
Advanced Review

Virus-derived small RNAs:
molecular footprints of
host–pathogen interactions
Eric Roberto Guimarães Rocha Aguiar, Roenick Proveti Olmo
and João Trindade Marques*

Viruses are obligatory intracellular parasites that require the host machinery to
replicate. During their replication cycle, viral RNA intermediates can be recog-
nized and degraded by different antiviral mechanisms that include RNA decay,
RNA interference, and RNase L pathways. As a consequence of viral RNA degra-
dation, infected cells can accumulate virus-derived small RNAs at high levels
compared to cellular molecules. These small RNAs are imprinted with molecular
characteristics that reflect their origin. First, small RNAs can be used to recon-
struct viral sequences and identify the virus from which they originated. Second,
other molecular features of small RNAs such as size, polarity, and base prefer-
ences depend on the type of viral substrate and host mechanism of degradation.
Thus, the pattern of small RNAs generated in infected cells can be used as a
molecular footprint to identify and characterize viruses independent on sequence
homology searches against known references. Hence, sequencing of small RNAs
obtained from infected cells enables virus discovery and characterization using
both sequence-dependent strategies and novel pattern-based approaches. Recent
studies are helping unlock the full application of small RNA sequencing for virus
discovery and characterization. © 2016 Wiley Periodicals, Inc.
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INTRODUCTION

Viruses are intracellular obligatory parasites that
repurpose the host cell machinery to replicate.

Viruses can create modified intracellular compart-
ments referred to as viral factories where they con-
centrate resources required for replication and are
shielded from host antiviral mechanisms.1,2 How-
ever, because viruses do not encode their own ribo-
somes, viral messenger RNAs (mRNAs) require
access to cellular ribosomes to be translated. When
viral mRNAs traffic to cellular ribosomes, they are

exposed to host defense mechanisms more than
other products generated during virus replication.
Viral genomic RNAs are also excellent targets of
host surveillance mechanism as they can be signifi-
cantly different from cellular molecules. Thus, viral
nucleic acids are a common target of several host
antiviral mechanisms.3–6 Targeting of viral RNAs
often results in the generation of virus-derived small
RNAs (vsRNAs) that can be detected during infec-
tion in fungi, plants, arthropods, and mammals.7–13

Although vsRNAs are commonly observed in differ-
ent organisms, their relative abundance can vary
substantially.8 In insects, for example, viral
sequences are 10-fold enriched in the small RNA
fraction compared to what was observed in the
long RNA pool from infected cells.10 In contrast,
viral sequences in lungs of infected mice were
underrepresented by a factor of 100 in the pool of
small compared with long RNAs.10 This relative
enrichment or depletion is likely caused by
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differential targeting of viruses by RNA surveillance
mechanisms. Nevertheless, targeting of viral tran-
scripts and genomes is a common feature of differ-
ent antiviral mechanisms and the production of
vsRNAs can be highly informative. An analogy can
be made about the indirect information about
viruses obtained from vsRNAs and the mammalian

antibody response. As initially proposed by Rivers
and coworkers, virus-specific antibody responses
can be indicative of an infection without requiring
direct detection of the virus.14 Similarly, vsRNAs
generated by host pathways can also provide infor-
mation about the infection without the requirement
for direct detection of the virus.
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FIGURE 1 | Legend on next page.
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HOST PATHWAYS THAT GENERATE
vsRNAs

Viruses have evolved efficient mechanisms to escape
host defense and ensure their survival. However,
viral transcripts and genomes are often significantly
different from cellular molecules, which allows them
to be targeted by host pathways. Viral RNAs can be
recognized by different RNA surveillance mechan-
isms, which often lead to their degradation and the
generation of vsRNAs. RNA interference (RNAi),
RNA decay, and RNase L pathways are good exam-
ples of such RNA surveillance mechanisms that have
been extensively reviewed elsewhere.3–6,15–25 Here,
we provide a few examples of how RNA degradation
pathways may generate small RNA products with
distinct molecular characteristics (Figure 1).

RNA Decay
RNA decay mechanisms play an important role in
the quality control and turnover of cellular tran-
scripts.16,18,21 Cellular transcripts are characterized
by bona fide stability determinants such as the 50 cap
and 30 poly(A) tails that are required to optimize
translation.26 Transcripts that lack canonical features
are targeted by several RNA decay mechanisms.16,18

In the deadenylation-dependent mRNA decay, the
poly(A) tail of transcripts is shortened by the action
of different deadenylases generating an unprotected
30 end that can be degraded 30!50 by a large

complex of exonucleases known as exosome.16,27

After poly(A) shortening, the transcript can also be
degraded by removal of the 50 cap by mRNA-
decapping enzymes (DCPs), which allows the tran-
script to be targeted by XRN1, an exoribonuclease
that carries out 50!30 degradation. In addition,
nonsense-mediated decay (NMD) is a highly con-
served deadenylation-independent mechanism capa-
ble of detecting aberrant mRNAs with short open
reading frames and premature termination codons.18

NMD triggers endonucleolytic cleavage of target
transcripts that is followed by degradation promoted
by XRN1 and the exosome complex.18,28 RNA deg-
radation by XRN1 and the exosome generates not
only nucleosides but also small RNA fragments with
30 OH and/or 50 monophosphate groups depending
on the structure and secondary modifications found
in the substrate.28,29

In addition to quality control of cellular tran-
scripts, RNA decay mechanisms have been shown to
play an important role in the recognition and target-
ing of viral RNAs in mammals30,31 (Figure 1). Viral
RNAs often lack essential features that characterize
cellular mRNAs, such as 50 cap and poly(A) tails,
due to their complex genomic structure.17 Besides,
viruses may also produce transcripts with short open
reading frames and long 30 UTRs or unusual RNA
products due to the activity of prolific and error-
prone RNA polymerases.6,18 These features help to
explain how viral RNAs are often detected as aber-
rant transcripts by RNA decay mechanism.17 RNA

Figure 1 | The generation of virus-derived small RNAs by host pathways. During infection, virus genomes and transcripts are sometimes
exposed and can be recognized by different host RNA surveillance mechanisms. RNA decay, RNA interference (RNAi), and RNase L pathways are
good examples of such mechanisms. Mammalian RNA decay involves different mechanisms such as deadenylation-dependent and nonsense-
mediated decay (NMD). The former involves shortening of the poly(A) tail by deadenylases followed by removal of the 50 cap by mRNA-decapping
enzymes (DCPs). NMD is initiated by recognition of aberrant mRNAs that are cleaved by endonucleases. In both cases, the initial cleavage allows
the mRNA to be targeted 50!30 by XRN1 and 30!50 by the exosome complex. The mammalian RNase L pathway is triggered when viral dsRNA is
recognized by OAS enzymes that catalyze the production of 20-50 oligoadenylates (2-5A). These molecules induce dimerization and activation of
RNase L that cleaves single-stranded RNAs mostly at U-rich regions. Different RNAi mechanisms can generate vsRNAs during viral infection
including the mammalian miRNA pathway, Drosophila small interfering RNA (siRNA) pathway, and mosquito piRNA pathway. The Drosophila
siRNA pathway is activated by Dcr-2-mediated recognition of viral dsRNA that is processes progressively to generate phased duplex siRNAs. siRNA
duplexes are loaded onto AGO2 to generate siRISC that will find and cleave complementary RNAs. The mammalian miRNA pathway is initiated by
the recognition of structure regions within long transcripts in the nucleus by the RNase III Drosha. This enzyme, in association with a partner
protein known as DGCR8, cleaves the primary transcript to excise a short hairpin (~65 nt) that is then exported to the cytoplasm. There, the
hairpin is further processed by Dicer to generate miRNA duplexes of ~22 nt that will be loaded onto different mammalian Argonaute proteins
(Ago1–4) to form miRISC. This complex targets complementary regions within the 30 UTR of mRNAs leading to translation inhibition. The mosquito
piRNA pathway is triggered by the recognition of single-stranded RNA precursors in a manner dependent on a specialized group of Argonautes
known as PIWI proteins usually associated with an endonuclease known as Zucchini (Zuc). This initial recognition triggers processing of the
precursor into primary piRNAs that remain associated with PIWI proteins to form the piRISC. This complex carries out cleavage of complementary
RNA and can also initiate the production of more piRNAs. These secondary piRNAs require an amplification loop, referred to as the ping-pong
mechanism, that involves another Argonaute protein known as AGO3. Different RNA surveillance mechanisms may work together to generate
vsRNAs. For example, RNA fragments generated by RNAi and RNase L pathways can be further targeted by RNA decay mechanisms. RNA
surveillance mechanisms generate vsRNAs that have unique molecular characteristics such as terminal modifications, size, strand bias, and
nucleotide preferences shown in the figure.
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decay mechanisms help monitor proper translation in
infected cells, thus playing important roles in the
antiviral response. In addition to RNA decay, other
specialized antiviral pathways can also target viral
RNAs and generate vsRNAs in eukaryotes.

RNA Interference
RNAi is a conserved mechanism of sequence-specific
regulation of gene expression found in most eukar-
yotes. Initiation of RNAi requires recognition of an
RNA substrate by specialized nucleases that are often
type III RNases such as Dicers responsible for the
biogenesis of small RNAs. During the effector phase
of RNAi, these small RNAs associate with Argonaute
proteins to form the RNA-induced silencing complex
(RISC). RISC will utilize the small RNA sequence to
select target RNAs via Watson–Crick base pairing,
which will be degraded by Argonaute-mediated
endonucleolytic cleavage.20 RNA fragments gener-
ated by RISC cleavage are short lived likely because
they are further degraded by regular RNA decay
mechanism. Small RNAs generated by both Dicer
and Argonaute have 50 monophosphates and 30 OH
groups. However, small RNAs generated during the
initiation phase that associate with Argonaute pro-
teins may be further stabilized by secondary modifi-
cations such as 20O-methylation.

There are different RNAi pathways in eukar-
yotes that differ in their mechanism of activation,
small RNA biogenesis, and action.22,23 In animals,
there are at least three separate RNAi mechanisms
that can generate vsRNAs during viral infection: the
microRNA (miRNA), piwi-interacting RNA
(piRNA), and small interfering RNA (siRNA) path-
ways (Figure 1). Each different RNAi pathway
requires specific types of Argonaute–small RNA
complexes.32

The miRNA pathway is triggered by the recog-
nition of short hairpins (~65 nt) formed by second-
ary structures found in long single-stranded RNAs.33

These internal hairpins are processed in two steps by
two double-stranded RNA (dsRNA)-specific ribonu-
cleases, Drosha and Dicer, to generate small RNA
duplexes of ~20–23 nt that will be subsequently
loaded onto an Argonaute protein to form miRISC.34

This complex will target complementary regions in
the 30 UTR of cellular mRNA leading to translation
inhibition and mRNA destabilization.

Activation of the siRNA pathway is triggered
by Dicer-mediated recognition of long dsRNA that is
processed progressively to generate phased duplex
small RNAs of ~20–23 nt.35 siRNA duplexes are
loaded onto specialized Argonaute proteins to

generate siRISC that remains associated with one of
the strands.36 Mature siRISC is a multiple turnover
enzyme that can efficiently catalyze endonucleolytic
cleavage of RNA targets.37,38

Unlike miRNA and siRNA, the piRNA path-
way is triggered by the recognition of single-stranded
RNA precursors seemingly independent on the pres-
ence of secondary structures.39 This single-stranded
RNA precursor is processed by an endonuclease that
generates phased single-stranded small RNAs that
are ~24–30 nt long.40 The generation of these pri-
mary piRNAs requires a distinct subgroup of animal
Argonautes known as PIWI proteins.40 Primary piR-
NAs can also trigger the production of secondary
piRNAs by a self-amplifying cycle dependent on
PIWI proteins known as the ping-pong mechan-
ism.41,42 The complex formed by piRNAs and PIWI
proteins known as piRISC can mediate transcrip-
tional silencing as well as target RNA degradation.39

In contrast to siRNAs and miRNAs, piRNAs are
commonly enriched in the germline and reproductive
tissues of different animals.41,43–45

RNAi pathways can have different roles during
viral infection. The siRNA pathway is directly
involved in the antiviral immunity in most eukaryotes
including fungi, animals, and plants; although in
mammals, this seems to be restricted to undifferenti-
ated cells.12,46 In contrast, production of virus-
derived miRNAs and piRNAs during viral infection
appears to be more restricted. Activation of the
piRNA pathway by virus infection has been reported
in insects, although its antiviral role remains
unclear.10,13,47–51 Generation of virus-derived miR-
NAs seems to be restricted to some animal viruses
that exploit this pathway to control the expression of
viral and cellular transcripts and help their
replication.24,25

Mammalian RNase L
Mammals have developed an antiviral system based
on the degradation of viral RNAs by a specialized
ribonuclease known as RNase L19 (Figure 1). RNase
L is found in a latent state in healthy cells and can be
rapidly activated during virus infection.19 The RNase
L pathway is initiated by a group of enzymes known
as 20-50-oligoadenylate synthetases (OAS) that can
bind to dsRNA generated during viral infection.
Once activated by dsRNA, these enzymes catalyze
the polymerization of cellular ATP to generate 20-50-
oligoadenylates (2-5A) that act as second messen-
gers.52 RNase L directly binds to 2-5A, which
induces its dimerization and activation.53,54 Active
RNase L will degrade single-stranded RNAs within
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infected cells to generate small RNAs of varied sizes
that contain 50-hydroxyl and 20,30-cyclic phosphoryl
group characteristic of metal ion-independent ribonu-
cleases.55,56 Although both cellular and viral RNAs
can be targeted by RNase L, there is evidence that
the enzyme has some capacity to selectively target
viral molecules.57 In addition to its direct antiviral
activity, RNase L products may also work in a posi-
tive feedback loop where the RNA helicase RIG-I is
activated by small RNA products of RNase L degra-
dation.55 The RNase L system plays an important
role in the antiviral response against several viruses
in mammals.58–61

WHAT WE CAN LEARN FROM
vsRNAs

Different RNA surveillance mechanisms contribute
to the degradation of viral molecules and generation
of vsRNAs in infected cells. Small RNAs have molec-
ular characteristics that reflect the virus and host
pathways from which they originated. Thus, the pat-
tern of vsRNAs can be analyzed and provide exten-
sive information about their source.

Reconstruction of Viral Sequences From
vsRNAs
Small RNAs derived from viral transcripts and gen-
omes can be used to reconstitute the sequences from
which they originate. Thus, the presence of viral
sequences in small RNA libraries prepared from an
organism provides evidence for the presence of
viruses. However, owing to their limited size,
vsRNAs require prior assembly into longer contigu-
ous sequences (contigs) before they can be identified
by comparisons to known viral sequences present in
reference databases (Figure 2). This strategy has been
successfully applied to identification and characteri-
zation of viruses in plants, fungi, and ani-
mals.7,10,11,50,62 Despite these successful efforts using
small RNAs, sequencing of long RNAs has been a
preferred strategy in studies aiming at identification
of viruses within infected hosts.63–66

As large-scale sequencing of small and long
RNAs have both been used to identify viruses within
infected hosts, our group has directly compared stra-
tegies for virus identification. In Aedes aegypti mos-
quitoes, we observed that the identification of viruses
by small RNA sequencing performed significantly
better than long RNAs. Small RNAs provided more
sequence coverage of the viral genome in less proces-
sing time. Efficient generation of small RNAs by
RNAi pathways has been proposed as the main

reason for the optimized detection of viruses by small
RNA sequencing.50,62 Indeed, we observed that small
RNA products from siRNA and piRNA pathways
tended to optimize the assembly of longer viral con-
tigs likely due to extensive overlap between
sequences. Viral sequences also showed a 10-fold
natural enrichment in the small RNA fraction com-
pared to long RNAs in the same mosquito sample.10

Interestingly, small RNAs from lungs of coronavirus-
infected mice, where no activation of RNAi pathways
was observed, showed a 100-fold depletion of viral
sequences relative to long RNAs.10 Nevertheless,
even in this situation, viral contigs represented 30%
of contigs assembled from small RNAs compared to
5% of long RNAs. Thus, small RNAs seem to favor
assembly of viral contigs even when they represent a
small fraction of the total.10 This can help to save
computational time used for the analysis of large-
scale sequencing data that can be the bottleneck for
many metagenomic studies. Thus, some advantages
of virus detection using small RNAs compared to
long RNAs are not restricted to situations where the
RNAi pathway is activated.10

Construction and sequencing of small RNA
libraries requires little sample manipulation and pro-
cessing steps, which can be simpler compared to long
RNAs.67,68 Long RNA libraries often require exten-
sive depletion of ribosomal RNAs that may otherwise
represent ~80% of all RNA species within an organ-
ism.68 Long RNA libraries may also utilize polyA-
enriched RNA without the need for prior depletion
of ribosomal RNA but this can compromise the
detection of viruses whose RNAs are not polyadeny-
lated.69 Notably, some insects, such as Drosophila
melanogaster and Lutzomyia longipalpis, encode an
abundant small RNA corresponding to the 2S riboso-
mal RNA that requires depletion before preparation
of small RNA libraries.10,70 Even in this case, this
corresponds to a single sequence that can be depleted
with a single complementary probe more efficiently
than large ribosomal RNA subunits that require mul-
tiple probes. It is noteworthy that the preparation
of small RNAs libraries directly from total RNA
could interfere with the detection of viruses.71,72

Hence, sequencing of small RNAs allows efficient
detection of viral sequences although more studies
are required to determine the power and extent of its
application.

Virus Discovery Using vsRNA Patterns
Different host pathways generate vsRNAs with
unique molecular characteristics such as size, polar-
ity, and base enrichment. The siRNA pathway is

Advanced Review wires.wiley.com/rna

828 © 2016 Wiley Per iodicals , Inc. Volume 7, November/December 2016



likely the best example on how molecular patterns of
small RNAs can be explored. Viruses often produce
dsRNA molecules during their replication cycle,
which is considered a hallmark of viral infection73

(Figure 1). In most eukaryotes, the siRNA pathway is
activated when Dicer directly recognizes and pro-
cesses viral dsRNA into 20–23 nt long duplex small
RNAs.4 These siRNAs usually do not have strong
nucleotide preferences and cover symmetrically both
strands of the dsRNA trigger. Canonical siRNAs also
have 30 2-nt overhangs and ~19–21 nt overlap
between the two strands. Thus, these molecular char-
acteristics are a signature of activation of the siRNA
pathway that has been consistently detected for a

variety of viruses in fungi, animals, and plants9,12,73–76

(Figure 3(a)). As the activation of the siRNA pathway
is so strongly associated with viral infection, the detec-
tion of small RNAs containing molecular patterns
consistent with siRNAs could indicate a viral origin
(Figure 2(b)). We and others have used this premise to
discover novel viruses based on the ability of their
sequences to generate siRNAs.10,11 Importantly, this
strategy has enabled the discovery of divergent viral
sequences with no similarities to known viruses in ref-
erence databases.10 The detection of sequences that
generate siRNAs can be an efficient strategy to find
viruses although there are potential limitations that
can affect its sensitivity and specificity.
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First, there are endogenous sources of dsRNA
capable of generating siRNAs.36 Endogenous siRNAs
arise from regions of convergent transcription, struc-
tured RNAs, or repetitive elements. In each of these
cases, it would not be difficult to ascertain the origin
of siRNAs because these are easily differentiated
from viruses. Convergent transcription and struc-
tured RNAs arise from annotated genes and repeti-
tive elements can be identified using repeat filters.
However, animal genomes have also integrated
endogenous viral elements (EVEs) that represent rem-
nants of viral sequences.80,83 We analyzed the small
RNA profile observed for EVEs in different organ-
isms compared to active viruses. EVE-derived small
RNAs were observed but show clearly different
molecular patterns compared to viruses in the same
organism (Figure 3). Interestingly, EVEs seemed to
favor the generation of small RNAs with molecular
characteristics of piRNAs rather than siRNAs.

Second, some viruses have developed viral sup-
pressors of the siRNA pathway (VSRs) that can sig-
nificantly affect the pattern of vsRNAs. VSRs allow
for accumulation of viral RNA that can be degraded
by other host mechanisms.10,46,77 Patterns of vsRNA
distinct from canonical siRNAs have been observed
upon suppression of the siRNA pathway by
VSRs.10,77,84 For example, Drosophila adults
infected with Flock house virus (FHV) show accumu-
lation of small RNAs in the positive strand with a
broad size distribution and only a very small peak at
21 nt in the negative strand77 (Figure 3(a)). FHV
encodes a potent VSR known as B2 that successfully
protects its dsRNAs from access by Dicer-2 and pre-
vents activation of the siRNA pathway. The viral
RNA genome accumulates at higher levels than the
antigenome and is likely degraded by other nucleases,
which explains the bias observed in small RNAs cov-
ering the positive strand and the broad size profile.
Accordingly, in the absence of B2, the pattern of
small RNAs observed in FHV-infected flies is consist-
ent with the activation of the siRNA pathway77

(Figure 3(a)).
Lastly, technical artifacts from small RNA

sequencing strategies could interfere with the detec-
tion of siRNA signatures. Biased cloning due to inef-
ficient adaptor ligation or sequestration of antisense
small RNAs by the sense target can result in a distor-
tion of vsRNA profile.71,72 However, it is unclear
how much the detection of a canonical siRNA profile
can be compromised by technical biases. In arthro-
pods, for example, a canonical siRNA profile is
observed more often than not, even using standard
strategies for small RNA library construction
(Figure 3(a)).

Hence, small RNA sequencing is a promising
strategy to identify viruses, despite potential limita-
tions that require further analysis.

Using vsRNA Patterns to Extract
Information About the Infection
The pattern of vsRNAs is a molecular footprint that
can be explored beyond the activation of the siRNA
pathway. Each RNA surveillance mechanisms may
show cell-type- or tissue-specific expression and dif-
ferentially target viral RNA intermediates. Thus,
virus tropism and the abundance of different viral
RNA targets will have a direct influence on the pat-
tern of small RNAs produced by host pathways.
Consequently, the pattern of vsRNAs generated dur-
ing infection can provide information about their ori-
gin, which reflects both virus and host features
(Figure 4).

Some viruses have developed VSRs to escape
the siRNA pathway as we described for the B2 pro-
tein of FHV. Interestingly, another insect virus, Dro-
sophila C virus (DCV), encodes a VSR that binds
long dsRNA and prevents Dcr-2-mediated proces-
sing.85 The profile of vsRNAs observed in DCV-
infected flies shows a peak in 21 nt long coming from
both strands but also accumulation of small RNAs
with smaller sizes derived from the coding
strand.10,84 The VSR encoded by DCV is not as
potent as B2 and presumably still allows detectable
activation of the siRNA pathway.86 This situation
generates superimposed vsRNAs pattern combining
products of different host pathways that could still
allow virus identification based on a canonical
siRNA pattern. Nevertheless, it is interesting to spec-
ulate that once a virus is identified, the absence of
virus-derived siRNAs in infected hosts may be inter-
preted as active inhibition by VSRs as shown for
FHV (Figure 4(a)). In addition, the pattern of
vsRNAs may also provide insights into the mechan-
ism of action and potency of the VSRs considering
the differences we observed between the small RNA
profile generated by DCV and FHV (Figure 3(a)).

RNAi mechanisms other than the siRNA path-
way could also be explored. The piRNA pathway,
for example, is not broadly activated during viral
infections. At the moment, virus-derived piRNAs
have only been observed in insect cell lines including
Drosophila ovary, culicoides, and mosquito cell
lines.10,13,49–51 In vivo, virus-derived piRNAs have
only been observed in A. albopictus and A. aegypti
mosquitoes.10,13 Molecular characteristics of piRNAs
are quite distinct from siRNAs, as the former are
~24–30 nt long and show enrichment for U at the 50
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of antisense RNAs and A in 10th position of
sense RNAs. piRNAs in opposite strands may also
show an overlap of 10 nt between their 50 ends,
which is signature of the ping-pong amplification
mechanism.10,51 In terms of their origin, piRNAs
may show asymmetrical coverage of the viral genome
or more homogenous distribution similar to siR-
NAs.10,13 It is unclear why the activation of the
piRNA pathway is restricted to certain viruses and
how it is initiated during viral infection. Indeed,
viruses that generate virus-derived piRNAs have
RNA genomes and replicate in the cytoplasm while
the endogenous piRNA pathway is initiated from

DNA-dependent transcripts in the nucleus, at least in
Drosophila.15 Our own data suggest that a strong
activation of the piRNA pathway requires that the
virus infects reproductive tissues where components
of this pathway are commonly enriched in
insects.10,41,87 We observed that the same A. aegypti
mosquitoes infected by two different viruses, Phasi
Charoen like-virus (PCLV) and Humaita-Tubiacanga
virus (HTV), only the former showed abundant pro-
duction of piRNAs which correlated with ovary
infection (Figure 3(a)).10 In contrast, A. albopictus
mosquitoes infected with Chikungunya virus showed
production of virus-derived piRNAs in the head and
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thorax of infected insects.13 However, in this case,
the production of piRNAs was very inefficient as
virus-derived siRNAs were 120-fold more abundant
than piRNAs. Although more studies are required, a
strong production of virus-derived piRNAs may sug-
gest that the virus has tropism for reproductive tis-
sues in the insect (Figure 4(b)). Thus, the activation
of the piRNA pathway could be very informative
about tissue tropism but cannot be used as a viral
signature as it is not a broad response to viral infec-
tion. Indeed, we still lack good evidence that the
piRNA pathway has an antiviral role because it has
little impact on virus replication in mosquito cell
lines.48

Virus-derived miRNAs can also be observed dur-
ing infection but are usually produced by the virus to
regulate the expression of viral or cellular genes.25

miRNA are distinct from siRNAs and piRNAs because
they originate uniquely from specific regions of the
virus genome and are restricted to just one of the
strands.11 In terms of molecular features, miRNAs are
~20–24 nt long with a strong enrichment for U at 50

end. The production of virus-derived miRNAs has
mostly been reported for animal DNA viruses.24,25

Thus, in a somewhat more limited manner, the detec-
tion of these molecular patterns arising from regions of
the viral genome could be used to infer whether a virus
is capable of generating its own miRNAs (Figure 4(c)).

Non-RNAi pathways, such as RNA decay and
RNase L, also leave molecular footprints on vsRNAs
that could be potentially explored. Indeed, these
nucleases have substrate specificities that generate
nonrandom patterns.28,88 Ribonucleases from RNA
decay pathways such as XRN1 and the exosome
attack from their substrates from the extremities,
which tends to reduce the RNA to a few nucleotides.
However, these exonucleases can be impaired by
highly structured regions or internal modifications
within the target.89,90 As a result, RNA decay
nucleases often produce vsRNAs of different sizes
that tend to accumulate near the end of the substrate
or close to regions with secondary structure.29,91 In
the case of RNase L, small RNA products also have
a very broad distribution as this endonuclease targets
U-rich sequences whose abundance may vary within
target RNAs. In addition, RNA decay and RNase L
pathways may act together to generate complex pat-
terns of vsRNAs in infected cells. In human embry-
onic kidney 293 cells and green monkey vero cells,
the size profile of small RNAs derived from Sindbis
virus was remarkably consistent even in the absence
of detectable activation of RNAi pathways.61 RNase
L was required for the generation of some vsRNAs
although they did not seem to be direct products of

this nuclease. Indeed, the generation of Sindbis
vsRNAs required the joint action of RNase L and
other nucleases such as XRN1. In this case, vsRNAs
seemed to accumulate in regions of the Sindbis
genome containing posttranscriptional modifications
that inhibited further degradation.61 Similarly, in
human HeLa cells, the degradation of the poliovirus
RNA is further targeted by RNase L together with
other nucleases, which resulted in a complex pattern
of vsRNAs generated across the virus genome.92

Thus, small RNAs generated by RNA decay and
RNase L seem to reflect structured or modified
regions within viral RNAs (Figure 4(d)). Indeed, the
consistency of vsRNA profiles observed in different
mammalian cells even without activation of RNAi
suggests that the pattern does reflect stable virus
characteristics.

Hence, complex vsRNA patterns can be very
informative even when they result from the combined
action of different nucleases. We are only beginning
to understand how to decipher this information.

CONCLUSIONS

In the arms race between host and viruses, different
pathways have evolved to target viral RNAs. These
pathways contribute to the antiviral response by
degrading viral RNAs, which results in the genera-
tion of vsRNAs. This common targeting of viral
RNAs helps to explain why viral sequences are often
abundant within the pool of small RNAs in infected
cells. In addition, these tiny molecules are imprinted
with molecular characteristics that reflect the host
pathway and viral RNA from which they originate.
Indeed, information can be extracted from these
molecular footprints to trace back their viral origin.
Directly, small RNA from infected hosts can be
assembled into longer contiguous sequences and used
to detect viruses by homology searches against
known viral references. Indirectly, molecular patterns
of small RNAs that are consistent with the activation
of the siRNA pathway can be used as a signature to
suggest a viral origin to novel assembled sequences.
This latter strategy can help overcome a great limita-
tion of virus discovery by metagenomic strategies,
because it does not require sequence similarity
searches against know references. Pattern analysis of
vsRNAs allows the discovery of more divergent viral
sequences with no similarities to known viruses pres-
ent in reference databases.10,11 We also showed here
that the pattern of small RNAs is able to differentiate
between sequences derived from viruses and inte-
grated EVEs, which can be a powerful tool to
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indicate whether viral sequences originate from an
active infection. Furthermore, the pattern of vsRNAs
generated by host mechanisms other than the siRNA
pathway can also provide information about viruses
such as their tissue tropism, coding of inhibitors to the
siRNA pathway, and structured regions of the viral
genome. Although it might not be universally applica-
ble, these advantages make small RNA sequencing a
great strategy to identify and characterize viruses.

The potential use of vsRNA patterns is just
beginning to be unlocked. We have recently showed
that it is possible to use patterns of small RNAs dif-
ferent from the canonical siRNA signature to detect
novel viral sequences.10 As a general idea, if the pro-
file of small RNAs is known for any segment of a
viral genome, this can be used as a reference to find
other potential sequences from the same virus that
show a similar pattern.10 This broadens the diversity
of vsRNA patterns that can be utilized beyond the

dependence on activation of the siRNA pathway.
The use of additional tools could significantly
improve our capacity to explore small RNAs pat-
terns. Small RNAs generated by RNA decay, RNAi,
and RNase L pathways have clear molecular features
that can be utilized to differentiate specific products.
Indeed, unique molecular features found in small
RNAs generated by RNAi pathways such as 50

monophosphate or 20O-methylation have been exten-
sively explored.93–95 More recently, characteristics
generated by RNase L have also been explored to
identify specific products of this nuclease in infected
cells.92,96 These strategies allow more specific analy-
sis of the products from each pathway and can be
combined to provide a broader view of small RNAs
within infected cells. This expansion in known
vsRNA patterns would certainly broaden our refer-
ences for pattern searches and improve our ability to
identify and characterize viruses.
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