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Genomic-enabled prediction with classification algorithms

L Ornella1, P Pérez2, E Tapia1, JM González-Camacho2, J Burgueño3, X Zhang3, S Singh3,
FS Vicente3, D Bonnett3, S Dreisigacker3, R Singh3, N Long4 and J Crossa3

Pearson’s correlation coefficient (r) is the most commonly reported metric of the success of prediction in genomic selection
(GS). However, in real breeding r may not be very useful for assessing the quality of the regression in the tails of the
distribution, where individuals are chosen for selection. This research used 14 maize and 16 wheat data sets with different
trait–environment combinations. Six different models were evaluated by means of a cross-validation scheme (50 random
partitions each, with 90% of the individuals in the training set and 10% in the testing set). The predictive accuracy of these
algorithms for selecting individuals belonging to the best a¼10, 15, 20, 25, 30, 35, 40% of the distribution was estimated
using Cohen’s kappa coefficient (k) and an ad hoc measure, which we call relative efficiency (RE), which indicates the expected
genetic gain due to selection when individuals are selected based on GS exclusively. We put special emphasis on the analysis
for a¼15%, because it is a percentile commonly used in plant breeding programmes (for example, at CIMMYT). We also used
r as a criterion for overall success. The algorithms used were: Bayesian LASSO (BL), Ridge Regression (RR), Reproducing
Kernel Hilbert Spaces (RHKS), Random Forest Regression (RFR), and Support Vector Regression (SVR) with linear (lin) and
Gaussian kernels (rbf). The performance of regression methods for selecting the best individuals was compared with that of
three supervised classification algorithms: Random Forest Classification (RFC) and Support Vector Classification (SVC) with
linear (lin) and Gaussian (rbf) kernels. Classification methods were evaluated using the same cross-validation scheme but with
the response vector of the original training sets dichotomised using a given threshold. For a¼15%, SVC-lin presented the
highest k coefficients in 13 of the 14 maize data sets, with best values ranging from 0.131 to 0.722 (statistically significant in
9 data sets) and the best RE in the same 13 data sets, with values ranging from 0.393 to 0.948 (statistically significant in
12 data sets). RR produced the best mean for both k and RE in one data set (0.148 and 0.381, respectively). Regarding the
wheat data sets, SVC-lin presented the best k in 12 of the 16 data sets, with outcomes ranging from 0.280 to 0.580
(statistically significant in 4 data sets) and the best RE in 9 data sets ranging from 0.484 to 0.821 (statistically significant in
5 data sets). SVC-rbf (0.235), RR (0.265) and RHKS (0.422) gave the best k in one data set each, while RHKS and BL tied
for the last one (0.234). Finally, BL presented the best RE in two data sets (0.738 and 0.750), RFR (0.636) and SVC-rbf
(0.617) in one and RHKS in the remaining three (0.502, 0.458 and 0.586). The difference between the performance of
SVC-lin and that of the rest of the models was not so pronounced at higher percentiles of the distribution. The behaviour of
regression and classification algorithms varied markedly when selection was done at different thresholds, that is, k and RE for
each algorithm depended strongly on the selection percentile. Based on the results, we propose classification method as a
promising alternative for GS in plant breeding.
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INTRODUCTION

Genomic selection (GS) is a novel strategy that aims to improve the
prediction of complex agronomic traits using information from high-
throughput genotyping platforms and phenotypic information of a
training population (Meuwissen et al., 2001). Several methods for GS
have been proposed and evaluated (Crossa et al., 2013; Gianola,
2013). The difference among them resides not only in their theoretical
basis but also in their performance, which is variable and depends on
the population and trait analysed (Heslot et al., 2012, Gianola, 2013).

Pearson’s correlation coefficient (r) is the most reported metric of
the prediction ability of the regression models; however, it may not be

the most appropriate measure in real breeding situations, because it is
a global measure that does not evaluate the quality of the regression at
the tails of the distribution where the breeder decides whether or not
to keep the lines for further breeding. González-Recio and Forni
(2011) compared Bayes A and Bayesian LASSO (BL) with two
machine learning models (Boosting and Random Forest) for predict-
ing disease occurrence in simulated and real data sets. They found
that the algorithm with the best correlation does not always have the
best selection rate.

Classification methods are a successful branch of supervised
machine learning; they are fully applied in several areas of research,
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for example, text mining and bioinformatics (Hastie et al., 2011).
Despite this success, we found very few studies on its application in
GS (Long et al., 2007; González-Recio and Forni, 2011).

Instead of building a regression curve that fits all the training data,
classification algorithms construct a decision boundary that is
optimised usually for separating two classes, that is, best (which can
be located at the upper or lower tail of the distribution) and worst
lines; thus we expect that they might be an alternative approach to
regression methods.

The objective of this study was to compare the performance of six
well-known GS methods with that of three classification methods,
Random Forest Classification (RFC) and Support Vector Classifica-
tion (SVC) (the latter with two different kernels), for selecting the best
a% of individuals in 14 maize and 16 wheat data sets, a¼ (10, 15, 20,
25, 30, 35, 40%). We emphasised the analysis at a¼ 15%, which is a
common select proportion used by CIMMYT programmes.

Two of the regression methods are benchmarks for parametric GS:
Ridge Regression (RR) and BL, while Reproducing Kernel Hilbert
Spaces (RKHS) is a successful semi-parametric approach to GS, and
Random Forest Regression (RFR) and Support Vector Regression
(SVR) are state-of-the-art algorithms for non-parametric regression
(Hastie et al., 2011).

Overall performance was evaluated by means of a cross-validation
scheme (50 random partitions with 90% of individuals in the training
set and 10% in the testing set) and using r as a criterion for
measuring predictive ability. The metrics used to evaluate the
performance of classification methods were Cohen’s kappa coefficient
(k) and an ad hoc measure that we called relative efficiency (RE),
which indicates the RE of selection when individuals are selected
based on GS exclusively.

The a¼ 15%, or other percentiles, can be positioned in the upper
tail of the distribution if the trait considered is yield; in the lower tail,
if the trait is disease resistance; or even in the middle of the
distribution if the trait is, for example, the anthesis-silking
interval (ASI), where the ideal situation is to have a value of the
trait equal to zero.

The results of this study are promising. At a percentile value
a¼ 15%, SVC-lin achieved the best RE in 13 of the 14 maize data sets
and in 9 of the 16 wheat data sets. We also compared the performance
of regression and classification algorithms at other percentiles where
differences between predictions were variable. As shown by González-
Recio and Forni (2011), classification algorithms are a valuable
alternative to traditional GS methods.

MATERIALS AND METHODS
Maize data sets
The maize data, including 14 trait–environment combinations measured on

300 tropical lines genotyped with 55 000 single-nucleotide polymorphisms,

were previously used by González-Camacho et al. (2012). Six data sets cover

information on grey leaf spot (GLS) resistance evaluated in six CIMMYT

international trials (GLS-1 to GLS-6); another six data sets include information

on female flowering time (FFL), male flowering time (MFL) and the MFL to

FFL interval (ASI) evaluated under severe drought stress (SS) or in well-

watered (WW) environments. The remaining data sets contain information on

grain yield evaluated under severe drought stress (GY-SS) and well-watered

(GY-WW) environments. The number of individuals and the type and number

of markers are presented in Table 1. For further details, see González-Camacho

et al. (2012).

Wheat data sets
The wheat data included six stem rust resistance data sets, six yellow rust

resistance data sets and four grain yield data sets genotyped with 1400 DArT

markers. All rust data sets were previously presented in Ornella et al. (2012)

and come from an experiment in which populations of recombinant inbred

lines were evaluated for stem rust resistance in Kenya using two planting dates

(the main season (Srm) and the off season (Sro)) and for yellow rust resistance

under artificial inoculation in Mexico (Tol) or under natural infection in Njoro

(Ken). The four grain yield data sets are included in the R package ‘BLR’ (Pérez

et al., 2010): 599 lines evaluated under different water and temperature

conditions (Burgueño et al., 2012). Information regarding the number of

individuals and the type and number of markers is presented in Table 1.

The response variables in the 30 data sets were centered at zero and

standardised to unit variance (González-Camacho et al., 2012; Ornella et al.,

2012). For classification, these response variables were divided into binary

classes; the procedure is described in detail at the end of Material and methods

section.

Regression methods
For performing GS regression, we chose the following methods.

RR and BL are linear parametric models. The phenotype of the i-th

individual (yi) can be represented by yi¼ giþ ei, where gi indicates the genetic

factor specific to the i-th individual and ei the residual comprising all other

non-genetic factors eiBN(0,s2
e ). Meuwissen et al. (2001) proposed the linear

model gi¼
P

j xijbj, where xij are the marker covariates and bj is the effect of

the j-th marker (j¼ 1,..., p). In matrix notation:

y ¼ g þ e ð1Þ
where g¼Xb. The genomic-BLUP (for example, Endelman, 2011; de los

Campos et al., 2012) is obtained assuming that gBN(0,s2
g G), where s2

g is the

genetic variance and the matrix GpXX0. In a Bayesian framework (Pérez et al.,

2012), the RR-BLUP is obtained assuming that the prior distribution for each

marker effect is p(bj|s2
b)¼N(bj|0,s2

b). Marker effects are assumed independent

and identically distributed a priori, whereas the distribution assigned to s2
b (the

prior variance of marker effects) and s2
e (the prior of residual variance) is

w�2(df,s) (for example, de los Campos et al., 2012). The BL model assigns a

double exponential (DE) distribution to all marker effects (conditionally on a

regularisation parameter l), centered at zero (Park and Casella, 2008), that is,

p(bj|l,s2
e )¼DE(bj|0,l/s2

e ). We used the R package ‘rrBLUP’ (Endelman, 2011)

to fit the RR-BLUP model, and the ‘BLR’ package (Pérez et al., 2010) to fit the

BL mode using the settings described in González-Camacho et al. (2012).

RKHS is a semi-parametric model in which the linear response takes the

following form:

yi ¼ mþ
Xn

i0¼1

ai0Kðxi; xi0 Þ ð2Þ

where xi¼ (xi1,y,xip) and xi0 ¼ (xi01,y,xi0p) are vectors of marker genotypes

of the i and í-th lines, and K(xi,xi0)¼ exp(�g||xi�xi0||
2) is a Gaussian kernel

(Gianola et al., 2006; Gianola and van Kaam, 2008) where ||xi�xi0|| is the

Euclidean distance between pairs of marker genotypes and g40 is a bandwidth

parameter. The prediction ability of RKHS method is sensitive with respect to

the value of g. We used a multi-kernel fitting strategy to estimate it as described

in González-Camacho et al. (2012). We assigned a scaled inverse chi-squared

distribution to the variance components. In the implementation, we set df¼ 5

for all prior distributions. The prior expectation of the residual variance was set

to one half of the phenotypic variance, in which case Se¼ 0.5s2
y(df�2). The

prior expectation of the variance for each of the three kernels used in our

implementation was set to 1/6 of the sample variance of the standardised

phenotypes, Sk¼ 0.5s2
y(df�2)/3. This setting leads to weakly proper priors. The

inferences in all models were based on 30 000 samples obtained after discarding

5000 that were taken as burn-in.

Finally, we selected RFR and SVR as representatives of non-parametric GS

models. RFR is a combination of decision trees, each one generated from a

subset of individuals selected by bootstrap (Breiman, 2001). Using stochastic

perturbation (bootstrap) and averaging the outputs of the decision trees can

avoid over-fitting (Hastie et al., 2011).

In this study, default choices of the R package ‘RandomForest’ were used

(Liaw and Wiener, 2002), which uses the decrease in mean squared error as a

criterion for selecting the best split (Liaw, 2013). After a preliminary analysis

for optimisation, we kept the default settings of the package, that is, number of
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variables tried at each split mtry¼ p/3, number of trees¼ 500 and minimum

node size¼ 5.

SVR is based on the structural risk minimisation principle that aims to learn

a function from finite training data. In this study, we used the ‘e-insensitive’

SVM regression or e-SVR as implemented in Workbench WEKA (Hall et al.,

2009). e-SVR performs a robust linear regression by ignoring residuals smaller

in absolute value than some constant (e) and assigning a linear loss function

for larger residuals. To learn non-linearly functions, data are implicitly mapped

to a higher dimensional space by means of Mercer kernels that can be

expressed as an inner product (Hastie et al., 2011).

We evaluate the performance of e-SVR with a linear kernel, K(xi,xi0)¼ xi � xi0

and a Gaussian kernel, K(xi,xi0)¼ exp(�g||xi�xi0||
2), where g40 is the

bandwidth parameter.

Optimisation of the C parameter (linear and Gaussian kernels) and g
(Gaussian kernel) was performed by a logarithmic grid search of base 2 over an

extensive range of values. The constant C40 determines the trade-off between

the flatness of f and the amount up to which deviations larger than e are

tolerated. Each point on the grid was evaluated by internal five-fold cross-

validation on the training set using r as a goodness-of-fit criterion. The e
parameter was used with the default values of WEKA (Ornella et al., 2012). For

a more exhaustive presentation of e-SVR, refer to SVR section Hastie et al.

(2011).

Classification methods
Random Forest Classification. The concept behind RFC is the same as that in

regression (Liaw and Wiener, 2002). Differences between them are: the splitting

criteria, that is, the Gini Index instead of mean squared error, and the number

of variables recommended for each split, (mtry¼
ffiffiffi
p
p

); also, the class of an

unseen example is predicted by majority vote, that is, the algorithm counts the

number of votes (one vote per decision tree) and assigns the class with the

highest number of votes (Liaw, 2013). A comprehensive explanation of RFC

can be found in González-Recio and Forni (2011) or Hastie et al. (2011). As in

regression, we evaluated different alternatives but finally kept the default

settings of the package, that is, number of trees¼ 500, node size¼ 1 and

mtry¼ 215, 37 and 38 for all maize, rust and wheat-yield data sets, respectively.

Support Vector Classification. The goal of SVC is to calculate a maximal

margin hyperplane separating the two classes; this hyperplane is fully specified

by a subset of support vectors; classification was also performed using the

Workbench WEKA (Hall et al., 2009). As in regression, optimisation of

parameters was performed by a logarithmic grid search over an extensive range

of values, that is, C¼ (2�15,y,26) and g¼ (2�20,y,215). Each point on the

grid was evaluated by an internal fivefold cross-validation on the training set

using k as a criterion for success. For further reading, refer to Cortes and

Vapnik (1995) or Hastie et al. (2011). For details about optimisation of SVR

and SVC, refer to Witten and Frank (2005).

Improving the performance of classifiers by estimating the
probability of the class
Classification in unbalanced data sets is a difficult problem from both the

algorithmic and performance perspectives. Not choosing the right objective

function while developing the classification model can introduce bias towards

the majority, potentially uninteresting, class. Some algorithms circumvent this

problem by using, for example, weighted loss functions or by giving different

penalisations according to the misclassification group (Fernández et al., 2011).

We explored the possibility of setting an appropriate threshold in order to

Table 1 Information on the maize and wheat data sets used in this study

Data set Species Trait–environment combination Number of individuals Number of markers

GY-WW Maize Yield—well watered 242 46 374 SNPs

GY-SS Maize Yield—drought stressed 242 46 374 SNPs

MLF-WW Maize Male flowering time—well watered 258 46 374 SNPs

MLF-SS Maize Male flowering time—drought stressed 258 46 374 SNPs

FLF-WW Maize Female flowering time—well watered 258 46 374 SNPs

FLF-SS Maize Female flowering time—drought stressed 258 46 374 SNPs

ASI-WW Maize Anthesis silking interval—well watered 258 46 374 SNPs

ASI-SS Maize Anthesis silking interval—drought stressed 258 46 374 SNPs

GLS-1 Maize Grey leaf spot 272 46 374 SNPs

GLS-2 Maize Grey leaf spot 280 46 374 SNPs

GLS-3 Maize Grey leaf spot 278 46 374 SNPs

GLS-4 Maize Grey leaf spot 261 46 374 SNPs

GLS-5 Maize Grey leaf spot 279 46 374 SNPs

GLS-6 Maize Grey leaf spot 281 46 374 SNPs

KBIRD-Srm Wheat Stem rust—main season 90 1355 DArT

KBIRD-Sro Wheat Stem rust—off season 90 1355 DArT

KNYANGUMI-Srm Wheat Stem rust—main season 176 1355 DArT

KNYANGUMI-Sro Wheat Stem rust—off season 191 1355 DArT

F6PAVON-Srm Wheat Stem rust—main season 176 1355 DArT

F6PAVON-Sro Wheat Stem rust—off season 180 1355 DArT

JUCHI-Ken Wheat Yellow rust—Kenya 176 1355 DArT

KBIRD-Ken Wheat Yellow rust—Kenya 191 1355 DArT

KBIRD-tol Wheat Yellow rust—Mexico 176 1355 DArT

KNYANGUMI-tol Wheat Yellow rust—Mexico 180 1355 DArT

F6PAVON-Ken Wheat Yellow rust—Kenya 147 1355 DArT

F6PAVON-tol Wheat Yellow rust—Mexico 180 1355 DArT

GY-1 Wheat Yield-E1, low rainfall and irrigated 599 1279 DArT

GY-2 Wheat Yield—high rainfall 599 1279 DArT

GY-3 Wheat Yield—low rainfall and high temperature 599 1279 DArT

GY-4 Wheat Yield—low humidity and hot 599 1279 DArT

Abbreviation: SNP, single-nucleotide polymorphism.

Prediction with classification algorithms
L Ornella et al

618

Heredity



balance the classes and select the a% best individuals according to the

probability obtained by the classifiers, that is, lines with higher probability are

ranked first. Classification methods can be divided into two main groups: soft

and hard classifiers (Liu et al., 2011). Hard classifiers directly target the

classification decision boundary without producing the probability estimation,

whereas soft classifiers allow estimating class conditional probabilities and then

performing classification based on the estimated probabilities. In Random

Forest, this probability can be approximated by counting the number of votes

of the decision trees (Liaw and Wiener, 2002), whereas in the support vector

machine implementation of WEKA, this value is obtained by mapping the

output of each SVM with a sigmoid function (Platt, 2000). This probability

allows us to rank the candidates and select the best a% of individuals in the

testing set at different percentiles.

In preliminary research, we explored the performance of both RFC and SVC

for selecting the best 15% of individuals but with algorithms trained at

different percentiles of the distribution, that is, setting the proportion of

individuals in the best–worst classes in the training sets to 15–85, 20–80,

30–70, 40–60 or 50–50. Results presented here were obtained with algorithms

trained with a best–worst line ratio of 40–60; this ratio showed the best

performance among the different partitions evaluated. Results for the other

percentiles were also obtained using this ratio in the training set.

Evaluating the methods (performance criteria)
Prediction assessment was performed by means of a cross-validation scheme.

Fifty random partitions were generated using a predefined random binary

matrix of order n� 50 (where n is the sample size); each partition was divided

into a training set (90% of the lines) and a testing set (10% of the lines).

Statistical evaluation was performed using the paired samples Wilcoxon test

(Wilcoxon, 1945).

For prediction, regression models were evaluated using Pearson’s correlation

coefficient between observed and predicted values of the test sets, whereas for

selecting the best individuals we used two measures: the k coefficient and an ad

hoc measure that we called RE.

We used the k coefficient because our data were unbalanced, that is, the

classes were not approximately equally represented, and k allows rectifying the

fraction of cases correctly identified by the coincidence expected by chance

(Fielding and Bell, 1997). The estimator can be calculated using the formula

(Figure 1):

k ¼ P0 �Pe

1�Pe
ð5Þ

where Po¼ naa þ nbb

ntot
is the observed fraction of concordances between the

observed and predicted values; Pe¼ ma

ntot
� na

ntot
þ mb

ntot
� nb

ntot
is the expected con-

cordance as determined by the marginal distributions (for example, ma

ntot
)

obtained from the confusion matrix (Figure 1); naa and nbb are the number of

cases correctly predicted for classes A and B, respectively; ma and mb are the

observed cases for classes A and B, respectively; na and nb are the number of

predicted values for classes A and B, respectively; and ntot¼ naþ nb¼maþmb

is the total number of cases in the experiment.

The second measure, RE, was based on the expected genetic gain when

individuals are selected only by GS given by:

RE ¼
ð
P
a0

yiÞ=Na0 � ð
P
Test

yiÞ=NTest

ð
P
a

yiÞ=Na �ð
P
Test

yiÞ=NTest
ð6Þ

where a and a0 are the groups of extreme individuals selected by the ranking of

observed or predicted values, respectively; Na¼Na0 are the numbers of

individuals in each group; yi is the observed value of each individual; and

(
P

Test yi)/NTest represents the mean of the test group. In other words, the

denominator is the differential selection of the individuals selected by

traditional breeding (Falconer and Mackay, 1996), whereas the numerator is

the differential selection of the individuals selected by GS.

Regarding the ASI phenotype, the best individuals are those whose

phenotypic values are closer to zero. Therefore, equation (6) was modified

as follows:

REASI ¼
ð
P
a0

yij jÞ=Na0 � ð
P
Test

yij jÞ=NTest

ð
P
a

yij jÞ=Na�ð
P
Test

yij jÞ=NTest
ð7Þ

where | � | is the absolute value.

To compute the values of these two estimators for GS methods, in each of

the 50 random partitions we ranked the individuals in the test set according to

their observed or predicted phenotypic values, high values first and lower

values last. From both rankings, we selected the top a% of individuals (if the

trait was yield), the bottom a% (flowering or disease resistance) or the a%

located in the middle of the distribution (ASI). Coincidences between selected

individuals in the two rankings were estimated by k, while the efficacy of GS

selection in terms of genetic gain was calculated by RE. This operation was

performed for a¼ 10, 15, 20, 25, 30, 35 and 40%.

Regarding GS classification, for each of the 50 test sets, we also prepared the

first ranking using the phenotypic (observed) value and the second ranking

using the probability of the desired class as estimated by the classifier (that is,

the probability of a high yielding or resistant line).

Software
Scripts for evaluation were implemented in Java code using Eclipse platform

v3.7 (Dexter, 2007) and R language (R Core Team, 2013). R was used to

perform the statistical analyses. The Lattice package (Sarkar, 2008) was used to

develop the Supplementary Figures.

RESULTS

Evaluation of the overall performance of regression methods by
Pearson’s correlation coefficient
Before evaluating GS for selecting the extreme individuals, we
performed a classic analysis of regression as reported elsewhere (for
example, González-Camacho et al., 2012). Results are presented in
Supplementary Tables S1 (maize) and S2 (wheat).

It can be seen in Supplementary Table S1 that RKHS nominally
outperformed the other regression methods in four GLS data sets and
three flowering data sets and tied with RR in one flowering data set.
Wilcoxon’s signed rank test showed that the superiority of RKHS was

Figure 1 Confusion matrix for a two-class problem. oa and ob are the

number of observed cases for classes A and B, respectively; ma¼ naaþ nba

and mb¼nabþ nbb are the number of predicted cases for classes A and B,

respectively; naa and nbb are the number of individuals correctly predicted

for each class; nab is the number of individuals in class A predicted as B,

whereas nba is the number of individuals in class B predicted as A. ntot is

the total number of cases in the experiment.
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not statistically significant in any of these data sets. SVR-rbf
performance succeeded in GLS-3, GLS-6 and MLF-SS data sets,
although the difference was statistically significant only in MLF-SS.
RR showed the best performance in the GY-WW data set, with a
significance level of 0.05, whereas BL and RF outperformed the other
models in ASI-WW and GY-SS, respectively (superiority of both was
not statistically significant). As for the wheat data sets (Supplementary
Table S2), RF achieved the best correlations in all six stem rust data
sets, and the difference was statistically significant in five of them. In
the yellow rust data sets, both KBIRD data sets and the KNYAN-
GUMI-Tol data set, RF achieved the best results. The difference was
statistically significant only in the last example. Finally, RKHS
presented the best results in all yield data sets (GY-1 to GY-4),
although this superiority was statistically significant only in GY-4.

Comparison of regression and classification for selecting the best
15% of individuals
We compared the performance of the six regression algorithms for
selecting the best 15% of the individuals (using the same 50 random
partitions). Table 2 shows k coefficients for these algorithms plus two
classification methods: RFC, SVC-lin, and SVC-rbf. Regarding k,
SVC-lin outperformed the rest of the algorithms in all data sets but
one, GLS-6, where RR achieved the best performance. The superiority
of SVC-lin was statistically significant in five GLS data sets and in four
flowering data sets: MLF-WW, MLF-SS, FLF-WW, and ASI-SS.

Table 3 shows the RE of the same models for selecting the best
individuals at a¼ 15%. SVC-lin also achieved the best performance in
all the data sets except GLS-6, where RR had the best mean, although
the difference was not statistically significant. The superiority of SVC-
lin was statistically significant in all cases but GY-SS.

Table 4 shows the k values of the regression and classification
models when selecting the best 15% of individuals in the 16 wheat
data sets. SVC-lin produced the best results in all stem rust data
sets, in five of the six yellow rust data sets and in one yield data set
(GY-1). The differences were significant only in two SR data sets

(F6PAVON-Srm and KNYANGUMI-Srm), one YR data set
(F6PAVON-Ken) and one yield data set (GY-1). SVC-rbf gave rise
to the best k in one YR data set (KBIRD-Ken), but the difference was
not statistically significant. Finally, RR achieved the best k in GY-2,
whereas RHKS tied with BL in GY-3 and showed the best value in
GY-2. None of the differences were statistically significant.

Table 5 presents the RE of the different models for selecting the best
15% of individuals in the wheat data sets. SVC-lin produced the best
results in four stem rust data sets (KBIRD, KNYANGUMI-Srm and
F6PAVON-Srm). BL showed the best values in the other two data sets
(KNYANGUMI-Sro and F6PAVON-Sro). As for the yellow rust data
sets, SVC-lin gave the best results in all data sets but one, KBIRD-tol,
where the best performance was obtained with RFR. RHKS achieved
the best RE values in GY-2, GY-3 and GY-4, but they were significant
only in GY-4. Finally, SVR-rbf presented the best mean in GY-1 (non-
significant).

To test the widespread view that r is a good indicator of the
performance of GS for selecting the best individuals, we made a
scatter plot of r vs k (Figure 2a) and r vs RE (Figure 2b) of selection
at a¼ 15% for the maize data sets. The figure shows these statistics
are closely related. The exception is the ASI data, where the best
individuals were selected from the middle of the distribution instead
of the extremes. The other flowering traits and GLS resistance were
selected from the lower tail of the distribution, whereas yield was
selected from the upper tail.

The same conclusions can be drawn from the wheat data set
(Figures 3a and b), where individuals were selected from the lower tail
(rust resistance) or the upper tail (yield) of the distribution.

Comparison of regression and classification for selecting the best
individuals at different percentile values
Although the percentile a¼ 15% is a proportion commonly used in
plant breeding, some breeders may require other values, that is,
a¼ 20 or 40%, depending on budget or programme demands. We
therefore evaluated the success of regression and classification methods

Table 2 Cohen’s kappa coefficient for 6 regression and 3 classification methods for genomic selection applied to 14 maize data sets and

across trait–environment combinations when selecting the best 15% of individuals

Data set Regression Classification

RHKS BL RR RFR SVR rbf SVR lin RFC SVC rbf SVC lin

GLS-1 0.249 0.190 0.243 0.249 0.196 0.196 0.243 0.272 0.337**

GLS-2 0.329 0.329 0.318 0.323 0.364 0.376 0.329 0.318 0.545**

GLS-3 0.399 0.446 0.411 0.393 0.417 0.434 0.405 0.323 0.586**

GLS-4 0.368 0.338 0.356 0.344 0.380 0.338 0.315 0.250 0.480*

GLS-5 0.102 0.084 0.084 0.143 0.154 0.154 0.102 0.084 0.382**

GLS-6 0.178 0.154 0.183** 0.166 0.137 0.148 0.160 0.125 0.148

GY-SS 0.202 0.208 0.244 0.232 0.208 0.256 0.238 0.190 0.316NS

GY-WW 0.370 0.376 0.382 0.394 0.364 0.340 0.334 0.394 0.454NS

MLF-WW 0.580 0.592 0.586 0.557 0.580 0.586 0.575 0.468 0.699**

MLF-SS 0.580 0.586 0.610 0.545 0.580 0.610 0.569 0.510 0.722**

FLF-WW 0.557 0.586 0.580 0.539 0.580 0.586 0.610 0.445 0.693**

FLF-SS 0.569 0.610 0.616 0.504 0.610 0.598 0.480 0.421 0.669NS

ASI-WW 0.072 0.066 0.078 0.001 0.066 0.078 0.096 0.078 0.131NS

ASI-SS 0.049 0.090 0.073 0.007 0.060 0.107 0.120 0.155 0.303**

Abbreviations: BL, Bayesian LASSO; NS, not significant; RFR, Random Forest Regression; RHKS, Reproducing Kernel Hilbert Spaces; RR, Ridge Regression; SVR, Support Vector Regression with
radial basis function (rbf) or linear (lin) kernels; RFC, Random Forest Classification; SVC, Support Vector Classification with radial basis function (rbf) or linear (lin) kernels.
Results presented are the average of 50 random partitions (the proportion of individuals in the training-testing data sets is 9:1).
For each data set the highest value is underlined.
*, ** Differences are significant at the 0.05 and 0.01 probability levels, respectively.
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using the same criteria (k and RE) at a¼ 10, 15, 20, 25, 30, 35 and
40% of the distribution. For simplicity, the complete results of this
evaluation are presented in Supplementary Figures S1–S5, which
show that k or RE of the different regression or classification
algorithms is influenced by the data set or the percentile value. To
summarise these different outputs, in Figures 4 and 5 we give bar
plots comparing the performance of k (A) and RE (B), for the best
classification algorithm against the best regression algorithm for the

maize and wheat data sets, respectively, at two percentiles: 15% and
30%. From our viewpoint (Supplementary Figures S1–S5), these two
values summarise the behaviour of algorithms at low percentiles
(o25%) or high percentiles (X25%), respectively. This behaviour is
highly dependent on the trait and the crop evaluated. For example,
when evaluating grain yield in wheat (Supplementary Figure S1), RE
remained approximately constant, except for SVR-lin, which
decreased in GY-4 as the percentile decreases. Something similar

Table 4 Cohen’s kappa coefficient of 6 regression and 3 classification methods for genomic selection applied to 16 wheat data sets and

across trait–environment combinations when selecting the best 15% of individuals

Data set Regression Classification

RHKS BL RR RFR SVR rbf SVR lin RFC SVC rbf SVC lin

KBIRD-Srm 0.100 0.303 0.280 0.145 0.258 0.213 0.145 0.235 0.438NS

KBIRD-Sro 0.322 0.392 0.344 0.425 0.344 0.322 0.235 0.168 0.528NS

KNYANGUMI-Srm 0.168 0.184 0.208 0.160 0.184 0.224 0.056 0.232 0.424**

KNYANGUMI-Sro 0.438 0.493NS 0.406 0.485 0.414 0.398 0.470 0.327 0.493NS

F6PAVON-Srm 0.256 0.264 0.248 0.296 0.240 0.176 0.360 0.360 0.464*

F6PAVON-Sro 0.288 0.384 0.352 0.320 0.400 0.312 0.320 0.264 0.464NS

JUCHI-Ken 0.258 0.258 0.258 0.078 0.168 0.213 0.145 0.235 0.280NS

KBIRD-Ken 0.033 0.078 0.033 0.078 0.033 0.010 0.078 0.235NS 0.213

KBIRD-tol 0.370 0.348 0.325 0.303 0.235 0.258 0.280 0.303 0.415NS

KNYANGUMI-tol 0.034 0.058 0.058 0.066 0.050 0.018 0.074 0.288 0.327NS

F6PAVON-Ken 0.158 0.158 0.112 0.146 0.181 0.054 0.181 0.287 0.354*

F6PAVON-tol 0.384 0.320 0.312 0.368 0.296 0.240 0.360 0.392 0.416NS

GY-1 0.229 0.142 0.135 0.234 0.210 0.119 0.231 0.271 0.401**

GY-2 0.250 0.239 0.265NS 0.205 0.239 0.142 0.137 0.244 0.179

GY-3 0.234 0.234NS 0.229 0.158 0.224 0.166 0.161 0.216 0.150

GY-4 0.422NS 0.346 0.344 0.401 0.383 0.208 0.286 0.346 0.297

Abbreviations: BL, Bayesian LASSO; NS, not significant; RFR, Random Forest Regression; RHKS, Reproducing Kernel Hilbert Spaces; RR, Ridge Regression; SVR, Support Vector Regression with
radial basis function (rbf) or linear (lin) kernels; RFC, Random Forest Classification; SVC, Support Vector Classification with radial basis function (rbf) or linear (lin) kernels.
Results presented are the average of 50 random partitions (the proportion of individuals in the training-testing data sets is 9:1).
For each data set the highest value is underlined.
*, ** Differences are significant at the 0.05 and 0.01 probability levels, respectively.

Table 3 Relative efficiency of 6 regression and 3 classification methods for genomic selection applied to 8 maize data sets and across trait–

environment combinations when selecting the best 15% of individuals

Data set Regression Classification

RHKS BL RR RFR SVR rbf SVR lin RFC SVC rbf SVC Lin

GLS-1 0.358 0.300 0.341 0.354 0.278 0.296 0.331 0.336 0.487**

GLS-2 0.589 0.527 0.551 0.583 0.601 0.585 0.539 0.506 0.795*

GLS-3 0.702 0.730 0.706 0.700 0.707 0.721 0.693 0.600 0.841**

GLS-4 0.611 0.570 0.600 0.602 0.580 0.534 0.473 0.572 0.763**

GLS-5 0.283 0.287 0.260 0.325 0.331 0.354 0.264 0.237 0.664**

GLS-6 0.423 0.376 0.432NS 0.424 0.382 0.393 0.315 0.367 0.381

GY-SS 0.356 0.286 0.346 0.432 0.328 0.348 0.415 0.332 0.508NS

GY-WW 0.591 0.585 0.603 0.616 0.585 0.561 0.534 0.588 0.704*

MLF-WW 0.848 0.888 0.863 0.800 0.847 0.886 0.856 0.687 0.914**

MLF-SS 0.847 0.871 0.890 0.803 0.856 0.882 0.803 0.741 0.948**

FLF-WW 0.822 0.877 0.856 0.775 0.845 0.878 0.867 0.692 0.932**

FLF-SS 0.832 0.885 0.874 0.757 0.866 0.872 0.738 0.673 0.908**

ASI-WW 0.182 0.173 0.312 0.103 0.210 0.263 0.226 0.238 0.393*

ASI-SS 0.134 0.165 0.124 0.109 0.143 0.116 0.262 0.304 0.634**

Abbreviations: BL, Bayesian LASSO; NS, not significant; RFR, Random Forest Regression; RHKS, Reproducing Kernel Hilbert Spaces; RR, Ridge Regression; SVR, Support Vector Regression with
radial basis function (rbf) or linear (lin) kernels; RFC, Random Forest Classification; SVC, Support Vector Classification with radial basis function (rbf) or linear (lin) kernels.
Results presented are the average of 50 random partitions (the proportion of individuals in the training-testing data sets is 9:1).
For each data set the highest value is underlined.
*, ** Differences are significant at the 0.05 and 0.01 probability levels, respectively.
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occurred in maize grain yield, except for SVC-lin, which increased as
the percentile decreased (Supplementary Figure S1B). Regarding k, it
decreased in most algorithms, except SVC-lin in GY-1, where it was
high and constant (Supplementary Figure S1A). Regarding yield,
many methods showed a k and RE response convex upwards, while in
the flowering data sets (Supplementary Figure S2), for most methods,
both k and RE displayed straight horizontal lines or with a slight
decrease at lower percentiles. RFC exhibited a particular behaviour in
the RE of FLM or FLF data sets (Supplementary Figure S2B) or k
(Supplementary Figure S2A), where values dropped abruptly as a
became lower than 0.2. GLS data sets (Supplementary Figure S3)
showed similar behaviour to that detected in flowering, except that
RFR showed the same performance as the remaining methods. With
respect to the k values observed in GLS analysis in the maize data sets
(Supplementary Figure S3), all algorithms had approximately the

same value (GLS-2, GLS-3 and GLS-4) as alpha decreased, except SVC
with linear kernel, which exhibited continuous growth.

Finally, in the analysis of yellow and stem rust, k or RE variation
proceeds in steps across the different percentiles, while in the other
data sets these variables (k or RE) showed a continuous variation.
This may be due to the fact that the original phenotypes were
recorded on a 1–6 scale (Ornella et al., 2012) and to an artifact
generated by sampling a low number of individuals. GLS resistance
was also recorded on a discrete scale but the number of individuals
was higher (González-Camacho et al., 2012). These steps were more
pronounced in KBIRD data sets (Supplementary Figure S4), where
the population size was 90 individuals.

The summaries presented in Figures 4 and 5 show that the
relative performance between regression and classification at the
two percentiles is highly dependent on the trait analysed.

Figure 2 Scatter plot of Pearson’s correlation coefficient vs Cohen’s kappa coefficient (a) and Pearson’s correlation vs RE (b) for the 6 regression methods

evaluated on 14 maize data sets using a percentile value of 15%. ASI data sets were excluded from the regression analysis (ovals).

Table 5 Relative efficiency of 6 regression and 3 classification methods for genomic selection applied to 16 wheat data sets and across trait–

environment combinations when selecting the best 15% of individuals

Data set Regression Classification

RHKS BL RR RFR SVR rbf SVR lin RFC SVC rbf SVC lin

KBIRD-Srm 0.284 0.600 0.549 0.558 0.517 0.544 0.326 0.118 0.707**

KBIRD-Sro 0.623 0.758 0.740 0.810 0.690 0.702 0.702 0.470 0.821NS

KNYANGUMI-Srm 0.506 0.596 0.588 0.667 0.601 0.640 0.305 0.504 0.811**

KNYANGUMI-Sro 0.654 0.738NS 0.632 0.676 0.652 0.614 0.672 0.483 0.732

F6PAVON-Srm 0.580 0.607 0.589 0.636 0.564 0.498 0.628 0.570 0.783**

F6PAVON-Sro 0.612 0.750NS 0.690 0.685 0.717 0.637 0.689 0.488 0.736

JUCHI-Ken 0.496 0.500 0.497 0.170 0.426 0.475 0.244 0.255 0.553NS

KBIRD-Ken 0.078 0.265 0.226 0.390 0.357 0.146 0.158 0.189 0.484NS

KBIRD-tol 0.463 0.515 0.483 0.636NS 0.440 0.483 0.507 0.443 0.619

KNYANGUMI-tol 0.086 0.204 0.204 0.315 0.230 0.119 0.157 0.343 0.551**

F6PAVON-Ken 0.317 0.209 0.177 0.267 0.285 0.175 0.304 0.264 0.565**

F6PAVON-tol 0.577 0.566 0.564 0.547 0.549 0.499 0.509 0.477 0.640NS

GY-1 0.530 0.380 0.377 0.519 0.491 0.215 0.533 0.617NS 0.479

GY-2 0.502NS 0.459 0.497 0.391 0.482 0.335 0.401 0.446 0.324

GY-3 0.458NS 0.449 0.441 0.366 0.448 0.266 0.367 0.226 0.338

GY-4 0.586* 0.480 0.472 0.558 0.540 0.354 0.451 0.471 0.363

Abbreviations: BL, Bayesian LASSO; NS, not significant; RFR, Random Forest Regression; RHKS, Reproducing Kernel Hilbert Spaces; RR, Ridge Regression; SVR, Support Vector Regression with
radial basis function (rbf) or linear (lin) kernels; RFC, Random Forest Classification; SVC, Support Vector Classification with radial basis function (rbf) or linear (lin) kernels.
Results presented are the arithmetic means of 50 random partitions (the proportion of individuals in the training-testing data sets is 9:1).
For each data set the highest value is underlined.
*, ** Differences are significant at the 0.05 and 0.01 probability levels, respectively.
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In the FLF and FLM data sets, both regression and classification
reduced k and RE values when a¼ 30%. In GLS, this reduction was
less pronounced, and in most data sets, classification still out-
performed regression. In the two ASI data sets, where individuals
were selected from the middle of the distribution, RE of classification
decreased in both cases, whereas RE of regression increased for ASI-SS
and decreased for ASI-WW. The k of regression increased for both
ASI-SS and ASI-WW, whereas the k of classification decreased for
ASI-SS or remained roughly the same for ASI-WW. Finally, RE

decreased for both classification and regression in GY-SS for the
two yield data sets (Figure 4b), while k was roughly the same
for regression and increased for classification. For GY-WW, k
decreased for regression and remained in the same magnitude
classification, while RE decreased for both classification and
regression in GY-WW (Figure 4b).

For the wheat yield data, RE of regression and classification
remained in the same order of magnitude (Figure 5b), whereas k
increased when a was set at 30%; the exception was GY-4, where k

Figure 4 Bar plot of Cohen’s kappa coefficient (a) and RE (b) for the best regression method (green) and the best classification method (grey) evaluated on

14 maize data sets using a percentile a¼15% (light colour) and 30% (dark colour).

Figure 3 Scatter plot of Pearson’s correlation coefficient vs Cohen’s kappa coefficient (a) and Pearson’s correlation coefficient vs RE (b) for the 6 regression

methods evaluated on 16 wheat data sets using a percentile value of 15%.
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remained in approximately the same range (Figure 5a). Note that
these observations are approximations used here to illustrate the
tendency of the interaction between algorithms and traits. In all
yellow rust data sets, the RE decreased markedly for classification,
whereas for regression it increased or remained in the same order of
magnitude. In stem rust, there is noticeable variation across data sets.
When a¼ 30%, RE of regression increased for all data sets, except
those derived from the KNYANGUMI population, while RE of
classification decreased or remained in the same order of magnitude.
Lastly, k of regression increased in all stem and yellow rust data sets,
whereas k of classification increased for data from off-season
evaluation (-Sro) and decreased for data sets derived from main
season evaluation (-Srm). Finally, k decreased for three yellow rust
data sets (KBIRD-Tol, KNYANGUMI-Tol and F6PAVON-Ken) and
increased for the other three (KBIRD-Ken, JUCHI-ken and
F6PAVON-Tol).

DISCUSSION

Accuracy of GS algorithms for selecting the best individuals
GS aims to accurately predict breeding values with genome-wide
marker data using a three-step process: (1) model training and
validation, (2) predicting breeding values, and (3) selecting based on
these predictions (Heffner et al., 2010).

Success of GS is mostly evaluated by Pearson’s correlation
coefficient between the observed and predicted values. However,

r is a global measure that does not assess the goodness-of-fit of
the regression in the critical zone, that is, the extreme values where
the breeder decides whether or not to keep the lines for further
breeding.

We evaluated the performance of 6 regression and 2 classification
methods for selecting the best 15% of the individuals in 16 wheat data
sets and 14 maize data sets (number of individuals ranging from 90 to
599) with variable marker coverage (Table 1) and variable population
structure (González-Camacho et al., 2012; Crossa et al., 2013).
However, as population size influences the decision on selection
intensity, we also evaluated the behaviour of algorithms for a¼ 10, 15,
20, 25, 30, 35 and 40% of the distribution.

We chose two measures to evaluate the performance of algorithms
for selecting the best individuals. One is the kappa (k) coefficient
(Cohen, 1960), which estimates the number of individuals correctly
selected adjusted by the proportion of the class. The second is RE
(equations 6 and 7), which was proposed ad hoc upon the model of
directional selection by truncation (Falconer and Mackay, 1996).
Under this model, the genetic gain per generation is DG¼ ihsg

(Falconer and Mackay, 1996), where i is the intensity of selection; h
is the square root of heritability of the trait; and sg is the additive
genotypic standard deviation of the initial generation. As RE is the
ratio of selection intensity based on marker data to phenotypic
selection intensity (assuming the same genetic variance), it also gives
the expected DG when GS is used. Other statistics remain to be

Figure 5 Bar plot of Cohen’s kappa coefficient (a) and RE (b) for the best regression method (green) and the best classification method (grey) evaluated on

16 wheat data sets using a percentile a¼15% (light colour) and 30% (dark colour).
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explored: the AUC (area under the curve) statistic, for example,
which is interpreted as the probability that a given classifier
assigns a higher score to a positive example than to a negative one,
when the positive and negative examples are randomly picked
(Vazquez et al., 2012). The choice of the proper statistic will depend
on the experimental design.

Our results (Figures 2b and 3b) show that, except for the ASI data
sets, r is a good indicator of the efficiency of GS in replacing
phenotypic selection for a¼ 15%. For both maize and wheat, the
relation between r and k or between r and RE is very similar. For
example, if r¼ 0.6, RE is approximately 0.7 for maize (Figure 2b) and
0.6 for wheat (Figure 3b). The difference between slopes may be
influenced mainly by the number of markers as the number of lines
overlaps. Concerning the trait, the best individuals in the data sets
were not always located in the upper tail of the distribution, as in
yield; they were also located in the extreme lower tails of the
distribution, as in disease resistance or flowering traits. For MFL
and FFL, we decided to evaluate the selection of lines located in the
lower tail of the distribution, as our group is involved in a drought
breeding programme and a short life cycle is one of the alternatives
for drought escape.

When using classification instead of regression for GS, we observed
that SVC-lin outperforms regression approaches in almost all data sets
when the proportion of selected individuals is small, that is, at the
tails of the distribution (see Supplementary Figures). This can be
explained by the generalisation capabilities of SVC-lin in circum-
stances that may be similar to those presented in our work, that is, the
Gaussian kernel may over-fit the training set data to yield an SVM
model that is not robust (Jorissen and Gilson, 2005). Results of RFC
were not so good, although other algorithmic alternatives remain to
be explored (González-Recio and Forni, 2011).

The observed difference between classification and regression
can sometimes exceed 50% (see, for example, GLS-5 results in
Figure 4). When the percentile of the distribution is higher, that is,
aX25%, either this difference is not so important or regression
performs better. It should be noted that dissimilarities between
performances of algorithms depend on the trait analysed (see
Supplementary Figure S6). González-Recio and Forni (2011) obtained
similar results when evaluating simulated and field data (disease
resistance in pigs).

The superiority of binary classification over regression could
be due to the skewness or asymmetry of the distribution per se
(Supplementary Figure S1) or to the complexity of the relation-
ship between genotypes and phenotypes. As discussed in
Wang et al. (2012), it is still not clear how important epistasis in
complex traits is in plant selection or what the effect of gene-by-
environment interactions is. Machine learning algorithms, whether
regression (SVR or RFR) or classification (SVC or RFC), can
learn from finite training data sets taking into account the
complexity of the hypothesis space without imposing any structure
on the data (Hastie et al., 2011). Classification algorithms, in
particular, optimise the function specifically to the region of
selection; this may explain the differences observed at higher or
lower percentiles.

Finally, there is a difference between the classification methods
proposed by González-Recio and Forni (2011) and those used in this
study. Whereas González-Recio and Forni (2011) chose hard classi-
fiers, which directly target the classification decision boundary with-
out producing probability estimation, we explored the behaviour of
soft classifiers, which, besides emitting a probability of the class,
allows using more balanced data sets as training.

CONCLUSIONS

In this study, we compared the performance of six regression and
three classification algorithms for selecting the best individuals in
maize and wheat data sets using high-throughput molecular marker
information. Instead of fitting all the data, classification algorithms
optimise the approximating function to separate the best and worst
individuals. This competency is noticeable, especially at extreme
values of the distribution where classification seems able to capture
more efficiently the underlying relations connecting genotypes to
phenotypes.

Data
The 30 data sets (14 maize trials and 16 wheat trials) and the R and
Java scripts used in this work are deposited at http://repository.cim-
myt.org/xmlui/handle/10883/2976.
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Dr Daniel Gianola and Dr O González-Recio for their valuable comments,

which helped to improve the quality of the manuscript.

Author contributions: LO programmed and executed the algorithms and

performed the statistical analysis. PP helped to prepare the data sets and

sample scripts for the RKHS algorithm. ET contributed to optimising the

support vector algorithms. All the authors participated in discussing and

writing the manuscript.

Breiman L (2001). Random forests. Machine Learn 45: 5–32.
Burgueño J, de los Campos G, Weigel K, Crossa J (2012). Genomic prediction of breeding

values when modeling genotype� environment interaction using pedigree and dense
molecular markers. Crop Sci 52: 707–719.

Cohen J (1960). A coefficient of agreement for nominal scales. Educ Psychol Measure-
ments 20: 37–46.

Cortes C, Vapnik V (1995). Support-vector networks. Machine Learn 20: 273–297.
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