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A B S T R A C T   

Background: The use of microalgae has been emerging as a potential technology to reduce 
greenhouse gases and bioremediate polluted water and produce high-value products as pigments, 
phytohormones, biofuels, and bioactive compounds. The improvement in biomass production is a 
priority to make the technology implementation profitable in every application mentioned before. 
Methods: The present study was conducted to explore the use of microalgae from genus Chlorella 
and Tetradesmus for the generation of substances of interest with UV absorption capacity. A 
mathematical model was developed for both microalgae to characterize the production of 
microalgae biomass considering the effects of light intensity, temperature, and nutrient con
sumption. The model was programmed in MATLAB software, where the three parameters were 
incorporated into a single specific growth rate equation. 
Results: It was found that the optimal environmental conditions for each genus (Chlorella T=36◦C, 
and I<787 μmol/m2s; Tetradesmus T=23◦C and I<150 μmol/m2s), as well as the optimal specific 
growth rate depending on the personalized values of the three parameters. 
Conclussion: This work could be used in the production of microalgae biomass for the design and 
development of topical applications to replace commercial options based on compounds that 
compromise health and have a harmful impact on the environment.   

1. Introduction 

Skin damage by solar radiation is a global concern increasing problem [1]. The effects on the skin produced by the effect of this kind 
of radiation are well known producing damage to DNA, proteins, and lipids. It was reported that this damage can induce early wrinkles, 
sunburns and evolve to develop diseases like skin cancer. Several cosmetic products have been developed to protect from the harmful 
effects of solar radiation, meanwhile, the chemical used to reduce the impact of solar radiation also have negative effects on the 
environment causing coral bleaching and toxic for other marine species. Also, it has been reported that is oxybenzone, the active 
ingredient in sunscreens, is able to permeate the skin by follicular conduct and achieve vascular system inducing inflammatory effects 
[1–6]. 
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To combat the sunscreen chemical’s harmful effects, several efforts have been reported trying to generate natural sunscreens based 
on microalgae, which are beneficial for both the ecosystem and humans [7–11]. This is because their photosynthetic activity able to 
produce compounds as protection mechanisms against UV radiation; such as mycosporine-like amino acids (MAA’s) and other ca
rotenoids [12,13]. Comparing several authors, there are some models related to a certain algae’s specific growth rate as a function of 
different parameters [14–21]. Within these models, parameters such as temperature, nutrients, and light intensity were used indi
vidually; i.e., they only focused on varying the value of one of these while the others remained constant. 

To contribute to the study of microalgae growth and the production of valuable molecules than can be used as UV protectants, a 
mathematical model was developed focusing in two genus, Chlorella and Tetradesmus, considering the variables that affecting the 
microalgae growth, such as light intensity, culture temperature and nutrients concentration. Chlorella vulgaris has been reported to 
have an antioxidant capacity in cells exposed to UV-B rays, stimulating the antioxidant protection mechanism [22]. Also, in the study 
by Karsten et al. [23], Chlorella luteoviridis shows a wide tolerance in growth under all radiation conditions tested (UV-A and UV-B); 
likewise, UV-absorbing MAA compounds were identified in Chlorella luteoviridis. Moreover, Tetradesmus sp. has also been used to study 
pollution and photosynthesis. This microalga has shown resistance to UV-B light and absorption properties against UV-A light under 
certain conditions. It has different MAA compounds, which give it a level of tolerance to UVA and UVB radiation [24]. 

2. Material and methods 

Starting with the development of the model, the specific growth rate was calculated individually for each of the three parameters 
(temperature, light intensity, and nutrient consumption) to ensure that the observed behavior was consistent with the literature. 

The model was programmed in MATLAB software, where the three parameters were incorporated into a single specific growth rate 
equation. First, it is necessary for the user to enter the temperature (in the ranges of 23–41 ◦C for Chlorella [25] and 10–35◦C for 
Tetradesmus [26]) and the light intensity (in the ranges of 0–2149 μmol/m− 2s− 1 for Chlorella [25] and 0–1000 μmol/m− 2s− 1 for 
Tetradesmus [27]). 

Once the user enters the values, the model starts by solving Eq. (1). This generates a specific growth rate dependent only on the 
temperature, where Tmax is the maximum temperature, Tmin is the minimum temperature, Topt is the optimum temperature and T is the 
current temperature of the microalgae. Both Eq. (1) and its parameters are based on the model of [14,15] (Table A.1 and Table A.2). 

μ(T)= (T − Tmax)(T − Tmin)
2

Topt − Tmin
[(

Topt − Tmin
)(

T − Topt
)
−
(
Topt − Tmax

)(
Topt + Tmin − 2T

)]. (1)  

The model then proceeds to calculate the specific growth rate depending on the light intensity by solving Eq. ((2a) and (2b)), which are 
adapted from the work of [16–18]. Eq. (2a) is used to predict the behavior preceding the saturation point (Pmax); Eq. (2b) is used for the 
behavior after the saturation point (Pmax) because it describes the linear decay from the calculated slope. In these equations, μmax is the 
maximum specific growth rate, I is the light intensity to which the microalgae is exposed, and KI is the semisaturation coefficient of the 
light intensity. This last parameter is normally obtained by physical experimentation; however, the values used in the present model 
were fitted with the results of [25] for Chlorella sorokiniana and [17] for Tetradesmus obliquus (Table A.1 and Table A.2). 

μ(I)=

⎧
⎪⎪⎨

⎪⎪⎩

μ(I < Pmax) = μmax*
I

KI + I
, (a)

μ(I > Pmax) =
y2 − y1

x2 − x1
*I + b. (b)

(2)  

Based on the model of [19–21], Eq. (3) was formulated to predict the behavior of the specific growth rate depending only on the 
concentration of a single nutrient, where N is the concentration of the nutrient and KN is the nutrient semisaturation constant. The 
latter was found in the literature separately for Chlorella [20] and from Tetradesmus dimorphus [28] (for more details, see Table A.1 and 
Table A.2). 

μ(N)=
N

N + KN
. (3)  

To find the total specific growth rate that is reliant on these three parameters, Eq. ((4) and (5)) were used. In these cases, the tem
perature, light intensity, and nutrient concentration depend on each other, where μ(T) is the result of Eq. (1), μ(I) is the result of Eq. 
((2a) and (2b)), and μ(N) is the result of Eq. (3). 

U1= μ(T)*μ(I), (4)  

U2= μ(N)*U1. (5)  

Having the specific growth rate of the microalgae, a system of equations was created. The first parameter calculated in this system was 
the biomass, which uses Eq. (6), based on the model of Huesemann et al. [29], where B(t) is the biomass concentration at a specific 
time, μ is the specific growth rate, and Δt is the change over time (Table A.1 and Table A.2). 

B(t) =B(t − Δt)eμ(Δt). (6) 
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Equation (6) was obtained numerically by iterating equations (6) to (10) with 100 time steps, the steps represent 1 hour in days (value: 
Δt = 0.0416 day). 

For Chlorella 85 steps were used and for Tetradesmus 100 steps. The steps represent 1 hour in days (value: 0.0416 day). 
Knowing the biomass, the system then calculates the behavior of carbon dioxide (CO2) over time. For this, Eq. (7) is implemented, 

based on He et al. [30] in which KLa is the mass transfer rate, P is the partial pressure of CO2 in the gas phase, H is Henry’s constant of 
CO2, YX/CO2 is the yield coefficient of biomass per CO2 uptake, B is the result of Eq. (6), and CO2 is the concentration of this dissolved 
nutrient. To solve Eq. (7), the values of the parameters are shown in Table A.1 and Table A.2. 

dCO2

dt
=KLa*

(
P
H
− [CO2]

)

− YCO2
X

*B(t − Δt). (7)  

To find the yield of each microalgae regarding ammonium (NH4), it was implemented Eq. (10), which is dependent on Eq. ((8) and (9)) 
because NO3 is a secondary product of the consumption of NH4. For these equations, which are also used by Eze et al. [20], qmaxNO3/NH4 
is the maximum nutrient specific uptake, NO3 is the liquid phase nitrate concentration, NH4 is the liquid phase ammonium concen
tration, CO2 is the total dissolved inorganic carbon concentration, KN,NO3/NH4 is the Monod semi-saturation constant for nutrients, KI, 

NH4 is the Haldane inhibition constant for ammonium, KD,NO3/NH4 is the inhibition constant for dissolved inorganic carbon, and B is the 
result of Eq. (6). These parameters are found in Table A.1 and Table A.2. 

qNO3 = qmax,NO3*
[NO3]

KN,N03 + [NO3]
*

KI,NH4

KI,NH4 + [NH4]
*

KD,NO3

KD,NO3 + [CO2]
, (8)  

qNH4 = qmax,NH4*
[NH4]

KN,NH4 + [NH4] +
[NH4 ]

2

KI,NH4

*
KD,NH4

KD,NH4 + [CO2]
, (9)  

d(NH4)

dt
=(qNO3 − qNH4)*B(t − Δt). (10)  

Last, Eq. (11) describes the light intensity as a function of the distance from the light source to the algae. This equation is used by 
different authors, [29,31], in which ka is the light absorption coefficient, I0 is the incident light intensity, B is the biomass concen
tration, and z is the distance between the light source and the microalgae. To resolve Eq. (11), substitute values from Table A.1 and 
Table A.2. 

I(z)= I0*e− kaBz. (11)  

3. Results 

To obtain the results, example values for temperature and light intensity for both microalgae were selected. In the case of the 
present report of results, T=32◦C and I = 1200 μmol/m− 2s− 1 were selected for Chlorella, while for Tetradesmus, T=22◦C and I = 840 

Figure 1. Plot of temperature vs. specific growth rate: (a) for genus Chlorella: a bell shape can be observed on the right side, the red dotted line 
shows the complete theoretical behavior of the microalgae; (b) for genus Tetradesmus: a complete bell curve is observed, this being both its 
theoretical and experimental behavior; so, a red dotted line was not applied. 
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μmol/m− 2s− 1. 

3.1. Parameters for specific growth rate 

3.1.1. Temperature 
The result of Eq. (1) is shown in Fig. 1(a,b), where the respective temperatures previously selected by the user are shown with a 

magenta dot. The behavior of the microalgae was due to the habitable temperature range and its optimal temperature. 

3.1.2. Light intensity 
As mentioned before, the light intensity parameter consists of two equations concerning the saturation point. In the case of 

Chlorella, this point is optimal at I = 787 μmol/m− 2s− 1 (data adjusted concerning [25]); meanwhile, for Tetradesmus, I = 150 μmol/ 
m− 2s− 1 [32]. 

Figure 2. Plot of light intensity vs. specific growth rate for (a) genus Chlorella with a saturation point of 787 μmol/m− 2s− 1 and (b) genus Tetra
desmus with a saturation point of 150 μmol/m− 2s− 1. This theoretical behavior does not take into account the protection mechanisms that will be 
activated experimentally after the saturation point in the microalgae. Although experimentally this is possible, the algae performance would not be 
optimal after the saturation point. 

Figure 3. Plot of CO2 concentration vs. specific growth rate for (a) genus Chlorella, this microalgae requires a greater level of CO2 to saturate; and 
(b) genus Tetradesmus, its specific growth rate is sensitive to changes in CO2 concentration, saturating at approximately 80 gCO2m− 3. Consequently, 
Tetradesmus become saturated, and its growth rate stops earlier than Chlorella. 
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After saturation point, Eq. (2a) and Eq. (2b) present a decay as a result of photoinhibition, Fig. 2(a,b). Additionally, the light 
intensities previously selected appear with a magenta marker. 

3.1.3. Nutrient consumption 
For solving Eq. (3) for both microalgae, it was decided to work with the nutrient CO2 because of its importance in algal photo

synthesis. The effects of CO2 on the growth of microalgae are important because it affects the synthetic physiology of algae, modifying 
their photosynthetic rate and even their saturation point [33]. It was observed that the higher the CO2 concentration was, the higher 
the growth rate, Fig. 3(a,b). 

3.2. Specific growth rate 

Eq. (5) describes the specific growth rate for each microalga, Fig. 4(a,b). The 3D graph considers three parameters: temperature (on 
the X-axis), light intensity (on the Y-axis), and nutrient consumption within the specific growth rate (on the Z-axis), resulting in more 
realistic behavior. 

Additionally, a magenta dot is shown, within Fig. 4(a,b); this indicates the specific growth rate for the value of temperature and 

Figure 4. Graph of Eq. (5) that describes the specific growth rate considering temperature (X-axis), light intensity (Y-axis) and nutrient con
sumption (Z-axis); the magenta dot is the optimal growth rate for the specific temperature and light intensity the user entered. For (a) genus 
Chlorella (μ = 1.276780 d− 1) and (b) genus Tetradesmus (μ = 0.607284 d− 1). 

Figure 5. Yield graph of CO2 for (a) genus Chlorella, where the saturation point is not observed; and (b) genus Tetradesmus, which begins to saturate 
from Day 98 onwards. In both microalgae, the algal biomass increase as CO2 is consumed. The blue line is the indirect estimated biomass at OD750, 
and the orange line is the CO2 concentration. 
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light intensity that the user enters at the beginning of the model. For the example given, Chlorella, Fig. 4(a), has an optimal value of μ =

1.276780 d− 1, while for Tetradesmus, Fig. 4(b), an optimal value of μ = 0.607284 d− 1 is obtained. 

3.3. System of equations 

3.3.1. Algal biomass and CO2 
To obtain the yield of both microalgae regarding the indirect biomass estimation OD750 and CO2 concentration, Eq. (6) needs to be 

solved along with Eq. (7), which was solved numerically by time steps previously mentioned, Fig. 5(a,b). The initial biomass is 0.5 [g/ 
m2-d]) and the remaining parameters were adapted from Table A.1 and Table A.2 of the work of He et al. [30]. 

In both Chlorella and Tetradesmus, the biomass starts to grow exponentially as the nutrient is consumed, Fig. 5(a,b); this suggests 
that they have an inversely proportional behavior. The performance behavior of both microalgae was plotted considering the indirect 
biomass estimation at OD750 (blue line) and the CO2 concentration in the medium (orange line). 

3.3.2. Algal biomass and NH4 
The results obtained from Equations (8)–(10) were plotted to show the behavior of the indirect biomass measure OD750 depending 

on the concentration of ammonium (NH4) Fig. 6(a,b). When working with two different microalga genus, the parameters used vary due 
to the naturalness of the microalgae. The same behavior is observed for the nutrient NH4 as for CO2 in Fig. 5(a,b). This is because NH4 
and CO2 are absorbed by the algae for photosynthesis, and in this way, oxygen is generated. 

Figure 6. Yield graph of NH4 for (a) genus Chlorella and (b) genus Tetradesmus. In both microalgae, the algal biomass increase as NH4 is consumed. 
The blue line is the estimated biomass at OD750, and the orange line is the NH4 concentration. 

Figure 7. Plot of light intensity as a function of distance for (a) genus Chlorella and (b) genus Tetradesmus. The blue line is the light intensity, and the 
orange line is the specific growth rate. In both cases, the growth rate is greater at higher light intensities and at shorter distances. 
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3.3.3. Light intensity and specific growth rate 
From results of Eq. (11) for both microalgae, it is appreciated that the behavior is similar, even though the value for each parameter 

is different, Fig. 7(a,b). This is expected because the light intensity received is high when there is a shorter distance; on the other hand, 
if the distance increases, the light intensity decreases. 

4. Discussion and conclusions 

The behavior of the microalgae was characterized using equations that simulate the specific growth rate of the two established 
microalga genus concerning three parameters. These are the temperature, light intensity, and nutrient consumption; each has its 
characteristic behavior that affects growth differently. 

For growth concerning temperature, the theoretical behavior describes a complete centered bell curve. However, experimentally, it 
can be in the center, to the left, or the right depending on the habitable temperature range of the microalga, its theoretical optimum 
temperature, and the experimental optimum temperature. The optimal temperature for Chlorella microalga was found to be 36◦C and 
23◦C for Tetradesmus microalga compared to the existing literature [25,26]. These results, Fig. 1(a,b) followed the pattern proposed by 
Wong et al. [37], which present less inhibition for temperatures above 25◦. Similarly, experimental results of Huesemann et al. [25] 
show that the optimal specific growth for Chlorella sorokiniana is about 35◦, which are consistent with the simulation results. 

Among the effects of light intensity on algal growth, it was observed that each microalga showed a different saturation point, Fig. 2 
(a,b); upon reaching this point, photoinhibition occurred, negatively affecting its photosynthesis process. It was found that the optimal 
light intensity value for Chlorella was less than 787 μmol/m2 s (adjusting the data from [25]). Meanwhile, for Tetradesmus, it was less 
than 150 μmol/m2 [27]. Huesemann et al. [25] found similar results of the growth rate been stimulated by light intensity until 500 
μmol/m− 2s− 1 and a very pronounced photoinhibilition after that point. 

In the case of nutrient consumption, it was observed that to increase the biomass, the algae must consume the nutrients in the 
medium, Fig. 3(a,b). Both carbon dioxide (CO2) [38,39] and ammonium (NH4) are indispensable for algae growth. The resulting 
nutrient behavior resembles the investigations by Barajas-Solano et al. [34], which results show growth rates increase with CO2 
concentration. 

Since there is no model similar to compare the present model, it motivates future work to follow in the direction of a model with the 
same or other parameters intertwined. 

Because of this innovation, the resulting 3D graph, Fig. 4(a,b) predicts a more realistic specific growth rate compared to the existing 
literature [14–21]. Particularly, the general response of the microalgae agrees with the work of Ota et al. [35]. 

Therefore, to predict the natural behavior of each microalgae, the specific growth rate was considered a function of these pa
rameters (temperature, light intensity, and nutrient consumption). The results in Fig. 5(a,b) and Fig. 6(a,b) allow the user to predict, 
through a mathematical model, the behavior of the crop before experimenting physically. These results follows the trend with those of 
Eze et al. [20]. Moreover, light intensity and growth rate, Fig. 7(a,b) are connected in a similar way predicted by the model of Kim et al. 
[36]. 

It will seek to implement this model in the design and creation of topical applications [40–42] with these results; for example, 
sunscreens based on microalgae can replace commercial alternatives that have a negative effect on both the environment and health. 

An area of opportunity within the project is that the use of a closed photobioreactor [43–45] was contemplated, which controls the 
parameters to generate an optimal growth environment. Additionally, if another parameter (i.e., another equation) is involved, it 
would be necessary to carry out another extensive investigation where the values of the already existing parameters are not affected; 
otherwise, it would be necessary to resort to experimentation. 

In future work, the model could be adjusted to reflect reality more accurately; to accomplish this, more parameters need to be 
considered. Examples include pH, glucose, lipids [46], water type and conditions [47–50], secondary nutrients [51–53], and so on 
[54]. Additionally, because the model is specific for two microalgae (Chlorella and Tetradesmus), it could be adjusted to become a 
general model or customized for a larger number of microalgae. 
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Appendix A  

Table A.1 
Equations used in the MATLAB simulations for Chlorella.  

Model Parameters Reference 

Eq. (1) Tmax= 41 [◦C] [25] 

μ(T) =
(T− Tmax )(T− Tmin)

2

Topt − Tmin [(Topt − Tmin)(T− Topt )− (Topt − Tmax)(Topt+Tmin − 2T)]
Tmin = 22 [◦C]  
Topt = 36 [◦C]  
T= [23:0.2:40] [◦C] Assigned 

Eq. (2a) I= [0:25:787] [ μmol/m− 2s− 1] Adjusting data with [25] 
μ(I< Pmax) = μmax* I

KI+I Pmax = 787 μmol/m− 2s− 1 Adjusting data with [25] at T=36◦C 
μmax = 6.4848 [d− 1] Adjusting data with [25] at T=36◦C 
KI = 43.916 [μmol/m− 2s− 1] Adjusting data with [25] at T=36◦C 

Eq. (2b) I= [788:25:2149] [μmol/m− 2s− 1] Adjusting data with [25] 
μ(I> Pmax) =

y2 − y1
x2 − x1

*I+ b Pmax = 787 μmol/m− 2s− 1 Adjusting data with [25] at T=36◦C 
y2 − y1
x2 − x1

= m = − 0.00095 Adjusting data with [25] at T=36◦C 
[μmol/m− 2s− 1-d]  
b=6.90 Adjusting data with [25] at T=36◦C 

Eq. (3) NCO2 = [0:1.17:100] [μM] [30] 
μ(N) = N

N+KN 
KN = 124.9 [mg/L] [20] 

Eq. (6) B0 = 0.5 [g/m2-day] [31] 
B(t) = B(t − Δt)eμ(Δt) Δt= 0.0416 [days] Assigned 

μmax = 6.4848 [d− 1] Adjusting data with [25] 

Eq. (7) KLa = 17 [d− 1] [30] 
dCO2

dt = KLa*(P
H − [CO2]) − YCO2

X
*B(t − Δt) P= 13,000 [Pa]  

H= 3200 [Pa m3mol− 1]  
CO2= [0:1.17:100] [μM]  
Yx/CO2= 100 [mol CO2/g biomass]  
B(t-Δt)= Ec. 4 Assigned for Δt= 0.0416 [days] (Ec. 4) 

Eq. (8) qmax,NO3 = 0.2376 [mgNO3 d− 1] [21] 
qNO3 = qmax,NO3* [NO3 ]

KN,N03+ [NO3 ]
* KI,NH4

KI,NH4+[NH4 ]
* KD,NO3

KD,NO3+[CO2 ]
qmax,NH4= 0.1632 [mgNH4 d− 1]  

Eq. (9) [NO3]= [0:0.47:40] [mg L− 1d− 1] [20] 
qNH4 = qmax,NH4* [NH4 ]

KN,NH4+ [NH4 ]+
[NH4 ]2
KI,NH4

* KD,NH4
KD,NH4+[CO2 ]

[NH4]= [0:1.40:120] [mg L− 1d− 1] [20] 

Eq. (10) CO2= [0:1.17:100] [μM] [30] 
d(NH4 )

dt = (qNO3 − qNH4)*B(t − Δt) KN,NO3 = 31.5 mg L− 1 [20] 
KN,NH4 = 31.5 mg L− 1  

KI,NH4 = 0.03 mg L− 1 [21] 
KD,NO3 = 75.77 mg L− 1  

KD,NH4 = 237.18 mg L− 1  

qNO3 = Ec. Adjusting data with [21] 
qNH4 = Ec.  
B(t-Δt)= Ec. 4 Assigned for Δt= 0.0416 [days] (Ec. 4) 

Eq. (11) I0 = 25 [μmol/m− 2s− 1] [36] 
I(z) = I0*e− kaBz ka = 6.9557 [μmol/m− 2s− 1] [36] 

B=B(t-Δt)= Ec. 4 Assigned for Δt= 0.0416 [days] (Ec. 4) 
z=[1:0.076:7.5] [cm] [36]  
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Table A.2 
Equations used in the MATLAB simulations for Scenedesmus.  

Model Parameters Reference 

Eq. (1) Tmax = 35 [◦C] [26] 

μ(T) =
(T− Tmax )(T− Tmin)

2

Topt − Tmin [(Topt − Tmin)(T− Topt )− (Topt − Tmax)(Topt+Tmin − 2T)]
Tmin= 10 [◦C]  
Topt= 23 [◦C]  
T= [10:0.25:35] [◦C] Assigned 

Eq. (2a) I= 0:10: 150 [μmol/m− 2s− 1] Adjusting data with [27] 
μ(I< Pmax) = μmax* I

KI+I Pmax= 150 [μmol/m− 2s− 1] [32,55] 
KI= 60.160 [μmol/m− 2s− 1] Adjusting data with [17] 
μmax = 1.2 [d− 1] [17,55] 

Eq. (2b) I= 151:10:1000 [μmol/m− 2s− 1] Adjusting data with [27] 
μ(I> Pmax) =

y2 − y1
x2 − x1

*I+ b Pmax= 150 [μmol/m− 2s− 1] [32] 
b= 0.9145 Adjusting data with [27] at T= 23◦C 
y2 − y1
x2 − x1

= m = − 0.0003435 [μmol/m− 2s− 1-d] Adjusting data with [27] at T= 23◦C 

Eq. (3) NCO2 = [0:2:200] [μM] Adjusting data with [33] 
μ(N) = N

N+KN 
KN = 2.2698 [gN/m3] [28] 

Eq. (6) B0 = 0.5 [g/m2-day] [31] 
B(t) = B(t − Δt)eμ(Δt) Δt= 0.416 [d] Assigned [17,55] 

μmax = 1.2 [d− 1]  

Eq. (7) KLa = 17 [d− 1] [30] 
dCO2

dt = KLa*(P
H − [CO2]) − YCO2

X
*B(t − Δt) P= 13,000 [Pa] [30] 

H= 3200 [Pa m3mol− 1] [30] 
S= CO2= [0:2:200] [μM] Adjusting data with [33] 
YS/x= 100 [mol CO2/g biomass] [30] 
B= B(t-Δt)= Ec. 4 Assigned for Δt= 0.0416 [days] (Ec. 4) 

Eq. (8) qmax,NO3 = 0.2376 [mgNO3 d− 1] [21] 
qNO3 = qmax,NO3* [NO3 ]

KN,N03+ [NO3 ]
* KI,NH4

KI,NH4+[NH4 ]
* KD,NO3

KD,NO3+[CO2 ]
qmax,NH4 = 0.1632 [mgNH4d− 1]  

Eq. (9) [NO3] = [0:0.5:51] [mg L− 1d− 1] [56] 
qNH4 = qmax,NH4* [NH4 ]

KN,NH4+ [NH4 ]+
[NH4 ]2
KI,NH4

* KD,NH4
KD,NH4+[CO2 ]

[NH4] = [40:1.19:160] [mg L− 1d− 1] [57] 

Eq. (10) CO2 = [0:2:200] [μM] Adjusting data with [33] 
d(NH4 )

dt = (qNO3 − qNH4)*B(t − Δt) KN,NO3 = 31.5 mg L− 1 [20] 
KN,NH4 = 31.5 mg L− 1  

KI,NH4 = 39.14 mg L− 1 Adjusting data with [21] 
KD,NO3 = 30 mg L− 1  
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qNO3 = Ec. 9 Adjusting data with [21] 
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Eq. (11) Io = 2.170 [μmol/m− 2s− 1] [36] 
I(z) = I0*e− kaBz ka= 6.9557 μmol/m− 2s− 1 [36] 

B= B(t-Δt) Assigned for Δt= 0.0416 [days] (Ec. 4) 
z= [1:0.065:7.5] [cm] [36]  
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