
Cells were split into a training set (90% of cells; for Protocol 1 D12 vs. D24, n = 4,283 D12 cells and n = 2,014 D24 
cells; for Protocol 1 D24 vs. D90, n = 2,016 D24 cells and n = 2,262 D90 cells; for Protocol 2 D14 vs. D26, n = 4,228 
D14 cells and n = 2,290 D26 cells) and a test set (10% of cells; for Protocol 1 D12 vs. D24, n = 481 D12 cells and 
n = 227 D24 cells; for Protocol 1 D24 vs. D90, n = 227 D24 cells and n = 253 D90 cells; for Protocol 2 D14 vs. D26, 
n = 476 D14 cells and n = 259 D26 cells). 1000 bootstrap rounds (sampled 80% of cells without replacement at 
each round) were run with the training set to identify genes that had non-zero coefficients in all 1000 rounds at 
different values of the regularization parameter, lambda. Genes with non-zero coefficients in all 1000 bootstrap 
rounds at a given value of the regularization parameter, lambda, were reported as selected (see Supplementary 
Table S3 for top 40 selected genes ranked by lambda when first selected. Each set of genes selected from Protocol 
1 (D12 vs. D24, D24 vs. D90) was used to predict the time point for cells in the corresponding test set by fitting a 
binomial generalized linear model (glmnet with ridge penalty, alpha = 0, and lambda = 1 × 10–6) with the training 
dataset and then using the model to predict time point in the test dataset. (Supplementary Fig. S3). Accuracy of 
prediction was calculated using the confusionMatrix function from the R package caret (version 6.0–85)94 with 
positive = D12 time point for D12 vs. D24, and positive = D24 time point for D24 vs. D90. As a control for the 
accuracy of each selected gene set size, we took 100 random gene samples of the same size and calculated accu-
racy of predicting time point in the test dataset. Accuracies are shown as box plots (outliers hidden) for random 
gene sets and as individual points for selected gene sets (Fig. 3B for D12 vs. D24, Supplementary Fig. S4D for 
D24 vs. D90).

Replating cardiomyocytes for imaging and RNA FISH.  After performing cardiomyocyte differentia-
tion, cells were dissociated into single cells at D12 (described in “Single cell dissociation for scRNA-seq” section) 
and seeded into glass bottom multiwell plates with an aliquot being used for flow cytometry analysis as described 
above. First, glass bottom multiwell plates (24-well, Cellvis P24-1.5H-N) were incubated at RT with 0.5 M glacial 
acetic acid (Fisher Scientific #BP1185-500) for 20–60 min and washed once with sterile milliQ (MQ) water. 
Wells were then treated with 0.1% PEI (Sigma Aldrich #408727-100ML) solution in sterile MQ water for 16–72 h 
at 4 °C and rinsed with DPBS and sterile MQ water. Wells were then incubated with 25 µg/mL natural mouse 
laminin (Gibco #23017-015) diluted in sterile MQ water overnight at 4 °C and removed immediately preceding 
cell plating. Cells were seeded at a density of 35,000 to 50,000 cells per well in RPMI-1640 supplemented with 
B27 containing insulin, 1% P/S, and 10 µM Rock Inhibitor. Media was changed after 24 h to RPMI-1640 sup-
plemented with B27 containing insulin and 1% P/S, and media was changed every 2–3 days after until fixation. 
Cells were fixed at time points indicated in text for RNA FISH; the D18 time point reflects single cell dissociation 
at D12 and a 6-day recovery period after replating, and the D30 time points reflect additional maturation. Cells 
at the D30 time point were fixed between D29-D30. Both time points (D18 and D30) were seeded from the same 
source population of D12 differentiated cardiomyocytes that were replated together and maintained in parallel 
until fixation. Cells were fixed by removing media and washing twice with RNAse-free PBS, then incubated for 
10 min at RT in a 4% paraformaldehyde solution (Electron Microscopy Sciences #15710). Fixation solution was 
removed, wells were washed once more with RNAse-free PBS, then stored in 70% ethanol at − 20 °C until RNA 
hybridization was performed.

RNA FISH using HCR v3.0.  Gene validation by RNA FISH was performed using the HCR v3.0 method, 
following the HCR v3.0 protocol for “Mammalian cells on a slide” with modifications to adapt for samples on 
glass bottom multiwell plates (Molecular Instruments, www.​molec​ulari​nstru​ments.​com/​hcr-​rnafi​sh-​proto​cols), 
as previously described71. Fixed wells were washed 4 times with 500 µL 2X SSC (Invitrogen #15557-044), incu-
bated for 30–60 min at 37 °C in probe hybridization buffer (Molecular Instruments), and hybridized overnight 
with 1.2 pmol of each probe set mixture containing 400 U/mL RNAse inhibitor (Enzymatics #Y9240L) at 37 °C 
(250 µL per well). Custom probe sets can be found in Supplementary Table S5. Wells were probed for three genes 
in each experiment. Wells were washed with probe wash buffer (Molecular Instruments) supplemented with 
400 U/mL RNAse inhibitor at 37 °C for 30 min, washed 4 times with 2X SSC at RT, and incubated in amplifica-
tion buffer (Molecular Instruments) for 30–60 min at RT. Hairpin amplifiers were prepared during this time; 
18 pmol of hairpin amplifiers were heated to 95 °C for 90 s, protected from light and cooled, then combined 
and added into an amplification buffer containing 400 U/mL RNAse inhibitor. Hairpin mixtures were added to 
the appropriate wells (250 µL per well) and incubated for 45 min at RT, protected from light. Hairpin solution 
was removed, wells were washed with 2X SSC four times, nuclei were labeled with 2 µg/mL DAPI in 2X SSC for 
5 min, followed by additional washes with 2X SSC. Samples were stored protected from light at 4 °C in 2X SSC 
with 400 U/mL RNAse inhibitor until imaging.

https://www.molecularinstruments.com/hcr-rnafish-protocols
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Imaging RNA FISH samples.  Imaging cardiomyocytes after RNA FISH (Figs.  1E, 3E, Supplementary 
Fig. 5) was performed on a Zeiss spinning-disk microscope with a 40x/1.2 NA W C-Apochromat Korr UV–Vis 
infrared (IR) objective (Zeiss) and a 1.2 × tube lens adapter for a final magnification of 48x, a CSU-X1 spinning-
disk head (Yokogawa), and Orca Flash 4.0 camera (Hamamatsu) (pixel size 0.271 µm in X–Y after 2 × 2 bin-
ning and 0.29 µm in Z). Standard laser lines (405, 488, 561, 640 nm), primary dichroic (RQFT 405, 488, 568, 
647 nm) and the following Band Pass (BP) filter sets (Chroma) were used for fluorescent imaging: 450/50 nm for 
detection of DAPI, and 525/50 nm, 600/50 nm, and 690/50 nm for detection of RNA FISH probes. Brightfield 
images were acquired using an LED light source with peak emission of 740 nm with narrow range and a BP filter 
706/95 nm for brightfield light collection.

Manual cell annotations in Napari.  Multi-channel Z-stacks were loaded into Napari (https://​napari.​
org95 and 2D single cell masks were generated by manually drawing cell boundaries in 2D while incorporating 
information from all channels collected during imaging (brightfield, two FISH probe channels, nuclei via DNA 
dye (DAPI), and alpha-actinin-2-mEGFP (structure) signal if present). Single cell masks in fields of view (FOVs) 
were hand drawn by a single human expert. Cell boundaries were manually drawn for cells that were mostly 
within the FOV, and low-confidence/high cell density regions with many overlapping cells were avoided. 2D 
single cell masks were used downstream to create single cell transcript abundance measurements.

DNA (Nuclear) segmentation.  Nuclear segmentation in 2D using the DNA channel was performed using 
CellProfiler (version 3.1.8)96. See CellProfiler pipeline for Zeiss in https://​github.​com/​Allen​CellM​odeli​ng/​fish_​
morph​ology_​code for details. The DNA channel maximum intensity projection (MIP) was normalized with 
CellProfiler’s RescaleIntensity module from the 5th percentile to 95th percentile of the raw image. Nuclei were 
segmented using minimum cross entropy thresholding to define the probability distributions of foreground and 
background regions in an image using CellProfiler’s IdentifyPrimaryObjects module. Clumped objects were 
filtered by shape to identify nuclear objects in close proximity. Objects smaller than 500 pixels were considered 
debris and discarded. Nuclei were assigned to a cell if their centroids fell within the 2D segmented cell object. 
Unassigned nuclear objects were discarded and not used for further analysis.

RNA spot segmentation and feature extraction.  RNA FISH transcripts were segmented using a tran-
script-specific segmentation workflow in the Allen Cell Structure Segmenter (Allen Cell Explorer)97. MIP image 
intensities were normalized, a Gaussian smoothing filter was applied to all images, and a 2D spot filter algorithm 
was applied to segment the transcript signal, where each transcript signal represented the location of the RNA 
as a diffraction-limited spot. This filter accounted for both the dot radius and the filter response to generate a 
binary result. Dot intensity levels varied by transcript and thus the filter response parameter was optimized for 
each RNA species, as listed in the table below. Segmented RNA FISH spots were quantified for each manually 
segmented cell in an FOV using CellProfiler’s IdentifyPrimaryObjects and MeasureObjectSizeShape modules.

Microscope Probe set
Filter response 
parameter

Zeiss

TNNT2-488 0.02

TNNT2-638 0.03

MYL2-488 0.06

MYL2-638 0.05/0.06

MYL7-561 0.01

MYH6-488 0.01

MYH6-561 0.02

MYH7-561 0.01

MYH7-638 0.02

ESRRG​-638 0.03

MEIS2-638 0.01

FABP3-638 0.04

H19-561 0.01

VCAN-561 0.02

COL2A1-488 0.04

 All data used to generate figures in this manuscript is available at: https://​open.​quilt​data.​com/b/​allen​cell/​packa​ges/​
aics/​wtc11_​hipsc_​cardi​omyoc​yte_​scrna​seq_​d0_​to_​d90 Code used for analysis and to generate figures is available at: 
https://​github.​com/​Allen​Cell/​cardio_​scrna​seq_​paper_​code All plots in this manuscript were made using ggplot2 86.

Statistical analysis.  Details of specific statistical analyses for each section, sample sizes, and statistical tests 
used are given in the Methods and in the corresponding figure legends.

https://napari.org
https://napari.org
https://github.com/AllenCellModeling/fish_morphology_code
https://github.com/AllenCellModeling/fish_morphology_code
https://open.quiltdata.com/b/allencell/packages/aics/wtc11_hipsc_cardiomyocyte_scrnaseq_d0_to_d90
https://open.quiltdata.com/b/allencell/packages/aics/wtc11_hipsc_cardiomyocyte_scrnaseq_d0_to_d90
https://github.com/AllenCell/cardio_scrnaseq_paper_code
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