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Abstract: Along with (in)direct contact with animals and a contaminated environment, humans
are exposed to antibiotic resistant bacteria by consumption of food. The implications of ingesting
antibiotic resistant commensal bacteria are unknown, as dose-response data on resistance transfer
and spreading in our gut is lacking. In this study, transfer of a resistance plasmid (IncF), harbour-
ing several antibiotic resistance genes, from a commensal E. coli strain towards human intestinal
microbiota was assessed using a Mucosal Simulator of the Human Intestinal Ecosystem (M-SHIME).
More specifically, the effect of the initial E. coli plasmiddonor concentration (105 and 107 CFU/meal),
antibiotic treatment (cefotaxime) and human individual (n = 6) on plasmid transfer towards lumen
coliforms and anaerobes was determined. Transfer of the resistance plasmid to luminal coliforms
and anaerobes was observed shortly after the donor strain arrived in the colon and was independent
of the ingested dose. Transfer occurred in all six simulated colons and despite their unique microbial
community composition, no differences could be detected in antibiotic resistance transfer rates
between the simulated human colons. After 72 h, resistant coliform transconjugants levels ranged
from 7.6 × 104 to 7.9 × 106 CFUcefotaxime resistant/mL colon lumen. Presence of the resistance plasmid
was confirmed and quantified by PCR and qPCR. Cefotaxime treatment led to a significant reduction
(85%) in resistant coliforms, however no significant effect on the total number of cultivable coliforms
and anaerobes was observed.

Keywords: M-SHIME; antibiotic resistance; resistance transfer

1. Introduction

Over- and misuse of antibiotics in clinical and veterinary medicine has contributed to
the emergence and spread of antibiotic resistance genes [1]. These genes are often located on
mobile genetic elements such as plasmids, transposons, integrons, integrative conjugative
elements and genomic islands, and can be disseminated by horizontal gene transfer [2].
Antimicrobial resistance in pathogenic bacteria as well as commensals is an emerging public
health threat, especially since transfer of antimicrobial resistance genes among pathogens
or from commensals to pathogens can occur [3]. Antibiotic resistance genes are widespread
and are circulating among bacteria in natural and anthropogenic environments, including
the animal and human gastrointestinal tract [2,4,5], creating a continuous resistance gene
flow [6]. Comparative genome analyses have illustrated that inter-environmental resistance
transfer between animals and humans occurs at higher ratios than those from aquatic
or terrestrial environment towards humans, depicting a contributing role of animals in
disseminating antibiotic resistance genes to humans [4,5]. Whether food consumption is
the main factor for this resistance dissemination to humans is not clear, as many studies use
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traditional typing methods which often have insufficient resolution to reliably assess the
strain relatedness and the dissemination of resistant bacteria from the food chain to humans.
Nonetheless, a recent study reported a median antibiotic resistant bacteria prevalence level
of >50% on retail food samples in Europe [7]. De Been and colleagues provided strong
evidence based on whole genome data for the clonal transfer of an ESBL producing E. coli
between pigs and pig farmers, which may have occurred by direct contact, aerosols or
(cross-contaminated) food [8]. Together with the global increase of fecal colonization of
resistant Enterobacteriaceae in humans and animals [9], this implies that resistant bacteria
can colonize our gut and may also transfer their antibiotic resistance genes towards human
gut microbiota. The human gut harbors a diverse and dense bacterial community which
has profound effects in human health and physiology [10]. Despite its low phylum level
diversity, with Firmicutes, Bacteroidetes, Actinobacteria, and Proteobacteria being the
dominant ones, it is characterized by a high species richness [11] and is often considered as
a hotspot for gene transfer [5]. Transfer of antibiotic resistance genes mainly occurs within
a genus, but also between phylogenetically distant species, since some genes were even
found to be transferred across five phyla or more [5]. Mobile ARGs are mainly present in
Proteobacteria, Firmicutes, Bacteroidetes and Actinobacteria and are significantly enriched
in Proteobacteria, more specifically in E. coli, Pseudomonas aeruginosa, Klebsiella pneumoniae,
Klebsiella oxytoca and Enterobacter cloacae [4]. In addition, genome sequencing revealed that
E. coli and K. pneumoniae shared the largest number of mobile resistance genes [5].

In vivo resistance transfer events between Enterobacteriaceae have been observed in
the gut of antibiotic treated, hospitalized infants [12–14] and in those of elderly persons [15].
Antibiotic treatment generates a selective pressure which can drive resistance development
and transfer [16]. However, the transfer of a conjugative plasmid harboring antibiotic
resistance genes from an ingested bacterium was also observed in a (simulated) human gut
in the absence of antibiotics [17,18].

The daily human exposure levels to commensal antibiotic resistant bacteria are not
known yet. Human exposure assessment models estimated exposure levels in the range
of 1 × 10−2 and 1.35 × 106 CFU resistant E. coli per 100 g lettuce [19] and a 1.5% chance
to be exposed to more than 1000 CFU cephalosporin resistant E. coli after consumption
of a chicken meal [20]. Moreover, there is a paucity of information about the amount of
these bacteria needed to initiate resistance transfer and the frequency and speed at which
transfer to gut microbiota takes place.

This study aimed to evaluate the effect of (i) the ingested dose of resistant E. coli, (ii) the
human individual and (iii) antibiotic treatment, on resistance plasmid transfer towards
gut microbiota by using an in vitro model mimicking the human intestinal system. More
specifically, transfer of a IncFII-resistance plasmid, harbouring several antibiotic resistance
genes, from a commensal E. coli originating from a broiler chicken towards colon coliforms
and anaerobes was determined in a Mucosal Simulator of the Human Intestinal Ecosystem
(M-SHIME) setup from stool of 6 different human individuals.

2. Materials and Methods
2.1. E. coli MB6212 Plasmid Donor Strain

The commensal Escherichia coli strain, MB6212, isolated from a broiler and known to
transfer in vitro [17] its resistance plasmid (p5876, accession number MK070495, Appendix A)
was selected for this study. The strain had been made lactose-negative to track plasmid transfer
to indigenous coliforms in the M-SHIME [17]. E. coli MB6212 (the plasmid donor) grows
as white colonies on MacConkey plates (Oxoid), whereas transconjugants (i.e., indigenous
coliforms which accepted the plasmid) form red colonies. Moreover, the lactose negative
MB6212 appears as pink colonies on RAPID’E. coli Agar (Biorad), whereas the wild type
strain and other innate E. coli forms purple colonies, favoring separate enumerations. The
MB6212 strain was grown overnight in Tryptone Soy Broth (Oxoid) at 37 ◦C, washed and
diluted to 106 or 104 CFU/mL in 1/4 Ringers solution (Oxoid) prior to inoculation (10 mL) in
the M-SHIME stomach.
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2.2. Human Fecal Donors

To assess the effect of human individual variability in resistance transfer, fresh fecal
samples from six human volunteers (24–30 years old) were collected according to stan-
dard procedures. All volunteers followed a normal Western diet and had no history of
gastrointestinal disorders nor antibiotic treatment 5 years prior to the sample collection.
The fecal samples were homogenized and a 20% (w/v) fecal slurry in anaerobic phosphate
buffer was prepared as described by De Boever [21]. All samples were processed and
inoculated in the M-SHIME within 3 h after sample collection. Research incubation work
with fecal microbiota from human origin was approved by the ethical committee of the
Ghent University hospital under registration number BE670201836318.

2.3. Mucosal Simulator of the Human Intestinal Ecosystem (M-SHIME)
2.3.1. General Setup

The M-SHIME®-reactor setup (Prodigest and Ghent University, Belgium) was adapted
to run eight M-SHIME runs in parallel (3 treatments + 1 control condition for 2 human
donors). Each run consisted of a combined stomach-small intestine vessel and a proximal
colon vessel (Figure 1).
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Figure 1. M-SHIME. (A): Reactor vessel setup. Two human individuals were tested in parallel
(colon a,b) (B): Time frame of the experiment. −3 h: time point at which E. coli MB6212 is in-
oculated in the stomach vessel. 0 h: time point at which E. coli MB6212 enters the colon vessel,
(C): Mucin microcosms.

During reactor start-up, the colon vessels were inoculated with 25 mL fecal slurry and
475 mL nutritional medium (Prodigest NM002A containing 1.2 g/L arabinogalactan, 2 g/L
pectin, 0.5 g/L xylan, 0.4 g/L glucose, 3 g/L yeast extract, 1 g/L special pepton, 2 g/L
mucin, 0.5 g/L L-cystein-HCl and 4 g/L starch). A mucosal environment was created by
adding 80 mucin type II agar-covered microcosms (AnoxKaldnes K1 carrier; AnoxKaldnes
AB, Lund, Sweden) per colon vessel [22]. Every two days, 50% of the microcosms were
replaced by new ones to mimic the natural renewal of the mucus layer. Three times a
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day and 90 minutes apart from each other, 140 mL acidified nutritional medium (pH2,
HCl) and 60 mL digestive juice (12 g/L oxgall (BD)), 1.8 g/L porcine pancreatin (Sigma),
25 g/L NaHCO3 (Roth) were added to the stomach-ileum compartments. After 3 h the
stomach-ileum content was pumped into the proximal colon vessels. Those vessel had a
pH of 5.6–6.0, a volume of 500 mL and a retention time of 20 h. After a three-days start-up
period, enabling the microbial community to adapt to the nutritional and physicochemical
conditions in the colon vessels, the M-SHIME was inoculated with E. coli MB6212 (day 0,
−3 h time point). To test whether E. coli donor strain concentrations effect the plasmid
transfer ratios, two different E. coli MB6212 doses (105 and 107) were tested. To this
end, 10 mL of bacterial suspension (either 106 or 104 CFU/mL) was inoculated in the
stomach-small intestine vessels (final volume 210 mL) during feeding to obtain a final
concentration of 4.8 × 104 and 4.8 × 102 CFU/mL respectively. The control stomach
vessels were inoculated with 10 mL 1/4 Ringers solution. After the inoculation, all stomach-
ileum vessels were continued to be fed with 140 mL nutritional medium and 60 mL
pancreatic juice three-times daily. During the whole experiment, anaerobic conditions were
maintained by daily flushing with N2. The moment the inoculated E. coli strain entered the
proximal colon vessels (i.e., 3 h after inoculation in the stomach vessels) was considered as
the arbitrary 0 h time point (Figure 1).

At time points −72, −48, −24, 0, 2, 6, 24, 48 and 72 h, 10 mL lumen samples were
taken and aliquoted for further analysis (cf 2.4. Analysis of lumen samples).

2.3.2. Cefotaxime Treatment

The effect of cefotaxime treatment on resistance selection and transfer was determined
by treating a stabilized M-SHIME with cefotaxime (Claforan, Sanofi-Aventis, Germany).
Functional stability was assessed by SCFA measurements. Since cefotaxime is administered
by intramuscular or intravenous injection, the M-SHIME was treated by cefotaxime contain-
ing mucin beads to mimic the natural diffusion through the colon wall. The recommended
cefotaxime dose for an uncomplicated infection in adults is 2 g/day and approximately
10% ends up in the faeces [23]. Hence the estimated lumen concentration is 50 mg/L
(200 mg/4L lumen). At time point 72 h of the M-SHIME run (Figure 1), a single dose
cefotaxime was administered. Therefore, half of the mucin beads in colon vessel 4a and 4b
were replaced with new ones containing 1250 µg cefotaxime/mL mucin suspension (20 mL
mucine beads in 500 mL colon suspension = final concentration of 50 mg/mL cefotaxime),
whereas those in the control vessels, i.e., 3a and 3b were replaced with regular mucin beads
(total volume mucine beads: 20 mL. Assuming 100% diffusion of cefotaxime from the
beads to the lumen, this leads to a final maximum concentration of 50 mg cefotaxime/L
lumen. Four hours after replacing the beads, a meal (140 mL nutritional medium) was
administered containing 107 CFU E. coli MB6212. All colon vessels were covered with
aluminum foil to shield the cefotaxime from daylight. Lumen samples were taken just
before inoculation of E. coli MB6212 and 72 h after antibiotic administration.

2.4. Analyses of Lumen Samples
2.4.1. Bacterial Counting

Samples were serially diluted ( 1
4 Ringers) and incubated on selective plates. Mac-

Conkey agar (nr3, Oxoid, 37 ◦C, aerobic) was used to count coliforms and Reinforced
Clostridial Agar (RCA, Oxoid, 37 ◦C, anaerobic) for total anaerobic bacterial counts. Re-
sistant [24] bacteria (transconjugants and the MB6212 donor strain) were counted on
MacConkey and RCA with cefotaxime (0.25 µg/mL) in combination with sulfamethoxa-
zole (256 µg/mL) as described by Lambrecht et al. [17]. Transconjugants on the antibiotic
containing MacConkey agar were differentiated from MB6212 by their red morphology.
To verify that their resistance was caused by p5876 and not due to intrinsic resistance
or a spontaneous mutation, a PCR assay with primers targeting a specific and unique
region on p5876 was performed [17]. On the antibiotic containing RCA plates, anaerobic
transconjugants and the MB6212 E. coli could not be discriminated based on morphology.
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To estimate the number of true transconjugants among the anaerobic resistant colonies,
10 colonies per colon vessel were subcultivated on RAPID E’coli (to exclude MB6212) and
analyzed by PCR.

2.4.2. Short Chain Fatty Acids

SCFA production was measured by capillary gas chromatography (GC-2014 gas
chromatograph (Shimadzu, Hertogenbosch, the Netherlands) coupled to a flame ionization
detector after diethyl ether extraction, as described by Andersen [25]. The total SCFA
is the sum of acetate, propionate, butyrate, isobutyrate, valerate, isovalerate, caproate
and isocaproate.

2.4.3. Quantification of Total 16S rRNA Gene Abundance and of p5876 by qPCR

qPCR analysis was performed on a Lightcycler 480 Real-time PCR system (Roche).
Total 16S rRNA gene abundance as a proxy for bacterial abundance and p5876 were quanti-
fied using SYBR Green technology. For each DNA extract (performed as reported by [26]),
a 1000-fold dilution was made and analyzed in duplicate. QPCRs were carried out with
eubacterial primes described by Ovreas [27] (Bac33FW: 5’ ACTCCTACGGGAGGCAGCAG
and Bac518RV: 5’ATTACCGCGGCTGCTGG) and p5876-plasmid specific primers (FW 5’
GGCTGAGAAAGCCCAGTAAGG, RV: 5’TAAGTTGGCAGCATCACCTCG), designed in
a former study [17]. The PCR program consisted of an activation step of 3 min at 98 ◦C,
followed by 30 cycles of 10s at 98 ◦C and 30 s at 60 ◦C. Within each run, a standard
curve was constructed using a 10-fold dilution series of 16S rRNA gene plasmid construct
(IDT, Coralville, IA, USA) or a gblock fragment containing the p5876 targeted sequence to
determine PCR efficiency [17].

2.4.4. UHPLC-MS/MS

Lumen samples taken just before and 72 h after cefotaxime treatment were analyzed
using ultra high performance liquid chromatography-tandem mass spectrometry (UHPLC-
MS/MS) to detect and quantify cefotaxime.

For extraction, 4 mL lumen was spiked with ceftiofur-d3 (500 µg/L) and left to
equilibrate at room temperature for 10 minutes. After addition of 6 mL acetonitrile, the
sample was vortexed for 30 s. The sample was centrifuged (10 min, 1920 g) and the
supernatant was collected and evaporated up to 4 mL under nitrogen at 40 ◦C. After
filtration (0.22 µm) samples were loaded on the UHPLC.

The liquid chromatographic system consisted of an Acquity UPLC H-class system (Wa-
ters, Milford, MA). Separation was achieved on a Kinetex C18 column (2.1 mm × 100 mm,
1.7 µm, 100 Å) with a SecurityGuard ULTRA cartridge. The column was held at 35 ◦C,
the injection volume was set at 5 µl and the eluent flow at 400 µL/min. The elution was
performed with H2O:acetonitrile (95:5 v/v) + 0.05% acetic acid (solvent A) and gradually
changing amounts of acetonitrile:H2O (95:5 v/v, solvent B).

The mass spectrometric equipment consisted of a Xevo TQ-MS (Waters) equipped
with a Z-Spray system. Ions were generated using electrospray ionization in positive
mode (ESI+).

A calibration curve was generated by spiking a blanc lumen sample with different
concentration of cefotaxime (0–1000 µg/L cefotaxime in MeOH:H2O) and ceftiofur-d3
(internal standard, 500 µg/L ceftiofur-d3 in methanol). The Limit Of Quantification (LOQ)
is 10 µg/L.

2.5. Statistical Analysis of Bacterial Counts and SCFA Concentrations

All statistical analyses were performed in R (version 3.5.1). Linear mixed models were
used for modelling the absolute and relative amount of cultivable resistant coliforms, anaer-
obes and SCFA. Sampling time points, total coliforms and anaerobes, MB6212 inoculation,
and total SCFA concentrations were included as potential fixed effects. Human individual
was considered as random factor to include inter-individual variability.
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All models were evaluated for normal distributed residuals with homogenous vari-
ance, by Shapiro Wilk test (p > 0.05) and visually by Q-Q plots. When a significant concen-
tration effect was present (ANOVA, p < 0.05), the categories were compared pair-wise by
posthoc analysis using Tukey’s test.

2.6. S Amplicon Sequencing and Bioinformatics Analysis

The lumen microbial community at time points 0 and 72 h and after cefotaxime
administration was assessed using Illumina next generation 16S rRNA gene amplicon
sequencing. DNA extraction was performed as reported by [28]. Library preparation
and sequencing on a Illumina MiSeq platform occurred by LGC Genomics. The 341F
(5’-CCTACGGGNGGCWGCAG-3’) - 785Rmod (GACTACHVGGGTATCTAAKCC) primer
pair, derived from Klindworth et al. [29] was used to amplify the 16S rDNA V3-V4 region.

The Mothur software package (v1.39.5, [30]) was used to process Illumina data. For-
ward and reverse reads were assembled into contigs and ambiguous contigs or contigs with
divergent lengths were removed. The number of unique sequences was determined and
these were aligned to the Mothur-reconstructed SILVA Seed alignment (v123). Sequences
not aligning within the region targeted by the primer set or sequences with homopoly-
mer stretches with a length higher than 12 were removed. Sequences were pre-clustered
together within a distance of 1 nucleotide per 100 nucleotides. These cleaned-up and
preclustered sequences were checked for Chimera’s (with Uchime) [31] and classified
using RDP v. 16 and a naive Bayesian classifier (Wang’s algorithm). Sequences classified as
Eukaryota, Archaea, chloroplasts and mitochondria and those that could not be classified at
all (even not at (super)kingdom level) were removed. Clustering of operational taxonomic
units occurred with an average linkage and at 97% sequence identity.

Sequence data has been submitted to the NCBI database under accession number
PRJNA579267.

Differences in microbial community composition between samples were explored
using RC(M) ordination with reactor run as conditioning factor (fit Row-Column association
Models, RCM package v0.1.0, [32]). Significant differences were identified by means of
Permutational Multivariate Analysis of Variance (PERMANOVA) using the adonis function
(vegan v.2.5-2, PairwiseAdonis [33] with human as strata, 1000 permutations, OTU level.
Multivariate homogeneity of dispersion (variance) was calculated with the betadisper
function (vegan). Absolute counts were used to determine Hill numbers (H0, H1 and H2,
Phyloseq (v1.24.2)) to evaluate the microbial community structure. A Wilcoxon (Signed)
Rank Sum test was used to detect significant differences in Hill numbers between antibiotic
treated vessels and controls.

3. Results
3.1. Transfer of Resistance Plasmid p5876: Effect of Dose and Human Individual in the Absence
of Antibiotics

To evaluate whether the dose of ingested antibiotic resistant E. coli and the individual
gut microbiota affect the conjugal transfer of antibiotic resistance genes towards gastroin-
testinal microbiota, an M-SHIME system was set up. This system was fed with a nutritional
medium containing either 105 or 107 antibiotic resistant E. coli MB6212, harboring the
transferable resistance plasmid p5876. The emergence of resistant gut microbiota was
monitored over time. Several M-SHIME setups were run to simulate the gastrointestinal
system of 6 different human individuals.

Transfer of the resistance plasmid p5876 was quickly observed, as after 2 h residing
in the simulated colon, resistant, indigenous coliforms could be detected in the lumen
of all human donors except those of human donor B (Figure 2). For the latter, resistant
coliforms were detected only after 6 h or 24 h when inoculated with 107 or 105 CFU
MB6212 respectively. Inoculation dose (105 or 107 CFU) had no significant effect on the
absolute (Figures 2 and 3) and relative number (Appendix A, Figure A2) of resistant
indigenous coliforms. Yet, the presence of the E. coli MB6212 donor strain in the simulated
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proximal colon did result in a significant increase of resistant indigenous coliforms over
time (Figure 3), with final resistance levels at 72 h ranging from 7.6 × 104 (human A) up to
8.4 × 106 (human C) CFU/mL (Figure 2). The E. coli MB6212 donor strain itself persisted
in the proximal colon during the whole experiment as was demonstrated by the presence
of pink colonies on RAPID’Ecoli agar plates. At the final sampling time point (72 h),
2.3 × 108 ± 1.0 × 107 CFU/ mL (mean ± SE) E. coli MB6212 were detected, independent
of the administered dose or human individual (p > 0.05).
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numbers of resistant coliforms in the proximal colon (i.e., non-MB6212, cefotaxime + sulfamethoxazole resistant).
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Figure 3. Least mean squares of the number of resistant coliforms (log CFU/mL) in the proximal
colon vessels over time. Stomach vessels were inoculated with 105 (grey bars) and 107 (black bars)
E. coli MB6212 donor strain at 0 h. Resistant transconjugants (non-MB6212) were enumerated by
plating. Time points sharing a letter are not significantly different (p > 0.05) in post hoc analysis.
Least mean squares ± standard error, n = 6 human donors.
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Resistant anaerobes were detected in the control and inoculated proximal colon vessels.
Based on colony morphology on selective RCA plates with antibiotics, no clear distinc-
tion could be made between resistant anaerobic transconjugants, E. coli donor strain and
intrinsically resistant anaerobic bacteria. Hence, for anaerobes, statistics were performed
on the total number of resistant anaerobes. The human individual, sampling time point,
and MB6212 inoculation had no significant effect on the absolute and relative number
of resistant anaerobes. On average 1.1 × 108 CFU/mL lumen (± SE 2.4 × 107 CFU/mL)
cultivable resistant anaerobes were detected.

Inoculation of 105 (+ E. coli E5) or 107 (+ E. coli E7) CFU of the resistance plasmid
donor strain E. coli MB6212 in the stomach vessel at time point minus 3 h. Control: without
inoculation of E. coli MB6212. Time: residence time in the proximal colon, ND: not detected,
detection limit = 100 CFU/mL.

Resistant transconjugant coliforms and anaerobes were screened for the presence of
p5876 by PCR. 94% (99/105) of the tested purple colonies on MacConkey and 62% (61/99)
of the selected colonies on RCA tested positive for presence of the p5876 resistance plasmid.
Based on its sequence, p5876 may confer resistance to sulfonamides (sul3), β-lactams
bla-SHV2 and bla-pse4), chloramphenicol (cmLA), aminoglycosides (aadA1 and aadA2),
tetracyclines (tetR, tetA), trimethoprim (dhrfI). In addition, several toxin-antitoxin genes
involved in plasmid addiction are present: PemK, PemI, pndC, yacB, yacA (Appendix A).

The total amount of p5876 in the simulated proximal colon vessels was quantified by
qPCR. At time point 0h in both control and inoculated vessels and at 72 h for control vessels
no p5876 could be detected. The inoculated vessels at time point 72 h did however display
an average 2 × 108 p5876 copy number/mL. No significant differences in p5876 copy
number were observed between different individuals and inoculation doses. In addition,
no significant differences in total bacterial load—as measured by the 16S rRNA gene copy
number—were detected between time points (0 h vs 72 h), individuals, and inoculated
versus control vessels. Overall, on average 2.3 × 1010 16S rRNA gene copy numbers/mL
lumen (±8.3 × 109, SE) were detected.

At each sampling time point, SCFA were measured as a marker for metabolic ac-
tivity. Sampling time point and inoculation of the E. coli MB6212 donor strain had no
significant effect on the total SCFA, nor on the separate butyrate, acetate and propi-
onate levels. Inter-individual differences in SCFA profiles were observed with mean
acetate:propionate:butyrate ratios of 42:33:24 (person A), 72:21:7 (person B), 67:24:9 (person
C), 70:17:13 (person D), 66:21:13 (person E), 63:23:14 (person F).

The bacterial community composition and structure of the proximal colon lumen was
explored with 16S rRNA gene amplicon sequencing. Inter-individual differences in domi-
nant taxa were observed (Figure 4). In general, no significant differences in richness (OTU
level, Hill number H0) nor in diversity (H1, H2) were detected between individuals. Within
an individual, sampling time point (0 h vs 72 h), inoculation of E. coli MB6212 (controls vs
105 and 107) and its dose (105 vs 107) had no significant effect on the Hill numbers.

To study differences between genus level composition of the lumen communities,
taking into account the relative abundances, samples were ordinated in a two-dimensional
plot using RC(M) analysis (Figure 5) with reactor run as confounding factor. Most samples
of the same individual clustered closely together.
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3.2. Transfer of Plasmid p5876 after Cefotaxime Treatment

In the second part of this study, the transfer of p5876 under the selective pressure of a
cefotaxime treatment was assessed. E. coli MB6212 (107 CFU/mL) were inoculated in the
stomach vessel immediately after cefotaxime treatment ([max. final lumen]: 50 mg/L). The
cefotaxime concentration in the lumen was measured by UHPLC-MS/MS. However, 72 h
after the treatment, no cefotaxime could be detected in the lumen anymore.

Cefotaxime treatment led to a significant reduction (85%) in resistant coliform. The
treatment had no significant effect on the total number of cultivable coliforms nor on the
cultivable anaerobes (at time point 72 h) nor on the number of resistant anaerobes (data
not shown).

To assess the co-impact of cefotaxime treatment and MB6212 inoculation on SCFA
production and the human gut microbiome composition, samples at time point 0h (just
before inoculation and treatment) and at 72 h were analyzed (Figure 6). Inter-individual
differences in SCFA profiles were observed, but overall, cefotaxime treatment caused a
38% decrease in total SCFA concentration (MB6212 vs MB6212 with cefotaxime, p = 0.03).
In particular, a significant decrease in butyrate (60% reduction, p = 0.03) and propionate
concentration (84% reduction, p = 0.002) was observed. No significant changes could be
detected in acetate production.
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Figure 6. Main Short Chain Fatty Acid profiles of lumen samples from the proximal colon vessel of the M-SHIME of
6 human individuals (A–F). Grey: butyrate, orange: propionate, blue: acetate Samples were analyzed 72 h after inoculation
of E. coli MB6212 + cefo: single dose of cefotaxime treatment through mucin-bead diffusion (50 mg/L). Control: without E.
coli MB6212, without cefotaxime.

Neither MB6212 nor cefotaxime treatment induced a clear long-term shift in commu-
nity composition on family level (Figure 7). After 72 h, no significant differences in Hill
numbers (H0, H1 and H2) between (i) controls, (ii) MB6212 inoculated and (iii) MB6212
inoculated and cefotaxime treated samples was observed. An RC(M) ordination of the
luminal microbial community at genus level indicated that human individual and antibiotic
treatment are the main factors determining grouping of the samples (Figure 5). Veillonella
were more abundant in cefotaxime treated samples than in the others. On the other hand.
Desulfovibrio, Coprococcus and Rhodospirales were more characteristic for non-cefotaxime
treated samples. The distinction between cefotaxime treated and control communities was
confirmed by a permanova (p < 0.05).
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MB6212 inoculation.

4. Discussion

Inoculation of E. coli MB6212, harboring the p6785 resistance plasmid, in an M-SHIME
revealed rapid transfer of this plasmid towards indigenous coliforms and anaerobes in the
simulated proximal colon lumen. After 2 h residing in the colon vessels, transfer could
already be observed, with resistance ratios ranging from 2.2 × 10−5 to 0.17 resistant indige-
nous coliforms/total coliforms. Resistance ratios could not be calculated for anaerobes as
colony morphologies did not allow to differentiate between donor strain, transconjugants
and intrinsic resistant anaerobes. Coliform resistance ratio’s require careful interpretation
as they do not allow to distinguish between (i) direct transfer of the resistance plasmid
from MB6212 to indigenous acceptor bacteria, (ii) second level plasmid transfer between
indigenous transconjugants and acceptors and (iii) vertical transfer among coliforms during
cell division. Hence, the resistance ratio only gives a rough indication of the conjugation
efficiency. Moreover, in the current study transfer was studied by counting transconjugant
colonies on selective plates with antibiotics and this is likely to be an underestimation of the
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real transfer ratio in the M-SHIME. Particularly because acquired resistance genes are not
always functionally expressed in the new host, which could be either caused by conflicting
codon usage, posttranslational modification and protein folding, or due toenvironmental
conditions do not support the expression and/or growth of the bacterium. The plasmid
acceptors in the M-SHIME setup were expected to be coliforms, which justifies the plating
on MacConkey agar. The p5876 is an F-plasmid: these plasmids are among the most
studied conjugative plasmids and are generally characterized by a high conjugation rate
and narrow host range [34].

The worrisome and quick spread of p6785 in the simulated proximal colon indicates
that this dense and nutrient rich environment favors horizontal plasmid transfer. In general,
conjugation ratios have been shown to be highly variable as they depend on plasmid factors,
but also on mating-pair formation relying on direct contact between donor and acceptor
and on environmental factors. Environmental conditions, such as temperature [35], high
cell density, glucose [36], quorum sensing [37] and (micro)aerobic conditions [38] have
been shown to have an effect on the transfer of F-like plasmids.

The M-SHIMEs from human A, B and C harbored cefotaxime and sulfamethoxazole
resistant coliforms in the control vessels, but tested negative for the presence of p6785
by colony PCR and qPCR on lumen samples. This indicates the presence of resistant
bacteria in the initial fecal inoculum from these persons. Positive human donors are not
surprising, since it has already been demonstrated in 1988 that in 62.5% of fecal samples
from people without a recent antibiotic history, at least 10% of the culturable isolates on
MacConkey were resistant to a single antibiotic and over a third was multiresistant [39]. In
addition, several anaerobes including enterococci [40], bifidobacteria [41] and lactic acid
bacteria [42] are known to be (intrinsically) resistant towards cefotaxime, tetracycline or
sulfamethoxazole. This may explain the presence of resistant indigenous anaerobes in all
tested humans (A–F) in the current study.

The results acquired by plating, PCR and qPCR indicate that transfer and persistence
of the resistance plasmid can occur in the absence of antibiotics. Persistence of the p5876
plasmid in the M-SHIME implies that the plasmid is either stably segregated upon cell
division, confers a fitness advantage to its host, harbors an addiction system, or is being
transferred at very high rates. Since transfer and persistence also occurred in the absence
of antibiotics, it is less likely that the resistance genes were the main drivers for plasmid
conjugation and maintenance. As only 57% of the plasmid genes could be assigned to
a function, it is possible that one of the undefined genes offers a fitness advantage to its
host under M-SHIME conditions. Moreover, evidence of addiction systems – also called
post-segregational killing systems were found on the plasmid sequence.

As expected, all six M-SHIME setups had a unique 16S rRNA gene profile. Ingestion
of the E. coli strain—either with 105 or 107 CFU/mL—did not result in a detectable shift in
community composition at OTU level. In the current study, two E. coli donor concentrations
were tested. Although it is believed that even very low E. coli concentrations may be able
to colonize the gut and potentiate horizontal gene transfer [43,44], the lowest concentration
tested in the M-SHIME was 105 CFU/mL. Lower concentrations would be too difficult to
detect by agar plating as the background microbiota would be too dense. In this study, an
E. coli strain was chosen as a plasmid-donor, since E. coli are regarded as indicator organisms
for tracking microbial resistance [45]. However, one should take into account that humans
are exposed—through food or diverse environments—to many other commensal resistant
bacteria, which harbor narrow/broad host range plasmids.

In the second part of this study, the effect of a single cefotaxime treatment on the
p5876 plasmid transfer was evaluated. In general, antibiotic treatment is expected to reduce
bacterial diversity, to expand or collapse specific taxa, to select for resistant bacteria as
well as to increase the opportunity for horizontal transfer [46]. Cefotaxime diffusion into
the lumen of the proximal colon (final concentration max. 50 mg/L lumen), simulating
treatment of a non-complicated infection, resulted in an unexpected decrease in resistant
coliforms. Potential plasmid acceptors are likely to be killed or inhibited before plasmid



Life 2021, 11, 192 13 of 17

transfer could occur. The lowest Minimal Inhibitory Concentration (MIC) for cefotaxime is
2 µg/L, whereas the Predicted No Effect Concentration (PNEC) for cefotaxime resistance
selection was set to 0.125 µg/L [47]. These values are assessed in pure cultures by lab
cultivation and can differ from those under in vivo conditions which includes eg. bacterial
cross-protection, degradation and biofilm formation. This might explain why the E. coli
donor strain (MIC = 4 µg/mL) could still be recovered after treatment with a high cefo-
taxime concentration. Moreover, the cefotaxime decreased over time due to dilution which
is inherent to the M-SHIME reactor dynamics and biotic and the abiotic breakdown [48].

In contrast, the single dose of cefotaxime had no long-term effect on the total amount of
cultivable anaerobes nor on the resistant anaerobes. This is in concordance with the finding
that the fecal inoculum of the human volunteers, and consequently also the control vessels,
already harbored cefotaxime resistant anaerobes at the start of the M-SHIME experiment.

Treatment with a single dose of cefotaxime caused a significant disturbance in bacterial
metabolic activity, indicated by a reduction in total SCFA. This reduction was mainly due
to a decrease in butyrate and propionate production, which might be unfavorable for the
host if these low levels are remained.

Cefotaxime treatment did not lead to a detectable shift in community richness and
evenness (Hill numbers), probably because of the rapid diffusion and clearance of cefo-
taxime and because lumen samples were only taken 3 days after antibiotic treatment. RCM
ordination analysis revealed that human individual and antibiotic treatment are the main
grouping factors for the simulated lumen samples. Veillonella spp. were more abundant
in cefotaxime treated samples. These Gram-negative anaerobic cocci, are known for their
lactate fermenting capacities. As of yet, no Epidemiological Cut-off values for cefotaxime
resistance for Veillonella are available, making it challenging to hypothesize about the
rise of this genus in antibiotic treated samples. The increased Veillonella abundance was
not visible in the 16S rRNA gene family level bar chart, suggesting that the increase is
counteracted by other Veillonellaceae members.

The current study was performed in a controlled M-SHIME system and while this
system was built to mimic the in vivo gut conditions as good as possible and to allow
careful monitoring and uncomplicated sampling, one of its major drawbacks is the lack of
host cells. A previous study demonstrated that the immune system can enhance plasmid
transfer under inflammation conditions by triggering blooms of certain resident bacteria,
such as enterobacteria. [49]. On the other hand, human gut epithelial cells have been shown
to reduce bacterial conjugation by secreted factors [50].

5. Conclusions

Transfer of resistance plasmids to our gut microbiota and colonization of resistant
bacteria is an alarming scenario, leading to a gut antibiotic resistance reservoir involved
in spreading resistance genes to transient or colonizing bacteria and pathogens entering
our gut. This study demonstrated rapid transfer of a resistance plasmid from a commensal
E. coli to indigenous coliforms. Transfer occurred in all six simulated human colons and
was independent of the ingested dose (105 vs. 107 CFU).
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Antibiotica Resistentie Gen Naam Positie 

Bla-SHV2 Beta-lactamase complement(94763..95623) 

folP/sul3 Dihydropteroate synthase 101766..102557 

AadA1 Aminoglycoside adenyltransferase complement(104239..105030) 

CmlA Chloramphenicol transporter complement(105123..106382) 

AadA2 Aminoglycoside adenyltransferase complement(106644..107435) 

Bla-pse4 Beta-lactamase complement(107553..108419) 

dhfrI Dihydrofolate reductase activity complement(108584..109057) 

tetR Tetracycline repressor protein class B complement(114817..115467) 

tetA Tetracycline resistance protein, class C 115573..116772 

pecM 
Permease of the drug/metabolite 

Transporter (DMT) superfamily 

complement(116804..116947) 

 

Figure A1. Plasmid map with gene annotations Antibiotic resistance genes are indicated with a green star and are shown in
the table below.
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Figure A2. Emergence of resistant coliforms in the lumen of 6 different human individuals (A–F) over time. Relative 

number of resistant non-MB6212 coliforms in the proximal colon. Inoculation of 105 (+ E. coli E5) or 107 (+ E.coli E7) CFU 

of the resistance plasmid donor strain E. coli MB6212 in the stomach vessel at time point minus 3 h. Control: without 

inoculation of E. coli MB6212. Time: residence time in the proximal colon, ND: not detected, detection limit = 100 cfu/mL. 
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