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Abstract: Cardiovascular diseases, such as stroke, are the most common causes of death in developed
countries. Ischemic stroke accounts for 85% of the total cases and is caused by abnormal thrombus
formation in the vessels, causing deficient blood and oxygen supply to the brain. Prophylactic
treatments include the prevention of thrombus formation, of which the most used is acetylsalicylic
acid (ASA); however, it is associated with a high incidence of side effects. Angelica gigas Nakai (AG)
is a natural herb used to improve blood circulation via anti-platelet aggregation, one of the key
processes involved in thrombus formation. We examined the antithrombotic effects of AGE 232, the
ethanol extract of A. gigas Nakai. AGE 232 showed a significant reduction in death or paralysis in
mice caused by collagen/epinephrine-induced thromboembolism in a dose-dependent manner and
inhibition of collagen-induced human platelet aggregation in a concentration-dependent manner.
Additionally, AGE 232-treated mice did not show severe bleeding in the gut compared to ASA-treated
mice. AGE 232 resulted in a decrease in the number of neutrophils attached to the human umbilical
vein endothelial cells (HUVECs) and lower inhibition of COX-1 in response to bleeding and damage
to blood vessels, a major side effect of ASA. Therefore, AGE 232 can prevent thrombus formation and
stroke.

Keywords: thrombus formation; acetylsalicylic acid; Angelica gigas Nakai; improvement of blood
circulation; anti-platelet aggregation; bleeding in the gut; side effect

1. Introduction

Thrombosis is the localized clotting of blood, which affects blood circulation and
may cause stroke. Currently, the following three types of strokes have been described:
subarachnoid hemorrhage, intracerebral hemorrhage and ischemic stroke (3%, 10% and 87%
of the total cases, respectively) [1]. Around 3.2 million people were reported to suffer from
stroke, which was found to be the second leading cause of death in 2015. The prevalence
of this disease is estimated to increase by approximately 10% in the next 20 years, and
116 million people may have one or more forms of cardiovascular disease, costing around
818.1 billion USD by 2030 [2].

Ischemic strokes start with atherothrombosis, which is characterized by atherosclerotic
plaque disruption, leading to platelet activation and thrombus formation, which is released
into the bloodstream, blocking the blood flow in the artery and causing ischemia to the
target organ [3]. Platelets play a central role in thrombus formation. Platelets are enucleated
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blood cells originating from the cytoplasm of megakaryocytes in the bone marrow and
circulate in the bloodstream and check the integrity of the vascular system, identifying the
normal endothelial cell lining and areas with lesions [1]. Platelet adhesion, activation and
aggregation at the sides of vascular endothelial disruption caused by atherosclerosis are
key events in arterial thrombus formation [4].

Antiplatelet drugs have served as cornerstones in the prevention and treatment of
cardiovascular diseases [5]. Acetylsalicylic acid (ASA) is the main component of aspirin,
which is the most used antiplatelet drug for more than 50 years [3]. Aspirin has been used
as a prophylactic treatment against stroke because of its inhibitory effect on the synthesis
of platelets [6]; however, this drug also is associated with a high rate of side effects such
as gastric lesions, ulcerations and erosions of the stomach. Aspirin is commonly used to
treat pain, inflammation and fever and acts by inhibiting cyclooxygenase (COX) activity [7].
After oral administration, aspirin passes through the plasma membrane in a unionized
form and affects gastric epithelial function and locally inhibits COX, reducing surface
hydrophobicity, bicarbonate secretion, blood flow and endogenous mucosal defense [8].

Many traditional herbal medicines have been used in clinical practice because of their
efficacy, safety profile and low toxicity [9]. Angelica gigas Nakai (AG) is an herbal medicine
used for the treatment of dysmenorrhea, amenorrhea, abdominal pain [10] and various
circulatory disorders, and demonstrates anti-inflammatory [11], and neuroprotective effects
in ischemic stroke [12]. AG has been demonstrated to improve blood circulation via anti-
platelet aggregation [13]. In the present study, we evaluated the antithrombotic effect of
AGE 232, the ethanol extract of A. gigas Nakai and decursin, and its mechanism as a natural
alternative to prevent thrombus formation in the prevention of ischemic stroke.

2. Materials and Methods
2.1. Preparation of AGE 232

Preparation of AGE 232 was first carried out by extraction from dried A. gigas Nakai
with 50% (v/w) ethanol corresponding to 10 times the weight of dried A. gigas Nakai for 3 h
at 70 ◦C. This step was carried out 2 times. After filtration of the ethanol extract with a sieve
(120 mesh), the filtrate was concentrated using a rotary evaporator till the concentration
reached up to 10 ◦Brix. It was then sterilized at 85 ± 5 ◦C for 1 h. Finally, lyophilized
AGE232 was prepared after filtration of the concentrate through a sieve (100 mesh).

2.2. Animals

Male 5-week-old ICR mice were used for the thromboembolism mouse model and the
ASA-induced ulcerogenesis mice model. All mice were obtained from Raon Bio (Gyeonggi,
South Korea) and housed as a group of four mice per cage in a room with a 12-h light cycle
(lights on at 6:00 AM and off at 6:00 PM) at 23 ± 5 ◦C and 55 ± 5% humidity for 1 week
before the experiment. The mice were housed in a pathogen-free environment with free
access to water and a commercial pellet diet obtained from Raon Bio (Gyeonggi, South
Korea).

All protocols for animal experiments were approved by the Institutional Animal Care
and Committee (IACUC) of Myongji University (MJIACUC-2021002) and were conducted
in accordance with the NIH Guide for the Care and Use of Laboratory Animals.

2.3. Thromboembolism Mouse Model

The antithrombotic activity of the ethanol extract of AGE 232, ASA and decursin was
investigated in vivo by DiMinno’s method [14]. This model is characterized by massive
activation of circulating platelets and the widespread formation of platelet thrombi in the
microcirculation of the lungs, leading to disseminated pulmonary microembolism, and
paralysis of the animals.

To assess sensorimotor coordination and balance performance, the mice were eval-
uated using the Rota Rod Unit. Mice were trained on the rotarod for 2 days before the
experiment. On the day of the experiment, the animals were placed on the rotarod as the
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first trial for 5 min three times. After the first trial ended, a vehicle solution was orally
administered to group 1 (control), aspirin (100 mg/kg), group 2 (positive control), and
AGE 232 was orally administered at concentrations of 40, 80 and 160 mg/kg to groups 3, 4
and 5, respectively. Finally, a dose of 12.4 mg/kg of decursin was administered to group 6
to evaluate the antithrombotic effect of decursin, one of the major coumarins present in the
AG extract. The time required for each animal to remain on the rotarod was recorded for
three trials at a minimum interval of 5 min with a maximum trial length of 300 s each. The
rotarod stopped automatically and recorded the time in 0.1 s till the mice fell on the floor.
The speed was set to accelerate from 4 to 40 rpm until 300 s. The score was presented as the
mean of three trials. After 1 h, 0.06 mL solution of epinephrine (1.7 µg/mL) and collagen
(28.6 µg/mL) was injected into the tail vein to assess the thrombus. After 15 min, the mice
were placed on the rotarod for three more trials. The experiment to record the number of
deaths or paralyzed mice was conducted 3 times for 300 s each, and the percent protection
was calculated using the following equation: Protection (%) = [1-(death or paralyzed mice)
/ total mice] × 100. The experiment was repeated four times.

2.4. ASA-Induced Ulcerogenesis Mouse Model, the Effect of Age 232 on the Gastric Tissue of Mice
and Quantification of Ulceration

ASA-induced ulcerogenesis was performed following the method described by Sze-
lenyu and Thiemer [15] with slight modifications. Briefly, male mice were separated into
five groups (n = 4). Group 1 mice were separated as control and received only an oral
administration of vehicle (10% DMSO in 0.5% carboxymethyl cellulose), groups 2 and 3
received an oral dose of ASA (30 and 300 mg/kg, respectively), and groups 4 and 5 received
an oral dose of AGE 232 (30 and 300 mg/kg, respectively) once a day. The experiment was
conducted for five consecutive days. On the fifth day, mice were sacrificed 4 h after the last
ASA administration by the administration of 3% isoflurane for anesthesia induction and
subsequent cervical dislocation. Immediately, the stomach was dissected, opened along
the greater curvature, and stretched on cork plates. The inner surface was rinsed with PBS
to remove any blood contaminants. The gastric mucosa was observed using a binocular
stereomicroscope at 20X magnification (EZ4HD, Leica, Wetzlar, Germany). The stomach
was examined for edema, necrosis and ulceration, and analyzed using ImageJ. The ulcer
index was calculated using a modified Ganguly method [16], wherein the ulcer index was
calculated as follows: Ulcer index (%) = [total ulcerated area/total mucosal area] × 100.

2.5. Cell Viability Using 3-(4,5-Dimethylthiazol-2-yl)-2-5-dyphenyltetrazolium Bromide
(Mtt) Assay

To calculate the cell viability and toxicity of AGE 232 and ASA, RGM-1 cells were
obtained from the Cell Engineering Division of RIKEN BioResource Center (RIKEN Cell
Bank, Tsukuba, Ibaraki, Japan), seeded in 96-well plates and incubated for 24 h in 20% FBS
(Gibco, Thermo Fisher Scientific, Inc., Waltham, MA, USA) DMEM/HamF12 Media (Sigma-
Aldrich, St. Louis, MO, USA). After 24 h, cells were washed with warm PBS and treated
with different concentrations of ASA (0.18, 0.9008, 1.8016, 3.6032, 9.008 and 36.032 µg/mL),
AGE 232 (10, 50, 100, 150 and 500 µg/mL), vehicle (media with 1% DMSO) or only media
for 24 h. Cell survival was measured using the MTT assay (Sigma-Aldrich, St. Louis, MO,
USA). In brief, PBS containing 5 mg/mL MTT solution was diluted to a concentration of
0.5 mg/mL and incubated in a humidifier chamber containing CO2 for 4 h. The medium
was aspirated from each well and 100 µL of DMSO was added to dissolve the formazan
crystals. The absorbance of the sample in each well was measured using a microplate
reader (TECAN Spectrofluor Plus, Maennedorf, Switzerland) at a wavelength of 570 nm.
The half-maximal inhibitory concentration (IC50) of ASA and AGE 232 was calculated
based on the percentage of remaining MTT radicals against the sample concentration using
OriginPro software (ver 9.0, OriginLab Corp., Northampton, MA, USA).
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2.6. Platelet Aggregation Assay

The inhibitory effects of AGE 232 and ASA were analyzed using an aggregometer
(Chrono-Log, Havertown, PA, USA). Human platelet-rich plasma (PRP) was purchased
from Gyeonggi Blood Center of the Korean Red Cross (Gyeonggi, South Korea) and
diluted in PBS to a concentration of 2 × 108 platelets/mL. ASA samples were prepared
at concentrations of 2.5 mg/mL in 500 µL PRP. AGE 232 samples were prepared at final
concentrations of 10, 20, 40, 80 and 160 mg/mL in 500 µL PRP, and all PRP samples
contained 0.1% DMSO. The samples were incubated for 1 min with stirring at 1200 rpm.
After incubation, 5 µg/mL of collagen reagent (Chrono-Log, Havertown, PA, USA) was
added to the samples to induce platelet aggregation. Changes in light transmission were
measured for 5 min after the induction of aggregation.

2.7. Endothelial Cell Leukocyte Adhesion Test

This experiment was performed to identify the glycoproteins present on the surface of
leukocytes and endothelial cells responsible for the induction of adhesive interactions.

Human umbilical vein endothelial cells (HUVECs) were purchased from the American
Type Culture Collection (ATCC® CRL-1730™). HUVECs were collected by collagenase
treatment. Cells were smeared on medium 199 containing 10% heat-inactivated bovine
calf plasma, thymidine (2.4 mg/L), glutamine (230 mg/mL), heparin sodium (10 IU/mL),
antibiotics (100 IU/mL penicillin, 100 µg/mL streptomycin and 0.125 µg amphotericin B.
Additional endothelial growth factor (80 µg/mL) was administered. For culture, cells were
incubated at 37 ◦C in humidified air with 5% CO2, followed by trypsinization with Trypsin
0.25% (Gibco, Thermo Fisher Scientific, Inc.). HUVECs that had passed from the first to the
third passage were placed in gelatin (0.1%) and placed in a 1 mm 48-well tissue culture
dish coated with fibronectin (25 µg/mL) and used for cultivation. Cells were identified
as endothelial cells by positively labeled acetylated low-concentration lipoproteins and
rat anti-human factor VIII. Human polymorphonuclear leukocytes were isolated from the
venous blood of healthy adults by standard dextran precipitation and sequential division
on Histopaque 1077 (Sigma-Aldrich, St. Louis, MO, USA). Using this method, 95–98% of
polymorphonuclear leukocytes were harvested and demonstrated to be 98% pure.

The cell adhesion assay was performed to determine the leukocyte-endothelium
interactions using CytoSelect™ Leukocyte-Endothelium Adhesion Assay (Cell Biolabs
Inc., San Diego, CA, USA) according to the manufacturer’s protocol. For the experiment,
HUVECs were seeded into 96-well plates and cultured with ASA (30, 150 and 300 µg/mL),
AGE 232 (30, 150 and 300 µg/mL), or without any drug as the control. A suspension of
THP-1 cells (ATCC® TIB202™) at 2 × 106 was prepared in serum-free media and used with
the CytoSelect™ kit. After 24 h, HUVEC-treated cell media were aspirated and washed
with serum-free media, and 200 µL of THP-1 suspension was added to each well and
incubated for 90 min in a cell culture incubator. After 90 min, the plates were washed three
times with 250 µL of 1 X wash buffer, and 150 µL of 1 X lysis buffer was added to each well
and incubated for 5 min at room temperature. The mixture (100 µL) was transferred to a
96-well plate, and the fluorescence was measured at 520 nm.

2.8. COX- 1
2 Enzyme Inhibitor Screening Assay

The COX- 1
2 screening assay was performed to evaluate the ability of AGE 232 and

ASA to inhibit COX-1 and COX-2 activities on prostaglandin production by measuring
the amount of Prostaglandin 2α produced in the cyclooxygenase reaction. AGE 232 and
ASA were dissolved in 100% DMSO to prepare a stock concentration of 10 mg/mL for
each sample. AGE 232 and ASA were tested in triplicate at 25, 50 and 100 µg/mL, and
concentrations of 1, 2.5, 5 and 10 µg/mL for ASA using a commercial COX inhibitory
screening assay kit as recommended by the manufacturer (Cayman test kit-560131, Cayman
Chemical Company, Ann Arbor, MI, USA). An aliquot of the mixture was removed, and the
prostanoids produced was quantified spectrophotometrically via enzyme immunoassay.
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2.9. Statistical Analysis

All data are shown as the mean ± SD. The statistical difference between the control
and experimental groups was analyzed using a one-way analysis of variance (ANOVA)
or a two-sample t-test to determine statistical significance. P values of ≤ 0.05, between
groups, was considered statistically significant.

3. Results
3.1. Anti-Thrombotic Effect of Age 232 in a Thromboembolism Mouse Model

AGE 232 significantly reduced death or paralysis caused by collagen/epinephrine-
induced thromboembolism in a dose-dependent manner. The protection rates of AGE
232 were 40%, 62.5% and 31.5% at concentrations of 40, 80 and 160 mg/kg, respectively.
Decursin, one of the most abundant coumarins present in A. gigas Nakai roots, showed a
43.75% protection at a concentration of 12.4 mg/kg. AGE 232 concentrations showed high
protection rates compared to those of the control group. Therefore, AGE 232 at 80 mg/kg
showed 12.5% higher protection rates than the positive control (Table 1).

Table 1. Protective effect of AGE 232 on the thromboembolism mouse model.

Group Dose (mg/kg) Number of Dead or Paralyzed
Mice/No. of Total Mice Protection (%) *

Control Vehicle 13/15 13.13

ASA 100 8/16 50.0

AGE 232

40 9/15 40.0

80 6/16 62.5

160 9/16 31.25

Decursin 12.4 9/16 43.75
* Protection (%) indicates the percentage of live and non-paralyzed mice in each group. AGE 232, ethanol extract
of A. gigas Nakai; ASA, acetylsalicylic acid.

3.2. Comparison of AGE 232 and ASA in Terms of Toxicity

Through an in vivo study, we found that AGE 232 protected from death or paralysis by
collagen/epinephrine-induced thromboembolism. Next, we examined the toxicity of AGE
232 by determining the cell cytotoxicity and ulcer index in the stomach of mice because
high doses and long-term treatment with ASA can cause gastric ulcers, compared with
ASA. First, we treated AGE232 and ASA to RGM-1 cells with AGE 232 and ASA at various
concentrations and analyzed the IC50 values

As shown in Figure 1, the MTT assay demonstrated a gradual decrease in RGM-1
cell viability with increasing concentrations of AGE 232 and ASA. In the case of ASA, no
significant cellular toxicity was observed at a lower therapeutic dose (0.18–1.8 µg/mL).
However, the cellular toxicity was 89% at 36.03 µg/mL (Figure 2A). In the case of AGE 232,
the lower doses (10–50 µg/mL) did not show significant cellular toxicity, and the cellular
toxicity significantly increased over 100 µg/mL (Figure 2B). Based on these data, IC50
values of AGE 232 and ASA were found to be 77.9 µg/mL and 10.2 µg/mL, respectively.

Next, we determined the extent of gastric ulcer as a representative side effect of
nonsteroidal anti-inflammatory drugs (NSAIDs) in mice following treatment with AGE 232
and ASA. For this experiment, we used an ASA-induced ulcerogenesis mouse model [17].
First, we measured body weight and feed consumption to check the general body condition.
The body weight and food per animal and food intake per cage were recorded daily for
five consecutive days at the same time of the day. ASA-treated mice showed a significant
reduction in body weight compared with AGE 232-treated mice and the control group
(Figure 2A). Mice treated with 300 mg/kg ASA showed a significant decrease in food intake
compared to the control group. Mice treated with 30 mg/kg ASA showed a slight decrease
in food intake compared with the control group. Mice treated with 300 mg/kg AGE 232
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showed a slight decrease in food intake on the second day of treatment and maintained the
same intake until the end of the experiment (Figure 2B). We then determined the presence of
gastric ulcers in each group. Oral administration of ASA at 300 mg/kg induced significant
gastric ulceration compared to the control group (Figure 2C). In the experimental groups,
one death was recorded in the ASA-treated group at a concentration of 300 mg/kg on
the 4th day of treatment. The stomach mucosa appeared normal in the AGE 232-treated
mice compared with the control group. In contrast, ASA-treated mice at a concentration
of 30 mg/kg showed smalls hemorrhagic ulcers and some clotted blood was noted in the
gastric mucosa. ASA-treated mice with concentrations of 300 mg/kg showed numerous
scattered deep hemorrhagic ulcers and clotted blood. Additionally, these mice showed an
increase in gas content inside the stomach compared with the control group. (Figure 2D).
These results indicate that AGE 232 is a less toxic anti-thrombotic candidate compared to
ASA.
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Figure 1. Cell viability assay by MTT. RGM−1 cells (5 × 103) were grown in 96−well plate for 24 h
and Table 232. at concentrations of 10, 50, 100, 150, 300 and 500 µg/mL (A), and ASA at concentration
of 0.18, 0., 1.8, 3.6, 9 and 36.03 µg/mL (B) for 24 h. Following the reduction of MTT by metabolically
active cells, the formazan crystals formed were solubilized in dimethylsulfoxide and quantified
using a microplate reader at 570 nm. IC50 curves for RGM-1 cells exposed to AGE 232 (C), and
ASA (D) after 24 h of incubation. Data are expressed as Mean ± SD. * P < 0.05, ** P < 0.01 and
*** P < 0.001 compared with the control group. (n = 7). AGE 232, ethanol extract of A. gigas Nakai;
ASA, acetylsalicylic acid.
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Figure 2. Daily recording of the body weight (A) and food intake of mice per cage (B) was checked at 8:00 AM every day.
The ulcerated area was measure using ImageJ at the end of the 5th day of treatment. The graph shows the ulcerated area in
percentage (%) compare with the control at concentrations of 30, and 300 mg/kg of ASA and AGE 232 (C). Changes in the
stomach of mice treated with AGE 232 at concentrations of 30 mg/kg (2) 300 mg/kg (3), ASA at concentrations of 30 mg/kg
(4) and 300 mg/kg (5), compared with control (1). Red arrows indicate the ulcer region in the stomach. (D). ASA-treated
mice showed congestion. Data are expressed as ± SD. **** P < 0.0001 compared with the control group. (n = 10). AGE 232,
ethanol extract of A. gigas Nakai; ASA, acetylsalicylic acid.

3.3. Comparison of AGE 232 and ASA on the Mode of Action in Reducing Thromboembolism

Finally, we compared the anti-thromboembolic activity of AGE 232 with ASA. In
the case of human platelet aggregation, AGE 232 dramatically inhibited aggregation in a
dose-dependent manner compared with the control group. AGE 232 showed aggregation
rates of 59 ± 4.9%, 53 ± 6.2%, 43 ± 12.1%, 20 ± 11.5% and 2 ± 0.8% at concentrations of 10,
20, 40, 80 and 160 µg/mL, respectively. ASA showed aggregation rates of 1 ± 0.5% at a
concentration of 2.5 µg/mL (Figure 3). In addition, in the adhesion of neutrophils, AGE 232
inhibited the adhesion of neutrophils to HUVECs compared with the control group, but
ASA increased the number of neutrophils attached to the HUVECs in a dose-dependent
manner (Figure 4). Interestingly, the inhibition of COX-1 and COX-2 activity increased
in an ASA concentration-dependent manner (Figure 5A). In contrast, the inhibition of
these enzyme activities was decreased by AGE 232 in a concentration-dependent manner
(Figure 5B). These results show that AGE 232 has a different mode of action in reducing
thromboembolism compared to ASA.
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Figure 3. Effect of AGE 232 and ASA on platelet aggregation induced by collagen in human platelet-
rich plasma. The graph shows percentage aggregation data of AGE 232 at concentrations of 10, 20,
40, 80 and 160 µg/mL compared with the control, and concentration of 2.5 µg/mL of acetylsalicylic
acid (ASA) as the positive control. Data are expressed as ± SD. * P < 0.05, *** P < 0.001 and
**** P < 0.0001 compared with the control group (n = 7). AGE 232, ethanol extract of A. gigas Nakai;
ASA, acetylsalicylic acid.
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Figure 4. Effect of AGE 232 and ASA in endothelial leukocyte adhesion test. * represents the
percentage data of AGE 232 compared with the ASA percentage data. # represents the percentage
data of AGE 232 compared with the control group. Data are expressed as ± SD. * P < 0.05, ** P < 0.01,
# P < 0.05, ## P < 0.01 compared with the control group. (n = 4). AGE 232, ethanol extract of A. gigas
Nakai; ASA, acetylsalicylic acid.
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Figure 5. Inhibitory effect of AGE 232 at concentrations of 25, 50 and 100 µg/mL, and ASA at
concentrations of 1, 2.5, 5 and 10 µg/mL of COX-1 (A), and COX-2 (B). Data are expressed as
inhibition rates (%). AGE 232, ethanol extract of A. gigas Nakai; ASA, acetylsalicylic acid. COX-1 and
COX-2 are cyclooxygenases.

4. Discussion

Thrombosis is characterized by clots that affect blood circulation and is the most com-
mon cause of death worldwide [18]. Arterial thrombosis is initiated by endothelial injury,
which initiates a coagulation cascade and platelet activation [19,20]. Platelet adhesion is an
essential process for hemostasis but can initiate adhesion of flowing platelets and initiate
an event of firm platelet adhesion, aggregation and thrombus formation [21,22]. Several
drugs are used for the treatment and prevention of thrombosis, but most of these drugs
have side effects such as bleeding and gastrointestinal injury [13]. Therapeutic approaches
using herbal medicines provide an alternative and promising treatment for stroke, with
fewer side effects [23].

In the present study, we investigated the effectiveness of AGE 232 as an anti-thrombotic
agent in vivo.

The thromboembolism model was modified using DiMinno’s model, wherein par-
alyzed or dead mice were counted to determine the protective effect of AGE 232 from
collagen-and epinephrine-induced pulmonary thrombosis [14]. DiMinno’s model presents
no scientific evaluation to judge paralysis in each animal; thus, we decided to use a rotarod
test to measure the performance of the treated mice more accurately. This method permits
recording the overall performance of the mice in terms of timing, walking, availability of
riding and the capacity to maintain balance most accurately and to determine paralysis
of animals which is indicated by a limitation in performance, avoiding subjective judg-
ment [24–26]. Our results showed, AGE 232-treated mice at concentrations of 40, 80 and
160 mg/kg showed a decrease in the number of paralyzed or dead animals at 40%, 62.5%
and 31.25%, respectively, compared with the control group. Decursin-treated mice showed
a protection rate of 43.75% compared to the control. The positive group was treated with
ASA at a concentration of 100 mg/kg compared with the control group. This result showed
that AGE 232 at a concentration of 80 mg/kg resulted in a decrease in paralyzed animals
and an increase in protection compared with ASA-treated mice (Table 1).

Antiplatelet drugs principally inhibit the adhesion, activation and aggregation of
platelets [27]. The major side effect of antiplatelet drugs is hemorrhage [19]. ASA is an
NSAID, and this family of anti-inflammatory drugs causes mucosal damage and ulcer
complications principally in the gastrointestinal tract by inhibition of prostaglandin syn-
thesis [28]. ASA irreversibly inhibits cyclooxygenase enzymes. Arachidonic acid can
be converted into eicosanoids. Cyclooxygenase enzymes are responsible for the trans-
formation of arachidonic acid to endoperoxides, which are required for the synthesis of
prostaglandins, prostacyclins and thromboxanes. [29]. Inhibition of prostaglandin enhances
gastric motility, resulting in increased mucosal permeability, neutrophil infiltration and
oxyradical production, thereby producing gastric lesions [30]. Long-term treatment with
even low doses of ASA, also known as aspirin, induced gastric lesions as a side effect in
patients [31].
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To determine the cytotoxicity of AGE 232 and ASA, the MTT assay was carried out to
check the effect of both compounds on the viability of gastric cells. Aspirin significantly
decreased the viability of gastric cells in a dose- and time-dependent manner [32]. As
shown in Figure 1, the ASA treatment decreased cell viability in a dose-dependent manner
at lower concentrations compared with the AGE 232 treatment. The ASA treatment lowered
cell viability at 36.03 µg/mL. However, the AGE 232 treatment decreased cell viability
at 500 µg/mL, with similar cellular viability found at concentrations between 150 and
500 µg/mg. The IC50 values were measured to compare the cell viability after treatment
with both compounds. AGE 232 showed an IC50 of 77.9 µg/mL compared with ASA
which was 10.2 µg/mL. Thus, the side effects of AGE 232 and ASA on gastric cells in vivo
were confirmed by the cell viability results, showing that AGE 232 treatment does not
decrease the cell viability compared with ASA treatment at a lower dose. To compare
the possible side effects of AGE 232 compared with ASA administration on gastric cells,
we used an ASA-induced ulcerogenesis mouse model in which animals were treated
with ASA at 30 mg/kg and 300 mg/kg, and AGE 232 at concentrations of 30 mg/kg and
300 mg/kg for five consecutive days. Our results showed that mice treated with ASA
at both concentrations showed a decrease in food intake and a decrease in body weight
compared with the control group (Figures 1B and 2A). On the day of the sacrifice, the
gastric mucosa of low-dose ASA-treated mice showed small ulcers and clotted blood inside
the stomach (Figure 2C). ASA-treated mice (300 mg/kg) showed a significant decrease in
body weight and food intake compared to the control group (Figures 1B and 2A). On the
day of sacrifice, the gastric mucosa showed a high ulcerated area and a high amount of
clotting blood and gas inside the stomach, confirming the mucosal side effects related to
ASA administration (Figure 2C). However, AGE 232-treated mice at concentrations of 30
and 300 mg/kg did not show significant differences in mucosal damage area compared
with the control group (Figure 2D). This result shows that AGE 232 does not have gastric
side effects such as ulcerations compared with ASA at the same concentrations (Figure 2).

Arterial thrombosis is initiated by the disruption of the vascular endothelium asso-
ciated with plaque rupture. In the endothelium, adjacent platelets start to accumulate at
the injured site, initiating atherothrombosis [1]. Collagen is one of the most important con-
stituents of the subendothelial matrix and plays an important role in platelet activation [33].
Upon damage to the endothelium, adhesive micromolecules and platelet agonists, such as
collagen, von Willebrand factor, adenosine diphosphate and thrombin, are exposed to the
damaged site [34]. Collagen activates platelets by transducing signals through glycoprotein
VI, which stimulates platelet aggregation using the GPVI-selective agonist convulxin and
collagen-related peptide [35]. This activation of the signaling pathway leads to changes in
platelet shape and activation of platelet integrins from a low- to a high-affinity state which
binds fibrinogen, von Willebrand factor, fibronectin and vitronectin promoting coagulation,
and under abnormal conditions can lead to thrombus formation [36].

A previous study suggested that AG coumarins can inhibit collagen-induced platelet
aggregation [13]. In the present study, we confirmed that AGE 232 inhibits collagen-
induced platelet aggregation in a dose-dependent manner. AGE 232 at a concentration of
160 µg/mL showed a similar antiplatelet aggregation ratio compared with the control and
ASA at 2.5 µg/kg showed a high antiplatelet effect compared with the control (Figure 3).
An increase in platelet aggregation in the circulatory system activates the inflammatory
cascade [37]. The cessation of blood flow induces stress on the vascular endothelium and
increases the adhesion of P-selectin to the endothelium. Selectin attracts leukocytes to
the endothelial surface and decreases blood flow [38]. Leukocytes initially play a role in
the activation of endothelial cells in the inflamed tissue by the interaction between P and
E selectin in damaged endothelium. Immunoglobulins mediate the adhesion between
leukocytes and endothelial cells, and this activation of leukocytes at the inflammation
site leads to activation of the coagulation cascade. Thrombin is the central enzyme in
coagulation and is chemotactic to neutrophils and monocytes, stimulating the release of
interleukins. Adhesive interactions of leukocytes, endothelial cells and platelets are part



Life 2021, 11, 939 11 of 13

of the inflammatory response, starting with the activation of a coagulation cascade, and
with this, increasing thrombus formation [39,40]. Previous studies have shown that ASA
induces gastritis by promoting neutrophil-endothelial adhesion [41]. Our results showed
that ASA increased the percentage of neutrophils attached to the HUVEC cells in a dose-
dependent manner; however, AGE 232 showed a decrease in the number of neutrophils
attached to the HUVEC cells in a dose-dependent manner, suppressing leukocyte adhesion
to the endothelium. This decrease in adhesion can be followed by a decrease in endothelial
damage, contributing to the prevention of thrombus formation (Figure 4).

At least two cyclooxygenases (COXs) have been discovered. COX-1 is expressed
throughout the body and is particularly important for gastrointestinal protection, and
COX-2 is enhanced by cytokines, growth factors and other inflammatory stimuli [28].
COX-1 is expressed in platelets, epithelia of the gastrointestinal tract and other tissues.
COX-2 is expressed due to cytokine induction at the inflammation site [42]. COX-1 is an
enzyme that converts arachidonic acid to prostaglandin G2 (PGG2), which is converted to
PGH2 by peroxidase. In activated platelets, PGH2 is converted to TxA2, which activates
new platelets. In endothelial cells, PGH2 is converted to PGI2, an inhibitor of platelet
function, by increasing the intracellular levels of cAMP. ASA irreversible acetylates COX-1,
blocking TxA2 formation in platelets, which cannot synthesize new proteins, inhibiting
their lifespan [19]. Inhibition of COX-1 inhibits prostaglandins, principally prostaglandin
E2 (PGE2). PGE2 is produced in the gastric mucosa and has cytoprotective properties.
Inhibition of PGE2 synthesis results in gastrointestinal ulcers and patients may also bleed
to death [43]. Our results showed that AGE 232 at concentrations of 25, 50 and 100 µg/mL
showed a lower inhibition of COX-1 compared with ASA at concentrations of 2.5, 5 and
10 µg/mL in a dose-dependent manner (Figure 5A). This result confirms that AGE 232
administration does not block COX-1 enzyme and PGE2 synthesis involved in bleeding
which is found to be a side effect of ASA administration. These results confirm the lower
ulceration area or absence of clotting of blood in the stomach (Figure 1D) in AGE 232-
treated mice compared with ASA-treated mice. COX-2 is not normally expressed in all the
tissues. COX-2 is an enzyme that produces prostaglandins during inflammatory events and
is involved in the production of inflammatory mediators, and selective inhibition, and has
anti-inflammatory, analgesic and antipyretic effects without gastrointestinal toxicity [44,45].
Our study showed AGE 232 decreased the inhibition of COX-2 ratio in a dose-dependent
manner, in contrast to ASA, which increased the COX-2 inhibition in a dose-dependent
manner (Figure 5B). AGE 232 at a lower dose (25 µg/mL) showed similar inhibition rates
compared with ASA at higher concentrations (10 µg/mL). The result suggests that the
antiplatelet effect of AGE 232 is not related to COX inhibition, and more studies are needed
to elucidate this pathway.

5. Conclusions

In conclusion, AGE 232 has a beneficial antithrombotic effect by suppressing platelet
aggregation and the inflammatory cascade, which is the principal component involved
in thrombus formation and stroke. AGE 232 treatment also shows low cytotoxicity to
gastric cells and no effect on the gastric mucosa in mice such as ulceration or bleeding, the
principal side effects of the currently used antithrombotic drugs. In this study, we suggest
that AGE 232 may play a beneficial role in improving blood circulation and decreasing
thrombus formation, and in the preventive treatment for stroke.
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