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Predictive processing is fundamental to many aspects of the human mind, including perception and
decision-making. It remains to be elucidated, however, in which way predictive information impacts
on evaluative processing, particularly in tasks that employ bivalent stimulus sets. Various accounts,
including framing, proactive interference, and cognitive control, appear to imply contradictory
proposals on the relation between prediction and preference formation. To disambiguate whether
predictive cues produce congruent biases versus opponent mechanisms in evaluative processing,
we conducted two experiments in which participants were asked to rate individual food images. The
image database included appetitive and aversive items. In each trial, a cue predicted, with varying
degrees of reliability, the valence of the impending food image. In both experiments, we found that
the ratings exhibited congruent biases as a function of the reliability of the predictive cue, with the
highest evaluations following the most reliable positive-valence predictions. Eye prepositioning further
showed a selective spatial bias suggestive of response preparation in line with the predictions. The
response times also exhibited a pattern of results consistent with selective preparation, producing slow
responses following invalid predictions. The data suggested an active form of evaluative processing,
implementing a confirmation bias that aims to accommodate the prediction.

In contemporary psychology, neuroscience, and philosophy of mind, the most comprehensive accounts of brain
and mind suggest that predictive processing is central to many, if not all, forms of cognition'~>. Also with respect
to evaluative processing, it has been shown that contextual information can elicit expectations that modulate the
liking of stimuli as diverse as visual art®, music’, coffee?, soda’, and wine'’. The effects of prior expectations appear
to have a fundamental impact on the perceptual processes underlying the evaluation, in ways that are difficult to
accommodate with normative theories about rational decision-making!.

Instead of rational decision-making, evaluative processing often involves complex or seemingly inscrutable
processes we usually call “subjective;” with the implication that they are idiosyncratic and cannot be disputed (as
according to the Latin maxim, De gustibus non est disputandum; “In matters of taste, there can be no disputes”).
However, in reality we frequently do debate evaluative processing in virtually all aspects of human society, from
commerce to health and well-being, from bioethics to politics. The phenomena of evaluative processing warrant
scientific investigation, particularly with a view to understanding how, and when, biases distort the evaluation of
objects and events that afford no easy objective metric>'?-'. The issue is to chart the extent to which evaluative
processing is pervious to external influences. The present study aims to contribute to this task.

More specifically, we focus on the direction of influences from prior expectations when both the predictions
and the outcomes are bivalent. We chose food images as a relevant category for evaluative processing with bivalent
items'>"'” that elicit a complex integration of visual and non-visual features (e.g., flavor, caloric value, nutritive
attributes)!3-2!. Previous research in our lab had further shown that the rating of individual food items provides
a suitable opportunity to investigate the cognitive mechanisms underlying evaluation®. Here, we examine how
explicit, supraliminal positive or negative predictions impact on the evaluation of appetitive or aversive food
images.
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Figure 1. Distribution of the bivalent stimulus set. The blue points and yellow lines reflect the average
evaluation scores (blue, vertical axis) and the associated 95% confidence intervals (yellow, horizontal axis)
of the 200 images in the database, collapsed across all conditions and all subjects in the present study. Four
representative images are shown in inset figures on the right.

Previous research on framing effects might be taken to suggest that bivalent predictions should lead to con-
gruent biases in the evaluative processing, with more positive evaluations following positive predictions and vice
versa®*=?’, We term this the “congruent bias” hypothesis. The congruent biases from framing would be due to
explicit expectations under voluntary control. It has further been suggested that such positive or negative expec-
tations evolve over time, potentially becoming more polarized?®*. Other phenomena and theories can also be
interpreted to imply similar congruent biases, albeit on the basis of implicit mechanisms that would be activated
automatically or unconsciously by the predictive cues. These phenomena and theories include priming**-*2, pro-
active interference®, Pavlovian-instrumental transfer****, and emotional contagion®**’.

In contrast, predictive cues could lead to the activation of opponent mechanisms, aiming to operate explicitly
against external influences. We term this the “opponent mechanism” hypothesis. For instance, proactive con-
trol would function as an endogenously activated mechanism in opposition to biasing information®*. Previous
research has identified a number of conditions in which the evaluative processing counteracted the biasing influ-
ences”*"*2. Here, the opponent mechanism hypothesis implies a deliberate effort to inhibit responses in line
with the prediction. Such active inhibition, however, may produce opposite effects, promoting responses that
run counter to the cueing, analogous to phenomena such as inhibition of return*® and negative priming*. Thus,
the evaluation of appetitive food images would be higher following negative predictions than following positive
predictions. Conversely, aversive food images, when occurring in contrast to the prediction, would be evaluated
more negatively than aversive food images that appear in agreement with the prediction.

Counteractive evaluative processing might also occur as a function of more implicit opponent mechanisms,
consistent with the notion of prediction errors in the neuroscience literature on dopaminergic mechanisms (e.g.,
an unexpected reward leads to stronger dopaminergic activation than an expected reward; such activation is
thought to reflect learning and adaptive evaluative processing)*-*. Here, the conjecture would be that the predic-
tive context amplifies the evaluative processing of unexpected outcomes.

Rationale of the Present Study
The present study was explicitly designed to pitch the congruent bias hypothesis against the opponent mecha-
nism hypothesis. We conducted two experiments in which subjects received a predictive visual cue in advance
of a single food image in each trial. The subjects were asked to rate the food image on a scale from —10, for most
aversive, to 4-10, for most appetitive. The database of food images included a balanced variety of images to cover
the entire range on the bipolar scale (see Fig. 1). The predictive cue indicated, with varying degrees of reliability,
whether the impending food image would be aversive or appetitive. In Experiment 1, the predictive cue was either
perfectly reliable or random (see Fig. 2). Thus, in Experiment 1, random cues effectively offered only a positive
or negative framing. After the presentation of the food image, the subjects could manipulate a joystick to record
their evaluation (see Fig. 3). In Experiment 2, the predictive cue was either 75% reliable or explicitly neutral. In
both experiments we recorded manual responses and eye positions.

According to the congruent bias hypothesis as a function of framing, the evaluations for appetitive items
would be the highest for perfectly reliable predictions, and higher following positive framing than following
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Figure 2. Schematic representation of the predictive cues in Experiment 1, associated with different outcome
types. The color indicates the level of reliability (orange, 100%; green, 50%) whereas the icon indicates the
valence (tray, positive; hazard, negative). For 50% reliable cues, the predicted valence reflects merely framing.

2s

Figure 3. Trial structure in Experiment 1. Each trial starts with a word cue, presented for 1s, indicating
whether it will be either a short- or long-delay trial. The predictive cue is shown for 15, followed by a blank
screen for either 1s (short delay) or 9s (long delay). The target image is shown for 2 s at the center of the screen,
followed by the evaluation bar. Participants have maximally 6 s to respond by bending the joystick. The response
is followed by a 2 s inter-trial interval.

negative framing. For aversive items, the evaluations would be the lowest for perfectly reliable predictions, and
lower following negative framing than following positive framing. Given that framing would depend on volun-
tary control, the size of the framing effects should depend on the reliability of the predictive cues. Framing is also
hypothesized to lead to response preparation (i.e., anticipatory eye positioning toward the expected response
side), and likewise influence response time, with faster responses when the valence of the target matches with
the prediction than when there is a mismatch between prediction and outcome. Theories and phenomena that
predict congruent biases on the basis of implicit mechanisms do not predict any influence of the cue’s predictive
validity, nor do they predict any active response preparation (i.e., no prediction of effects on response time or eye
prepositioning).

According to the opponent mechanism hypothesis, the evaluations for appetitive items would be higher
following negative framing than following positive framing, and again higher following positive framing than
following perfectly reliable predictions. That is, when unexpected or running against the prediction, a positive
item would elicit the largest counteractive amplification and therefore receive the most favorable evaluation.
Analogously, the evaluations for aversive items would be lower following positive framing than following neg-
ative framing, and again lower following negative framing than following perfectly reliable predictions. That is,
when unexpected or running against the prediction, a negative item would elicit the strongest amplification and
therefore receive the lowest evaluation.
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The opponent mechanism hypothesis, as a function of cognitive control, would imply counteractive response
preparation (i.e., eye prepositioning toward the direction opposite to the prediction, and slowing of responses
that match with the prediction). Opponent mechanisms on the basis of implicit processes (i.e., prediction error)
should not affect eye prepositioning or response time.

Results

Experiment 1. In Experiment 1, in addition to the variations of cue types and food images, we manipu-
lated the delay between the predictive cue and the target food image to examine whether the prior expectations
strengthen over time?®?’. If so, any influences from the predictive cues on the evaluative processing of the food
images should be larger after long delays than after short delays.

For each subject, the data could be classified into 12 conditions by the type of outcome, the delay time and the
type of predictive cue. There were two types of outcome, either positive or negative, and two levels of delay time,
either 1s or 9s between predictive cue and target image. For the predictive cues, there were three types defined
by the relationship between the predictive information and the actual outcome; a cue with 100% reliability was
labeled as “Certain”; a cue with 50% reliability followed by the predicted outcome was labeled as “Valid 50%”; and
a cue with 50% reliability followed by the opposite outcome was labeled as “Invalid 50%”.

Evaluation scores. In order to facilitate the comparison across conditions, for negative outcomes the sign of
the given evaluation score was inversed. Figure 4 presents the average evaluation scores in each condition for
Experiment 1. Regardless of outcome type and delay time, the evaluation scores appeared to be the highest for
the Certain condition, and the lowest for the Invalid 50% condition. Negative outcomes appeared to be rated
more extremely than positive outcomes. For statistical analysis of the average evaluation scores, we employed a
three-factor analysis of variance (ANOVA) with repeated measures, in which the factors Outcome Type, Delay
Time, and Cue Type were all within subjects.

The ANOVA produced a significant main effect of Cue Type, F(2,82) = 6.560, MSE = 1.716, 1,> = 0.138,
p <0.005, as well as a significant main effect of Outcome Type, F(1,41) =4.906, MSE = 10.073, 1,>=0.107,
p < 0.05. There was no significant effect of Delay Time, F(1,41) =1.068, MSE =0.792, p =0.307. Post-hoc pair-
wise comparisons using the Bonferroni test indicated that the average evaluation scores in the Certain condition
were significantly higher than in the Valid 50% condition at p < 0.05, and also significantly higher than in the
Invalid 50% condition at p < 0.05. The difference between the Valid 50% and the Invalid 50% condition was not
significant, p=0.274.

There was a significant interaction between Delay Time and Outcome Type, F(1,41) =4.385, MSE =0.503,
Mp> =0.097, p < 0.05. Post-hoc comparisons using the Bonferroni test showed, for short-delay trials, signifi-
cantly more extreme evaluation scores for negative outcomes than for positive outcomes at p < 0.05, whereas
in long-delay trials there was no significant difference between positive and negative outcomes, p=0.653. There
were no other significant interactions (all F values less than 2).

Manual response times. Response times were measured from the onset of the screen with the evaluation bar
until a bend was detected in the joystick. By this definition, all trials in which the subject started bending the
joystick before the onset of the screen with the evaluation bar were excluded from the analysis. For this reason,
a total of 9.93% of all trials was rejected for the response time analysis. Two subjects started bending the joystick
prematurely in every trial in some conditions; the data from these two subjects were excluded from the ANOVA
analysis on response time.

Figure 5 presents the subjects’ average response times in Experiment 1, using the same format as for the eval-
uation scores in Fig. 4. Visual inspection suggested that the response times tended to be the fastest in the Certain
condition and the slowest in the Invalid 50% condition.

Preliminary normality tests (Shapiro-Wilk) showed significant deviations from normality in the response
times. For this reason, the subsequent statistical analysis of response times was conducted on a simple inverse
transformation (1/RT)*, which yielded normal distributions. Statistical analysis, with a three-factor repeated
measures ANOVA, completely within subjects, produced a significant main effect of Cue Type, F(2,78) =9.163,
MSE = 0.045, T]PZ =0.190, p < 0.001, and also of Delay Time, F(1,39) =34.061, MSE =0.039, npz =0.466,
p <0.001. Outcome Type did not have a significant effect on the response time F(1,39) < 1. Post-hoc comparisons
using the Bonferroni test indicated that the average response time in the Certain condition was significantly
faster than in the Valid 50% condition at p < 0.01, and also significantly faster than in the Invalid 50% condition
at p <0.01. The difference between the Valid 50% and the Invalid 50% condition was not significant, p=0.802.

There were no significant interactions (all F values less than 1.5).

Gaze distribution data. In order to examine whether the predictive cues elicited an anticipatory response bias,
we analyzed the average gaze positioning during the delay period. A response bias should lead the subjects’ gaze
positions to deviate toward the direction associated with the predicted outcome (in Experiment 1: negative - left,
positive — right). This analysis of gaze positioning is focused on the blank screen period before target onset; at
this time, before the outcome is known, the cue conditions can only be separated between 100% reliable and 50%
reliable. In this analysis, then, the data were classified into eight conditions according to Delay Time (1s or 9s),
Cue Valence (either positive or negative) and Cue Reliability (50% or 100%). For each subject in each condition,
the average horizontal eye position was calculated during the delay relative to the blank screen.

Figure 6 presents the average horizontal eye positions during the delay as a function of condition in
Experiment 1. For both delay durations, the average horizontal eye positions appeared to be shifted to the left or
right depending on the cue valence, with more pronounced biases for 100% reliable cues and for longer delays.
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Figure 4. Average ratings in each condition in Experiment 1. Each panel shows data for Certain, Valid 50%,
and Invalid 50% conditions. The top two panels are from the short-delay conditions; the bottom two panels
from the long-delay conditions. The left two panels present the positive-outcome conditions; the right two
panels, the negative-outcome conditions. The signs were inversed for the ratings in the negative outcome
conditions in order to facilitate comparison with the positive outcome conditions. The error bars show the
standard error of the mean in each condition.

A three-factor repeated measures ANOVA indicated that Cue Valence produced a statistically significant effect
on the average horizontal eye positions, F(1, 41) =6.937, MSE =28559.298, nP2 =0.145, p < 0.05. Delay Time,
F(1, 41) < 1, and Cue Reliability, F(1, 41) = 3.297, MSE =714.375, p=0.077, did not produce a significant effect
on the gaze positioning.

There was a significant interaction between Cue Valence and Delay Time, F(1, 41) = 6.402, MSE = 906.995,
mMy> =0.135, p < 0.05, and also between Cue Valence and Cue Reliability, F(1, 41) =7.213, MSE = 7051.153,
npz =0.150, p=0.010. There were no other interaction effects (the remaining F values < 1). Overall, the gaze posi-
tioning showed significant response biases associating positive cues with the rightward direction, negative cues
with the leftward direction. These biases were particularly pronounced for long delays and 100% reliable cues.

Experiment 2. In Experiment 2, we investigated further the effect of the reliability level of the predictive
cues, as well as the response bias observed in the gaze positioning. One concern with the response bias was that in
the previous experiment, we employed only one fixed scheme of mapping between spatial position and response
(negative - left; positive — right). To ensure that the response bias followed from the prediction rather than any
inherent spatial bias, we counterbalanced the mapping between spatial position and response across subjects in
Experiment 2. Thus, we divided the subjects into two groups; one group was always presented with the default
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Figure 5. Average response times (ms) in each condition in Experiment 1. Each panel shows data for Certain,
Valid 50%, and Invalid 50% conditions. The top two panels are from the short-delay conditions; the bottom
two panels from the long-delay conditions. The left two panels present the positive-outcome conditions; the
right two panels, the negative-outcome conditions. The error bars show the standard error of the mean in each
condition.

evaluation bar (as in Experiment 1; negative — left; positive — right); and the other group was always presented
with a flipped evaluation bar (positive - left; negative - right).

With respect to cue reliability, instead of using certain versus random cues, in Experiment 2 we set a fixed
reliability of 75% for both positive and negative cues, and further included a neutral cue type (a checkerboard,
without positive or negative framing). Finally, in Experiment 2 the delay time was fixed at 2.

Thus, there were 12 conditions, with one between-subjects factor, Evaluation Bar (default versus flipped), and
two within-subjects factors, Outcome Type (positive or negative) and Cue Type. For the Cue Type, there were
three types defined by the relationship between the predictive information and the actual outcome; cues followed
by the predicted outcome were labeled as “Valid 75%”; cues followed by an outcome opposite to the prediction
were labeled as “Invalid 25%”; and cues that did not predict an outcome were labeled as “Neutral”.

Evaluation scores.  As before, for negative outcomes the sign of the given evaluation score was inversed. Figure 7
presents the average evaluation scores in each condition for Experiment 2. The predictions appeared to affect
the evaluation scores for positive outcomes, but not for negative outcomes. For positive outcomes, the effects of
the predictions again suggested spill-over rather than updating. For statistical analysis of the average evaluation
scores, we employed a three-factor analysis of variance (ANOVA) with repeated measures, in which the factors
Outcome Type and Cue Type were within subjects, whereas the factor Evaluation Bar was between subjects.
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Figure 6. Average horizontal eye positions during the delay period in Experiment 1, as a function of delay
duration, cue reliability, and cue valence. The Y-axis represents the horizontal position on the screen (the screen
width is set to 1920 pixels). The left panel shows the data for the short-delay trials; the right panel, for the long-
delay trials. The conditions with positive cues are shown in blue; with negative cues, in orange. The error bars
represent the standard error of the mean.

The ANOVA produced a statistically significant main effect of Outcome Type, F(1,64) =10.071, MSE=6.654,
np2 =0.136, p < 0.005. The main effect of Cue Type was not statistically significant, F(2,128) =2.934, MSE =0.815,
p=0.057, nor was that of the between-subjects factor Evaluation Bar, F < 1.

There was a statistically significant interaction between Cue Type and Outcome Type in the average eval-
uation scores, F(2,128) =7.120, MSE = 0.403, nP2 =0.100, p < 0.005. Post-hoc pairwise comparisons, with the
Bonferroni test, showed that for negative outcomes, there were no significant effects of cue type, whereas for
positive outcomes, the average evaluation scores in the Valid 75% condition were significantly higher than those
in the Invalid 25% condition at p < 0.05, and significantly higher than those in the Neutral condition at p < 0.001.

There were no two-way or three-way interactions with the between-subjects factor Evaluation Bar (all F
values < 1).

Manual response times. In order to prevent a loss of data due to premature bending of the joystick, in Experiment
2 the response method was modified by requiring the subjects to press the button on the joystick with their index
finger for confirmation. Thus, response time was defined as the time between the onset of the response screen and
the button press on the joystick. Figure 8 presents the average response times in each condition in Experiment 2,
using the same format as Fig. 7. Overall the Valid 75% conditions appeared to produce the fastest response times,
particularly for positive outcomes.

As in Experiment 1, preliminary normality tests (Shapiro-Wilk) showed significant deviations from normality
in the response times; the subsequent statistical analysis was conducted on the inverse response times, which
yielded normal distributions. A three-factor repeated measures ANOVA produced a significant main effect of
Outcome Type, F(1,64) =4.531, MSE=0.118, np2 =0.066, p < 0.05. The factor Cue Type did not produce a signif-
icant main effect, F(2,128) =2.605, MSE =0.033, p=0.078, nor did the between-subjects factor Evaluation Bar,
F < 1. There was a statistically significant interaction between Cue Type and Outcome Type, F(2,128) =3.905,
MSE=0.030, 1,>=0.058, p < 0.05. Post-hoc pairwise comparisons using the Bonferroni test showed that, for pos-
itive outcomes, there was a significant difference between the Valid 75% condition and the Invalid 25% condition
at p < 0.01, but not between the Valid 75% and the Neutral conditions, p=0.056, nor between the Neutral and
the Invalid 25% conditions, p=0.530. Conversely, for negative outcomes, there were no significant differences as
a function of Cue Type (all p values above 0.7).

There was no significant interaction between Cue Type and the between-subjects factor Evaluation Bar,
F(2,128) =2.771, MSE =0.033, p=0.066, nor between Outcome Type and Evaluation Bar, F < 1. The three-way
interaction was also not significant, F(2,128) =1.796, MSE = 0.030, p=0.170.

Gaze distribution data. As in Experiment 1, we analyzed the gaze positioning during the delay period in
Experiment 2 to examine whether the predictive cues elicited a response bias. In this analysis, focused on the
blank screen period before target onset (i.e., when the outcome is not yet known), the data were classified into six
conditions by the between-subjects factor Evaluation Bar (default or flipped) and the within-subjects factor Cue
Type (either positive, neutral, or negative). For each subject in each condition, the average horizontal eye position
was calculated during the delay relative to the blank screen.

Figure 9 presents the average horizontal eye positions during the delay as a function of condition in
Experiment 2. The data appeared symmetrical for the two groups of subjects, suggesting that the gaze positioning
flipped as a function of evaluation bar alignment, implementing response biases (toward the negative or positive
pole depending on the prediction).

In the subsequent ANOVA, in order to facilitate the comparison with different evaluation bar alignments, we
used the inverse of the horizontal eye position data in the flipped evaluation bar condition; that is, we subtracted
the given horizontal eye positions from the maximal horizontal pixel value (1920). This procedure aligns the
horizontal eye position data of the two groups in the same direction, so that any response biases yield similar
numerical values across the evaluation bar conditions.
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Figure 7. Average ratings in each condition in Experiment 2. Each panel shows data for Valid 75%, Neutral,
and Invalid 25% conditions. The top two panels show data from participants who used the Default Evaluation
Bar; the bottom two panels are from participants who used the Flipped Evaluation Bar. The left two panels
present the positive-outcome conditions; the right two panels, the negative-outcome conditions. The signs were
inversed for the ratings in the negative outcome conditions in order to facilitate comparison with the positive
outcome conditions. The error bars show the standard error of the mean in each condition.

A repeated measures ANOVA confirmed that the within-subjects factor Cue Type had a statistically significant
impact on the gaze positioning during the blank screen period, F(2,128) =40.023, MSE = 257.261, 1> = 0.385,
p <0.001. Post-hoc pairwise comparisons using the Bonferroni test showed that there were statistically significant
differences in the average horizontal eye positions at p < 0.001 for all pairwise comparisons among the three cue
types. The horizontal eye positions leaned most toward the positive pole following positive cues (M = 967.992,
SD =7.872), and most toward the negative pole following negative cues (M = 943.061, SD = 6.667), implying
more central positioning after neutral cues (M =954.169, SD =6.726).

Also the between-subjects factor Evaluation Bar produced a significant effect on the average horizontal eye
positions, F(1,64) = 18.088, MSE =9495.071, 'T]Pz =10.220, p < 0.001. However, there was no interaction between
Cue Type and Evaluation Bar, F(2,128) =2.493, MSE =257.261, p=0.087.
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Figure 8. Average response times (ms) in each condition in Experiment 2. Each panel shows data for Valid
75%, Neutral, and Invalid 25% conditions. The top two panels show data from participants who used the Default
Evaluation Bar; the bottom two panels are from participants who used the Flipped Evaluation Bar. The left two
panels present the positive-outcome conditions; the right two panels, the negative-outcome conditions. The
error bars show the standard error of the mean in each condition.

Discussion
Two experiments were conducted to examine the effects of predictive cues on the evaluation of single food images.
The experiments pitched the congruent bias hypothesis, as a function of framing**-?° or more implicit processes
(e.g., priming or emotional contagion)*~¥, against the opponent mechanism hypothesis, derived from the con-
cepts of proactive control**-*? and prediction error**~*. In Experiment 1, we found that the evaluation scores were
influenced by the predictive cues, such that 100% reliable cues produced more extreme scores than 50% reliable
cues, both for aversive and for appetitive food images, suggesting the operation of a congruent bias. The response
times showed slower responses following 50% reliable cues than following 100% reliable cues, further implicating
a selective response preparation in line with the predictions. Gaze prepositioning during the delay period, after
prediction but before the food image, also suggested a response bias in accordance with the predictions.
Experiment 2 provided corroborating evidence, again showing that the evaluation scores were influenced
by the predictive cues, with 75% reliable cues leading to more extreme scores for correct predictions than for
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Figure 9. Average horizontal eye positions during the delay period in Experiment 2, as a function of the type
of cue and evaluation bar. The Y-axis represents the horizontal position on the screen (the screen width is set
to 1920 pixels). The data with the Default Evaluation Bar are shown in blue; with the Flipped Evaluation Bar, in
orange. The error bars represent the standard error of the mean.

incorrect predictions, suggesting congruent bias effects, particularly in the case of appetitive food images. Once
again, the response times showed slower responses following incorrect predictions than following correct predic-
tions, indicating that prior expectation guided the selective response preparation. Gaze prepositioning during the
delay period also exhibited a response bias in accordance with the predictions, regardless of the spatial alignment
of positive versus negative poles.

Positive predictive cues elicited an anticipatory process that set up a congruent response bias, leading to gaze
prepositioning in the spatial direction associated with the positive pole of the evaluation bar. This response bias
caused appetitive images to be evaluated more positively while (in case of erroneous prediction) causing aver-
sive images to be evaluated less negatively. Conversely, the opposite processes occurred for negative predictions.
Crucially, these anticipatory processes and response biases reflected active inferences®*, depending on the per-
ceived reliability of the predictive cues, with stronger effects for more reliable cues.

Taken together, both experiments provided solid evidence in favor of the congruent bias hypothesis. As a cor-
ollary, the data charted how external influences from prior (“objective”) information can have a significant impact
on subsequent (“subjective”) evaluative processing, underscoring the potential importance of this line of research
for other domains of value-based decision-making (e.g., in politics and bioethics).

Congruent Bias as an Active Process toward Confirmation. Several elements in the data suggested
a role for active, deliberative processing in response to the predictive information rather than merely effects
from automatic associations. The effects of cue reliability on evaluation scores suggested voluntary control of
expectation. In Experiment 1, the congruent bias was large following cues with 100% reliability, but there was no
significant difference between the 50% Valid and 50% Invalid condition. In Experiment 2, the 75% reliable cues
did have an impact on the evaluation scores, particularly for positive outcomes (with more extreme scores in the
75% Valid condition than in the 25% Invalid condition). The pattern of data suggested that the subjects set their
expectations based on the perceived reliability of the predictive cues — strongly for highly reliable cues, somewhat
for reasonably reliable cues, and not so much for unreliable cues. Most likely, this was due to actively controlled
usage of the predictive cues.

Here, it should be noted that the active processing of predictive information does not necessarily preclude the
existence of concurrent, more implicit types of interference. A useful approach in this regard, compatible with the
concept of framing®-%°, may be that of the somatic marker hypothesis®*->2. Applying this hypothesis to the current
data, we might suggest that the covert action of “marker” signals underpinned the introduction of a congruent
bias in the selection of an aversive or appetitive mode of processing. Importantly, this hypothesis contends that
it is erroneous to limit human decision-making to mechanisms of either conditioning alone or cognition alone.
Thus, while the concurrent operation of conditioning cannot - should not - be excluded, the relevant point here
is that the cue reliability determined the degree of impact from predictive information. This finding implicates
cognitive control and active processing.

Apart from the dependence of evaluative processing on the reliability of the predictions, two further aspects
of the data suggest that the impact of external influences was mediated via active, cognitive control. Notably, the
gaze prepositioning indicated a selective preparation aligned with the expected direction of response. This gaze
prepositioning was likewise sensitive to the cue reliability, with more pronounced prepositioning for more reliable
predictive cues. Also, the response times indicated that the evaluative processing was more effortful following
incorrect predictions than following correct predictions, again suggesting an active form of inference relative to
the earlier prediction. Once more, the effects on response times depended on the reliability of the predictive cues.

The effortful, slower evaluative processing following incorrect predictions produced less extreme scores than
the faster evaluative processing following correct predictions. For instance, an appetitive food image presented
after a positive cue tended to quickly receive a highly positive evaluation, whereas an appetitive food image pre-
sented after a negative cue tended to receive a less positive evaluation after a longer deliberation, as if the sub-
ject tried to accommodate the prediction (finding something negative in the image, or trying to attenuate the
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discrepancy between prediction and outcome by reducing the evaluation). This may be thought of as an active
attempt to assimilate a surprising stimulus to a prior expectation®. Interestingly, there appeared to be an asymme-
try, particularly in Experiment 2, with 75% reliable cues showing influences from prediction on the evaluation of
appetitive images, but not on the evaluation of aversive images. This suggests that, relatively speaking, the evalua-
tive processing of appetitive images is more vulnerable to external influences. Negative predictions tend to distort
the reception of appetitive images, whereas aversive images appear to be more immune to positive framing.

In conclusion, the predictions produced a congruent response bias that can best be characterized as an active
confirmation bias. Depending on the perceived reliability, positive predictive cues elicited an active positive antic-
ipation of the food images, whereas negative cues elicited an active — and relatively stronger — negative anticipa-
tion. Correct predictions produced quick and amplified evaluation scores. Erroneous predictions produced slow
and less extreme evaluation scores in an apparent effort to accommodate the prediction.

Methods
Subjects. In Experiment 1, there were 42 subjects. All were Kyushu University students (26 males, 16
females) with a mean age of 22.45 £ 3.63 years. In Experiment 2, there were 66 subjects. All were Kyushu
University students (38 males, 28 females) with a mean age of 23.94 £ 4.54 years. There were 3 left-handed sub-
jects in Experiment 1, and 2 in Experiment 2; however, these subjects also used their right hand to manipulate
the joystick.

In both experiments, all subjects had normal or corrected-to-normal vision. Each person was given 1000 yen
as a compensation for the participation, which lasted less than 1 hour. All subjects gave informed consent, and
reported that they were in healthy condition before and after the experiment.

Apparatus and stimuli.  The visual stimuli were presented in a dimly lit room on a 23.8-inch full high defi-
nition flat-panel-monitor, with a display resolution of 1920 x 1080 pixels. The subjects were seated approximately
62 cm from the monitor. To minimize head movement a chin-rest with a forehead-support was used. The evalua-
tion responses were recorded using a joystick (Logitech, Switzerland; model no. 963290-0403). Eye positions were
recorded using Eye Tribe, an eye-tracking device at 60 Hz sampling rate (The Eye Tribe Aps, Denmark); a system
with sufficient reliability for present purposes®>>+>>.

In order to start the eye tracking, the subject was asked to follow a dot on the screen for a 16-point calibration.
After the calibration, the gaze coordinates were calculated through Eye Tribe with an average error of less than
0.5° visual angle on the 23.8-inch display. To prevent heat buildup a small universal serial bus (USB) fan was used.
All events and recordings were controlled through code written in Psychopy (version 1.84.2)°>%7 including the
PyTribe library.

All visual stimuli were presented as inset images on a white background in the middle of the otherwise black
screen. The size of the inset image was fixed at 380 x 380 pixels for the predictive cues, and at 600 x 600 pixels for
the food images. The predictive cues were icons: a tray for positive; a hazard sign for negative; and a checkerboard
for neutral. Different colors were used (counterbalanced across subjects) to indicate the reliability of the cues in
Experiment 1. Food images were drawn from the FoodCast research image database (FRIDa)*® and supplemented
with non-copyrighted images to construct a set of 200 food images with a balanced range of appetitive and aver-
sive stimuli. If necessary, images were resized to fit in the frame of 600 x 600 pixels. The images were classified
into 100 appetitive and 100 aversive stimuli based on the categorization by FRIDa and ratings by lab members.
The categorizations proved valid for all 200 images based on the average responses of all subjects in Experiments
1 and 2: Each stimulus in the category of aversive food images received on average a negative rating, whereas each
stimulus in the category of appetitive food images received on average a positive rating.

Experimental procedures. Experiment 1. Participants were asked to evaluate 180 naturalistic food
images in 3 consecutive blocks of 60 trials with breaks of not more than 5 minutes between the blocks. At the start
of each trial, the word “short” or “long” was presented for 1s in the middle of the screen to indicate the delay time
between the predictive cue and the target image, either 1s or 9s. Next the predictive cue was shown at the center
of the screen for 1s, followed by the blank screen for the delay period. Then the target image was shown for 2s,
and in turn replaced by the response screen. The subject had maximally 6 s to evaluate the food image by bending
the joystick to move the cursor on the evaluation bar from —10 to 10. The bending angle was used to indicate the
evaluation score. After the response was made, there was a blank screen for 2 s as inter-trial interval (ITI).

Different icons were used for the predictive cues to indicate the outcome, either appetitive or aversive, whereas
the color indicated the reliability level of the cue, either 100% or 50% reliability. The color assignment was coun-
terbalanced across subjects. The reliability of the predictive cue was further indicated numerically in percentage,
presented in small print beneath the icon.

The subjects were instructed to give their evaluation for each food image, focusing on the appeal of the image,
not their general preference of the pictured food item. The evaluations had to be given on a continuous rating
scale from —10 to 10, with a value of —10 for a maximally disgusting food image, a value of +10 for a maximally
attractive food image, and a value of 0 for a food image that was neither likeable nor disgusting. The subjects were
instructed to start bending the joystick for evaluation only after the evaluation bar appeared on the screen.

It was explained to the subjects that the cues predicted whether the upcoming food image would be likeable or
dislikeable, with different levels of certainty, either 100% certain or 50%.

Before the experimental session, the subjects were given the opportunity to practice controlling the joystick
for up to 30 times. The experiment included 180 trials, consisting of 15 repetitions of each of the 12 conditions,
with 3 levels Cue Type (Certain, Valid, Invalid), 2 levels of Outcome Type (Positive, Negative), and 2 levels of
Delay Time (15, 9s). No food image was presented more than once. The 180 trials were presented in pseudoran-
dom order to ensure that each block of 60 trials contained 5 repetitions of each condition.
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Experiment 2.  Participants were asked to evaluate 200 naturalistic food images in 4 consecutive blocks of 50
trials with breaks of not more than 5 minutes between the blocks. The procedures were the same as in Experiment
1 except for the following. The delay time between the predictive cue and the food image was fixed at 2s; and no
word cue was given to indicate the delay time at the beginning of the trial. The cue reliability for the positive and
negative cues was fixed at 75%, and a third type of cue was included (a neutral cue, represented by a checkerboard
asicon).

The evaluation bar assignment was changed for 2 groups of subjects, with either a conventional alignment
(negative - left; positive - right) or the opposite alignment. Here, subjects were asked to confirm their evaluation
by clicking the trigger on the joystick.

The experiment included 200 trials, divided into 6 conditions, with 3 levels Cue Type (Valid 75%, Neutral,
Invalid 25%) and 2 levels of Outcome Type (Positive, Negative). The Valid 75% conditions consisted of 60 repe-
titions, whereas the Invalid 25% and the Neutral conditions each consisted of 20 repetitions. No food image was
presented more than once. The 200 trials were presented in pseudorandom order to ensure that each block of 50
trials contained the same distribution of trials per condition.

Ethics statement. The protocols for the present study were designed in accordance with the Declaration
of Helsinki, and were approved by the Human Ethics Committee of the Faculty of Arts and Science, Kyushu
University (issue number 201711). Informed consent was obtained in writing from each subject.

References
1. Clark, A. Whatever next? Predictive brains, situated agents, and the future of cognitive science. Behav. Brain Sci. 36, 181-204 (2013).
. Clark, A. Surfing Uncertainty: Prediction, Action, and the Embodied Mind (Oxford University Press, 2016).
. Friston, K. The free-energy principle: A unified brain theory? Nat. Rev. Neurosci. 11, 127-138 (2010).
. Hohwy, J. The Predictive Mind (Oxford University Press, 2013).
. Lauwereyns, J. The Anatomy of Bias: How Neural Circuits Weigh the Options (MIT Press, 2010).
. Kirk, U. et al. Modulation of aesthetic value by semantic context: An fMRI study. NeuroImage 44, 1125-1132 (2009).
. Aydogan, G. et al. Overcoming bias: Cognitive control reduces susceptibility to framing effects in evaluating musical performance.
Sci. Rep. 8, 6229 (2018).
8. Fenko, A., de Vries, R. & van Rompay, T. How strong is your coffee? The influence of visual metaphors and textual claims on
consumers’ flavor perception and product evaluation. Front. Psychol. 9, 53 (2018).
9. Schmidt, L. et al. H. How context alters value: The brain’s valuation and affective regulation system link price cues to experienced
taste pleasantness. Sci. Rep. 7, 8098 (2017).
10. Plassmann, H. et al. Marketing actions can modulate neural representations of experienced pleasantness. P. Natl. Acad. Sci. 105,
1050-1054 (2008).
11. Kahneman, D. Maps of bounded rationality: Psychology for behavioral economics. Am. Econ. Rev. 93, 1449-1475 (2003).
12. Kroger, C. & Margulis, E. H. “But they told me it was professional”: Extrinsic factors in the evaluation of musical performance.
Psychol. Mus. 45, 49-64 (2017).
13. Stauffer, J. M. & Buckley, M. R. The existence and nature of racial bias in supervisory ratings. J. Appl. Psychol. 90, 586-591 (2005).
14. Ziegert, J. C. & Hanges, P. ]. Employment discrimination: The role of implicit attitudes, motivation, and a climate for racial bias. J.
Appl. Psychol. 90, 553-562 (2005).
15. Armel, K. C., Beaumel, A. & Rangel, A. Biasing simple choices by manipulating relative visual attention. Judgm. Decis. Mak. 3,
396-403 (2008).
16. Lim, S.-L., O’Doherty, J. P. & Rangel, A. The decision value computations in the vmPFC and striatum use a relative value code that
is guided by visual attention. J. Neurosci. 31, 13214-13223 (2011).
17. Sokol-Hessner, P. et al. Decision value computation in DLPFC and VMPFC adjusts to the available decision time. Eur. J. Neurosci.
35,1065-1074 (2012).
18. Bailey, R. & Muldrow, A. Healthy food identification: Food cues and claims affect speeded and thoughtful evaluations of food. Health
Commun. 6,1-12 (2018).
19. Bielser, M..-L. et al. Does my brain want what my eyes like? - How food liking and choice influence spatio-temporal brain dynamics
of food viewing. Brain Cogn. 110, 64-73 (2016).
20. Kiihn, A. B. et al. FTO gene variant modulates the neural correlates of visual food perception. Neurolmage 128, 21-31 (2016).
21. Suzuki, S., Cross, L. & O’Doherty, J. P. Elucidating the underlying components of food valuation in the human orbitofrontal cortex.
Nat. Neurosci. 20, 1780-1786 (2017).
22. Wolf, A. et al. Evaluative processing of food images: A conditional role for viewing in preference formation. Front. Psychol. 9, 936
(2018).
23. Tversky, A. & Kahneman, D. The framing of decisions and the psychology of choice. Science 211, 453-458 (1981).
24. Levin, 1. P. et al. Framing effects in judgment tasks with varying amounts of information. Organ. Behav. Human Decis. Process. 36,
362-377 (1985).
25. Wilson, T. D. et al. Preferences as expectation-driven inferences: Effects of affective expectations on affective experience. J. Pers. Soc.
Psychol. 56, 519-530 (1989).
26. Cunningham, W. A., Van Bavel, J. J. & Johnson, I. R. Affective flexibility: Evaluative processing goals shape amygdala activity.
Psychol. Sci. 19, 152-160 (2008).
27. Jin, J., Zhang, W. & Chen, M. How consumers are affected by product descriptions in online shopping: Event-related potentials
evidence of the attribute framing effect. Neurosci. Res. 125, 21-28 (2017).
28. ligaya, K. et al. The modulation of savouring by prediction error and its effects on choice. eLife 5, €13747 (2016).
29. Loewenstein, G. Anticipation and the valuation of delayed consumption. Econ. J. 97, 666-684 (1987).
30. Bargh, J. A. What have we been priming all these years? On the development, mechanisms, and ecology of nonconscious social
behavior. Eur. J. Soc. Psychol. 36, 147-168 (2006).
31. Dalenberg, J.R. et al. Evoked emotions predict food choice. PLOS One 9, e115388.
32. Stockli, S. et al. An (un)healthy poster: When environmental cues affect consumers’ food choices at vending machines. Appetite 96,
368-374 (2016).
33. Wright, A. A, Kelly, D. M. & Katz, J. S. Comparing cognition by integrating concept learning, proactive interference, and list
memory. Learn. Behav. 46, 107-123 (2018).
34. Cartoni, E., Balleine, B. & Baldassare, G. Appetitive Pavlovian-instrumental transfer: A review. Neurosci. Biobehav. Rev. 71, 829-848
(2016).
35. Geurts, D. E. et al. Aversive Pavlovian control of instrumental behavior in humans. J. Cogn. Neurosci. 25, 1428-1441 (2013).
36. Howard, D. J. & Gengler, C. Emotional contagion effects on product attitudes. Journal of Consumer Research 28, 189-201 (2001).

NN U W

SCIENTIFIC REPORTS |

(2018) 8:16864 | DOI:10.1038/s41598-018-35179-9 12



www.nature.com/scientificreports/

37. Morales, A. C. & Fitzsimons, G. ]. Product contagion: Changing consumer evaluations through physical contact with “disgusting”
products. Journal of Marketing Research 44, 272-283 (2007).

38. Van Wouwe, N. C,, Band, G. P. H. & Ridderinkhof, K. R. Proactive control and episodic binding in context processing effects. Acta
Psychol. 131, 245-253 (2009).

39. Amodio, D. M. & Swencionis, J. K. Proactive control of implicit bias: A theoretical model and implications for behavior change. J.
Pers. Soc. Psychol. 115, 255-275.

40. Geers, A. L. & Lassiter, G. D. Affective expectations and information gain: Evidence for assimilation and contrast effects in affective
experience. J. Exp. Soc. Psychol. 35,394-413 (1999).

41. Cheng, E. E, Wu, C. S. & Lin, H. H. Reducing the influence of framing on internet consumersdecisions: The role of elaboration.
Comput. Human Behav. 37, 56-63 (2014).

42. Stamos, A. et al. Pre-exposure to tempting food reduces subsequent snack consumption in healthy-weight but not in obese-weight
individuals. Front. Psychol. 9, 685 (2018).

43. Klein, R. M. Inhibition of return. Trends Cogn. Sci. 4, 138-147.

44. Frings, C., Schneider, K. K. & Fox, E. The negative priming paradigm: An update and implications for selective attention. Psychon.
Bull. Rev. 22,1577-1597 (2015).

45. Schultz, W, Dayan, P. & Montague, P. R. A neural substrate of prediction and reward. Science 275, 1593-1599 (1997).

46. Berridge, K. C. The debate over dopamine’s role in reward: The case for incentive salience. Psychopharmacology 191, 391-431 (2007).

47. O’Doherty, J. P. Beyond simple reinforcement learning: The computational neurobiology of reward learning and valuation. Eur. J.
Neurosci. 35,987-990 (2012).

48. Schultz, W. Updating dopamine reward signals. Curr. Opin. Neurobiol. 23, 229-238 (2013).

49. Whelan, R. Effective analysis of reaction time data. Psychol. Rec. 58, 475-482 (2008).

50. Damasio, A. R. The somatic marker hypothesis and the possible functions of the prefrontal cortex. Philos. Trans. R. Soc. Lond. B Biol.
Sci. 351, 1413-1420 (1996).

51. Bechara, A., Damasio, H. & Damasio, A. R. Emotion, decision making and the orbitofrontal cortex. Cereb. Cortex 10, 295-307
(2000).

52. Verweij, M. et al. Emotion, rationality, and decision-making: How to link affective and social neuroscience with social theory. Front.
Neurosci. 9,332 (2015).

53. Davidenko, O. et al. Differences in BOLD responses in brain reward network reflect the tendency to assimilate a surprising flavor
stimulus to an expected stimulus. Neurolmage 183, 37-36 (2018).

54. Ooms, K. et al. Accuracy and precision of fixation locations recorded with the low-cost Eye Tribe tracker in different experimental
setups. J. Eye Mov. Res. 8,1-24 (2015).

55. Zommara, N. M. ef al. A gaze bias with coarse spatial indexing during a gambling task. Cogn. Neurodyn. 12,171-181 (2018).

56. Peirce, J. W. PsychoPy—Psychophysics software in Python. J. Neurosci. Meth. 162, 8-13 (2007).

57. Peirce, J. W. Generating stimuli for neuroscience using PsychoPy. Front. Neuroinform. 2, 10 (2009).

58. Foroni, F. et al. The FoodCast research image database (FRIDa). Front. Hum. Neurosci. 7, 51 (2013).

Acknowledgements
This research was supported by project grant JP16H03751 (PI: ].L.; co-PI: S.K.; M.T,; T.M.) from the Japan Society
for the Promotion of Science, and by a Ph.D. scholarship awarded to K.O. by the Thai Government.

Author Contributions

All authors contributed to the design of the study. K.O. programmed the experiments, conducted the data
collection for the study, analyzed the behavior and eye-tracking data, and prepared all figures. K.O. and J.L. wrote
the manuscript. All authors reviewed and approved the manuscript.

Additional Information
Supplementary information accompanies this paper at https://doi.org/10.1038/s41598-018-35179-9.

Competing Interests: The authors declare no competing interests.

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and
institutional affiliations.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International

License, which permits use, sharing, adaptation, distribution and reproduction in any medium or
format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Cre-
ative Commons license, and indicate if changes were made. The images or other third party material in this
article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the
material. If material is not included in the article’s Creative Commons license and your intended use is not per-
mitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the
copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.

© The Author(s) 2018

SCIENTIFIC REPORTS |

(2018) 8:16864 | DOI:10.1038/s41598-018-35179-9 13


http://dx.doi.org/10.1038/s41598-018-35179-9
http://creativecommons.org/licenses/by/4.0/

	Active Confirmation Bias in the Evaluative Processing of Food Images

	Rationale of the Present Study

	Results

	Experiment 1. 
	Evaluation scores. 
	Manual response times. 
	Gaze distribution data. 

	Experiment 2. 
	Evaluation scores. 
	Manual response times. 
	Gaze distribution data. 


	Discussion

	Congruent Bias as an Active Process toward Confirmation. 

	Methods

	Subjects. 
	Apparatus and stimuli. 
	Experimental procedures. 
	Experiment 1. 
	Experiment 2. 

	Ethics statement. 

	Acknowledgements

	Figure 1 Distribution of the bivalent stimulus set.
	Figure 2 Schematic representation of the predictive cues in Experiment 1, associated with different outcome types.
	Figure 3 Trial structure in Experiment 1.
	Figure 4 Average ratings in each condition in Experiment 1.
	Figure 5 Average response times (ms) in each condition in Experiment 1.
	Figure 6 Average horizontal eye positions during the delay period in Experiment 1, as a function of delay duration, cue reliability, and cue valence.
	Figure 7 Average ratings in each condition in Experiment 2.
	Figure 8 Average response times (ms) in each condition in Experiment 2.
	Figure 9 Average horizontal eye positions during the delay period in Experiment 2, as a function of the type of cue and evaluation bar.




