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Abstract

Introduction

Machine learning (ML), a form of artificial intelligence (AI), 
is being increasingly employed in neurology.[1‑4] A key feature 
behind the excitement in ML is its potential to analyze large 
and complex data structures (big data) to create prediction 
models that promise to improve diagnosis, prognosis, 
monitoring, and administration of treatments. ML has been 
employed in diagnosing stroke from neuroimaging, detecting 
papilledema, and diabetic retinopathy  (DR) from retinal 
scans, interpreting electroencephalogram to prognosticate 
coma, detecting seizure before ictus, predicting conversion 
of mild cognitive impairment to Alzheimer’s dementia, 
and classifying neurodegenerative diseases based on gait 
and handwriting.[5‑14] The reported performance metrics 
of these ML studies match or exceed the efficiency of the 
average clinicians. The eager neurologist often struggles to 
get a grip on the concepts behind the stellar performance of 
ML tools. In this review, we try to simplify the process of 
critical appraisal when reading a research paper which uses 
ML in neurology.

Machine Learning‑ The Concept

Learning to make a diagnosis of acute stroke based on 
FAST (face, arm, speech, time) acronym is a form of rule‑based 
learning. On the contrary, learning to make the same diagnosis 
in the setting of internuclear ophthalmoplegia and ataxia 
requires recall of clinical gestalt accrued from experience. ML 
takes the latter approach to make predictions. ML algorithm 
learns to generalize from a database of known examples to 
formulate rules for future predictions from unseen dataset.

ML makes this possible by taking the concept of logistic 
regression a step forward by using a higher number of 
mathematical operations to find complex relationships in the 
data, e.g.,  risk factors and outcomes. These mathematical 
operations are sometimes performed in layers; each layer 
extracting one particular aspect of this complicated relationship. 
One may think of each layer representing mathematical 
operations akin to traditional logistic regression.[15] ML can 
thus be defined as the process by which an algorithm encodes 
statistical regularities inherent in a database of examples, into 
parameter weights for future predictions from new data.[16]

Terminologies used in Machine Learning

ML algorithm learns from known data to make predictions 
from unseen, unlabeled data. The use of data labeled by clinical 
experts to train ML algorithms into probabilistic and statistical 
models is termed Supervised ML.[17] Most ML algorithms of 
today that claim human‑level efficiency has been trained via 
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Figure 1: Model development and deployment
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supervised learning. A trained ML algorithm, ready to make 
predictions from unseen data, is referred to as a model.[16]

Features in ML are input variables derived from training 
examples. Height, weight, or pixel data of images are 
examples of features that may be used as input to train an 
ML algorithm.[15‑18] Parameters are akin to weights in the 
logistic regression equations. It represents the internal values 
of statistical regularities inherent in the database. The ML 
algorithm automatically derives parameters via the learning 
process. When the ML algorithm is fed with successive 
examples in the training dataset, parameters (learnable weights) 
are continuously updated. Parameters dictate the accuracy of 
the model’s predictions.[15‑18] Hyperparameter is a configuration 
external to the model that is set before the model is trained and 
remains fixed throughout the learning process. In the model to 
detect papilledema, hyperparameters were set for learning rate, 
the batch size for processing, etc.[5] Glossary of terminologies 
commonly used in ML studies is summarized in Table 1.

ML algorithms go through stages of training, validation, 
and external testing. Training ML requires learnable 
datasets  (development dataset) that are often divided into 
training and validation sets. Training dataset updates the 
parameters  (learnable weights) in the model during the 
training process. The remaining subset of the development 
set (validation dataset) is used to tune the hyperparameters. 

External testing is done via a dataset previously unseen by 
the model. Datasets for development (training/validation) and 
external testing must remain mutually exclusive[15‑18] [Figure 1].

Pertinent questions critical to understanding a paper 
employing machine learning tools
Was the study prospective or retrospective, 
observational, or randomized controlled trial? Was the 
protocol published a priori?
The ML algorithm to detect papilledema trained on 14,341 
fundus photographs using a retrospective dataset Brain and 
Optic Nerve Study with Artificial Intelligence (BONSAI) and 
externally tested the model with 1505 fundus photographs 
from another retrospective dataset.[5] Of the 82 clinical AI 
studies reviewed in two systematic reviews and meta‑analysis, 

Table 1: Glossary of terms associated with machine learning studies

Terminology Description
Machine learning The process by which an algorithm encodes statistical regularities inherent in a database of examples, into parameter 

weights for future predictions
Supervised learning Training a machine learning algorithm by means of previously expert labeled training examples
Model A trained machine learning algorithm, ready to make predictions from unseen data
Features Input variables to be used to train a machine learning algorithm
Parameters Akin to weights in logistic regression, parameters are learnable weights representing statistical regularities in a training dataset
Hyperparameter A configuration external to the model for e.g., learning rate and batch size for processing that is set before the model is 

trained and remains fixed throughout the learning process
Training Feeding a machine learning algorithm with examples from a training dataset so that it can derive useful parameters for 

future predictions
Deep learning A machine learning technique that processes information in an architecture comprising of a large number of layers, each 

layer extracting desired parameters incrementally from training data
Deep neural network (DNN) A deep learning architecture with multiple layers between input and output layers
Convolutional neural 
network (CNN)

A class of DNN that display connectivity patterns that are analogous to that of the connectivity patterns and image 
processing in visual cortex

Black box Human inability to explain the precise steps leading to the model’s predictions, due to complex maze of parameters that is 
inscrutable to humans

Confusion matrix Akin to contingency table in traditional studies, often used to describe performance of the model
Fine tuning (pre‑ 
initialization or warm start)

A technique in machine learning where a model is trained on an unrelated dataset of a similar data type to initialize the 
parameters

Transfer learning Parameters pre‑trained in the solution to one task are transferred to the new model under development to accelerate learning
Ensemble learning A method where outputs of the two machine learning networks are combined to improve the quality of prediction and 

improve the overall performance of the model
F score Generally in machine learning models there is a trade‑off between recall (sensitivity) and precision obtained by varying the 

threshold used to categorize data into one of the two classes. In order to characterize the precision as well as recall using 
a single measure, the F score is used. The F score is the harmonic mean of the precision and recall which balances the 
contributions of these two terms. F score tasks a value between 0 and 1. For an ideal classifier with 100 percent sensitivity 
and specificity (or a precision and recall of 1), the F score will be 1. If either the precision or the recall is zero, F score will 
also be zero indicating a poor classifier



Figure 2: (a) Black box problem plagues high performing models as 
their inner workings are often least explainable. (b) Intended use of ML 
model in the context of clinical pathway should be clearly known before 
deploying the model at scale
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only 11 were prospective and a mere 7 were randomized 
controlled trials  (RCTs).[19] The model to detect DR, trained 
on 30,000 expert labeled images from three retrospective 
datasets  [DiaRetDB1, Kaggle  (EyePACS), and Australian 
Tele‑eye care DR], was externally tested using a prospective 
dataset obtained over 6 months.[6] These observational studies 
lay the groundwork for future RCTs. RCTs done in usual 
clinical care settings that compare performance metrics of expert 
clinicians versus ML model are important before the model can 
be meaningfully deployed in real‑world clinical settings.[7,20] New 
clinical‑trial guidelines specifically tailored for studies involving 
AI, covers framing of protocols  (SPIRIT‑AI Extension), 
and recommendation for publications of AI‑based clinical 
trials (CONSORT‑AI Extension).[21,22] A priori stating the study 
protocol helps to avoid publication bias and selective reporting of 
positive outcomes, which are important for mitigating the risk of 
distorting perceptions regarding the model’s utility. Description 
of the research question, model training and validating strategies, 
outcomes, power calculation, and statistical analysis plan should 
be described before the commencement of the study.[18]

Why was the dataset obtained and what is its size?
If a model is being trained to determine the risk of stroke from a 
dataset of retrospective fundus photographs, then it is imperative 
to know why those fundus photographs were obtained in the first 
place. If the majority of those fundus photos were collected as 
part of diabetes or hypertensive screening, then the association of 
those photos with stroke increases substantially vis a vis a dataset 
of fundus photos obtained from a population of Leber’s hereditary 
optic neuropathy. Depending on the dataset used for training, the 
trained model tasked with predicting stroke may consistently err 
on the side of excessive false positives or false negatives.

The ML models for detecting papilledema and DR trained 
on retrospective datasets are silent on the details regarding 
the exact indications for obtaining individual photographs in 
the first place.[5,6] An AI model trained to detect intracranial 
hemorrhage used a retrospective dataset of 46,583 non‑contrast 
head computed tomography (CT) studies from 31,256 unique 
patients. Each CT scan had the indication documented in a 
clinical report. The details of these indications essential to 
interpreting the predictions of the model are, however, not 
mentioned in the published paper.[23]

Inclusion and exclusion criteria specified at both participant 
and input data level are important considerations determining 
generalizability of the model in real‑world settings. To illustrate 
an example, vendor specific post‑processing of retinal scan 
as inclusion criteria at input data level to predict DR limits 
generalizability of the model to centers capable of performing 
similar processing of retinal scans. Poor data or missing data 
should be reported, for example those arising out of movement 
artifacts while recording electrocardiograms  (ECGs) or CT 
scans may interfere with the accuracy of labeling the ground 
truth by the subject experts.[21]

The size of the dataset may affect the model’s capability 
to predict accurately from unseen data. An AI model for 

detection of critical findings in head CT scan showed excellent 
performance metrics when trained on a vast dataset comprising 
of 313,318 head CT scans.[24] Similarly, another model trained 
on a dataset of 2 million examples of labeled 12 lead ECGs, 
outperformed cardiology residents in detecting six types of 
ECG abnormalities.[25] If the dataset is small, techniques in 
ML namely fine‑tuning (pre‑initialization or warm start) and 
transfer learning are employed. Fine‑tuning is a technique 
in ML where a model is trained on an unrelated dataset of a 
similar data type to initialize the parameters.[23] The ML model 
to detect papilledema was pre‑initialized with a large unrelated 
dataset comprising of 1.28 million images over 1,000 generic 
objects (ImageNet), before commencing the training process.[5] 
In transfer learning, parameters pre‑trained in the solution to 
one task are transferred to the new model under development 
to accelerate learning.[26] Pre‑initialization with ImageNet and 
transfer learning with a dataset comprising of 129,450 skin 
lesions were employed in a model based on GoogleNet ML 
architecture to detect skin cancer with dermatologist level 
accuracy.[27]

What is the intended use of ML model in the context of 
the clinical pathway?
Information from various stages in patient’s clinical pathway 
is integrated to arrive at a diagnosis which culminates in a 
treatment plan. It is important to know the entry point of the 
ML model in this clinical pathway  [Figure  2]. The trained 
model may interact with healthcare professionals, patients, 
and the public. Its role in the clinical pathway may range from 
triage (screening patients or images) to replacing the healthcare 
professional for diagnosis and treatment. While generalizing 
the performance of the model, caution should be exercised to 
avoid hyperbolic inferences where a model shown to perform 
well in screening CT images is considered a replacement for 
an emergency radiologist. It is also important to know how the 
AI intervention was integrated into the clinical pathway at the 
trial site. Whether the model required vendor‑specific devices, 



Figure 3: (a) The quality of expert labeled data in development dataset 
determines the models performance during external testing. (b) The 
model performs best in those populations that have been represented in 
the development dataset

b

a

Vinny, et al.: Critical appraisal of ML paper

 Annals of Indian Academy of Neurology  ¦  Volume 24  ¦  Issue 4  ¦  July-August 2021484

support of cloud integration is a question with significant 
implications on its generalizability.[28,29]

Does the dataset represent the disease spectrum in the 
target population?
If a model to detect papilledema was trained/validated on a 
dataset containing only normal fundi and severe papilledema, 
then the model’s performance to detect papilledema would 
be skewed. The model, if deployed in real‑world scenarios, 
will identify severe papilledema correctly but classify a large 
number of mild and moderate papilledema as the normal 
fundus. The ML study to detect papilledema describes 2148 
disks with confirmed papilledema in the training set and 
360 in the external testing set without giving details about 
their severity grade.[5] The reader should be skeptical of the 
generalizability of this model’s performance to a real‑world 
scenario.

The model used to detect DR showed a high rate of false 
positives in the external testing phase that could be explained by 
the skewed representation of disease states in the development 
dataset, a phenomenon known as spectrum bias.[6] A related 
problem is a class imbalance where disease categories are not 
equally represented in the development dataset. This is usually 
addressed by balancing the classes by way of taking away 
instances of the overrepresented class  (undersampling) and 
adding copies of the underrepresented class (oversampling).[18] 
Assigning higher weights to underrepresented class during 
model training is another way of balancing the class.

More extensive the gamut of development dataset, better are 
the chances that the model’s performance shown in external 
testing dataset will match its performance during real‑world 
deployment. The model for detecting DR was trained on 
three datasets which obtained their fundus photographs 
from different ethnic populations in different geographical 
locations. The model was externally tested in a population from 
Western Australia which was represented in the development 
dataset.[6] External testing of this model in a different ethnic 
population, not represented in the development dataset, may 
give sub‑par results. [Figure 3] The pertinent questions that 
need asking are: does the development set represent the disease 
prevalence in the target population? Has the application of 
inclusion and exclusion criteria in obtaining the dataset caused 
a selection bias? Did the investigators use a sampling method, 
e.g., random sampling, to mitigate the risk of spectrum bias?

How was the data split between training, validation, and 
external testing?
The dataset that was seen by the ML during training must be 
kept distinct from the dataset used for external testing (unseen 
dataset). If possible, the two datasets should be obtained from 
two different populations separated in time and geographical 
location. The ML trained to detect papilledema achieves this 
goal by keeping the development  (training and validation), 
and external testing sets separate. The training/validation set 
of 14,341 fundus photographs from 19 sites in 11 countries 

was distinct from an external testing dataset of 1505 fundus 
photographs obtained from five different centers in five 
different countries.[5]

The model trained to detect papilledema and DR split the 
development datasets into training and validation subsets with 
a ratio of 80:20.[5,6] The study to identify papilledema used 
five‑fold cross‑validation between training and validation 
datasets. Five‑fold cross‑validation involves running the 
experiment five times, each time with a random 20% sample 
of the development set acting as a “validation dataset”. 
Cross‑validation reduces or even eliminates the risk of 
selection bias.[5] Investigators training the model to detect 
acute neurological events derived the development and external 
testing datasets from the same pool of cranial CT images.[7] 
The mixing up of development and external testing datasets 
blurs the distinction of seen and unseen data by ML. The reader 
should bear in mind that in a real‑world scenario, the model’s 
performance trained on such mixed datasets may considerably 
vary from reported metrics. If a specific internal validation 
dataset is not mentioned as a subset of development dataset, 
then the reader should question whether the external testing 
dataset was inadvertently used for internal validation. Mixing 
of these datasets is a red flag in ML studies.

How was the gold standard determined?
The gold standard (data labeled by expert clinicians) against 
which the ML model learns to adjust its parameters is a 
crucial element in ML studies. If the gold standard is a clinical 
or paraclinical judgment, then it is essential to know the 
qualifications of experts arriving at the gold standard. How 
were the intra‑rater and inter‑rater variability addressed? Was 
it adjudicated by a panel of experts or was a majority vote 
used? Also, the clinicians judging the gold standard should 
be blinded from the ML predictions.

In the model trained to detect DR, the gold standard was 
determined by a single ophthalmologist.[6] The model to detect 
papilledema was trained on a dataset that employed a panel 
of neuro‑ophthalmologists to determine the gold standard.[5] 
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In the model used to identify critical findings in head CT scan 
03 senior radiologists with experience spanning 8–20 years 
in cranial CT interpretation determined the gold standard by 
mutual consensus or majority vote.[24] The quality of the gold 
standard used to train the model is the bedrock that determines 
generalizability of model’s performance. [Figure 3]

What was the type of ML employed? Which version of the 
model was used for the study?
Early ML methods, especially those requiring processing 
of image‑related features, used computational vision, 
and image processing techniques suitably adapted to the 
problem.[30] More recently, the deep learning‑based approaches 
have been very successful in outperforming conventional 
techniques.[31] The deep learning‑based techniques rely on (a) 
a deep neural network  (DNN), so called because of their 
superficial resemblance to biological neural networks, acting 
as computational models that learn parameters in big data, (b) 
large data for training the models, typically comprising 50,000 
or more labeled examples, (c) large computational resources 
typically provided by specialized graphical processing units 
for training the deep networks, (d) algorithmic innovations to 
speed up the training of deep networks.[32]

Conventional ML methods need expert intervention to 
predefine some features in the dataset to help the model learn, 
a labor intensive, and daunting task. However, the models 
thus learned are more open to interpretation and analysis. 
In contrast, the deep learning techniques often rely heavily 
on convolutional neural networks  (CNN), a class of DNN 
that display connectivity patterns that are analogous to that 
of the connectivity patterns and image processing in visual 
cortex. Deep learning techniques take advantage of the 
hierarchical pattern in data to assemble more complex patterns 
using simpler and smaller patterns. The ML model to detect 
papilledema was trained on two CNNs  (DenseNet‑121 and 
DenseNet‑201). By a method called ensemble learning, the 
outputs of the two networks were combined to improve the 
quality of prediction and improve the overall performance of 
the model.[5]

High performing deep learning‑based models often require less 
prior knowledge and human effort in feature design.[5,16] The 
high performance of DNNs come at the cost of interpretability 
and robustness.[30,33] The performance metrics of ML model 
reported in a study is version specific. If a different version 
of the model was used in previous studies, then the changes 
brought about in the new version of the model and rationale for 
the changes is important considerations for generalizability.[21]

Is the reported model “continuously evolving” or 
“continuously learning” by design?
Most ML models are trained on development datasets to 
reach a certain level of efficiency. The chosen model with 
most satisfactory performance metrics is then “locked” in a 
way that it does not learn further when shown new data. In 
contrast, “continuously learning” models do not stop learning 

even beyond the stage of development. They have the ability to 
be continuously trained on new shown data which may cause 
changes in performance over time. The reported metrics of 
“continuously learning models” may not hold true even for 
the same external dataset when tested incrementally. Trials 
comparing “continuously learning” models with clinicians are 
hard to interpret and have been excluded from consideration 
in the newly reported CONSORT‑AI extension.[21]

Does the model suffer from a black box problem?
Can the output of the model be retraced back to input on 
demand? The Black Box problem refers to human inability 
in explaining the precise steps leading to the ML model’s 
predictions.[34] When an ML model is trained on massive 
datasets, the model may extract parameters into a complex 
maze of weighted connections that is inscrutable to humans. 
Performance and explainability in ML models are often 
inversely proportional. The best performing models, 
e.g., DNNs, are often least explainable. [Figure 2] Models with 
a poorer performance like linear regression and decision trees 
are usually most explainable. European Union General Data 
Protection regulation legislation requires that ML predictions 
be explainable, especially those that have the potential to affect 
users significantly. Explainable ML models instill confidence 
and are likely to result in faster adoption in clinical settings. 
There is a growing interest in interpretable models in deep 
learning.[35] The field of interpretable models is in the early 
stages of development. A deep‑learning algorithm trained to 
detect acute intracranial hemorrhage used attention map and 
a prediction basis retrieved from training data in an attempt 
to enhance explainability.[36]

Which performance metric is being reported/optimized? 
How were performance errors identified and analyzed?
The output of the ML model can be a diagnostic classification 
or probability, a recommended action, an alarm alerting to 
an event or some other output. The reader should be able 
to differentiate performance metrics for tasks involving 
prediction/classification from those that show causal inference. 
While predictive tasks by ML model can be assessed from 
observational nature of big data, causal inferences usually 
require RCTs. To illustrate an example, the in silico study 
to detect papilledema that shows human level performance 
metrics cannot answer the counter factual scientific question 
“Will this model improve detection of papilledema in 
clinical practice?” Such counter factual predictions require 
RCTs performed in usual clinical care settings. The choice 
of suitable performance metrics is crucial to evaluate the 
usefulness of results.[37] For example, in the case of a rare 
disease classification which is likely to occur in only one out 
of every thousand patients screened, the ML models can give 
99.9% accuracy by classifying all the examples as negative. 
Sensitivity and specificity may be more suitable metrics in such 
scenarios. ML models can make errors in output that may be 
hard to foresee. The reader should actively seek out reporting 
of such errors in published studies and the strategies used for 



Figure  4: Comparison of traditional performance metrics with that 
of machine learning methods  (terms in italics are machine learning 
terminology)
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its risk mitigation. Such errors if undetected during regulatory 
approval process may lead to catastrophic consequences when 
AI models are allowed to deploy at scale.[38]

A ML algorithm designed to recognize large vessel 
occlusion  (LVO) patterns from CT scans without the need 
for contrast‑enhanced imaging showed an area under the 
curve (AUC) for the identification of LVO as 0.87 (sensitivity: 
83%, specificity: 71%, positive predictive value: 79%, 
negative predictive value: 76%) which improved to 0.91 
when data on National Institute of Health Stroke Scale was 
also provided  (sensitivity: 83%, specificity: 85%, positive 
predictive value: 88%, negative predictive value: 79%).[39] 
The reported performance metrics usually pertain to the model 
itself  (F scores, Dice coefficient or AUC) or its predictions 
translated to relevant clinical outcomes (sensitivity, specificity, 
positive predictive value, negative predictive value, numbers 
needed to treat and AUC).[17] The names of certain performance 
metrics may vary from what a neurologist is used to. Recall 
reported in ML studies is equivalent to sensitivity, precision is 
equivalent to positive predictive value and confusion matrix is 
equivalent to the contingency table. Gold standard/reference 
test is often referred to as the ground truth/label in ML 
literature. At the minimum, papers should provide contingency 
table (confusion matrix), sensitivity, and specificity for easier 
comparisons and better understanding [Figure 4].

Is the model performance too good to be true?
Remember that the results of the ML model can only be as 
good as the information contained in the development set. As 
a corollary, the ML models should not be able to outperform 
an expert clinician or a panel of expert clinicians, given ample 
time to make a decision or diagnosis. ML models have recently 
revealed hitherto unseen new associations often suggesting 
causality between a risk factor and disease. These reports 
should be interpreted with caution if not borne out of RCTs. 
When a model predicts unexpected outputs in test datasets, 
the same should be confirmed in different patient cohorts to 

mitigate the effects of confounding factors, artifacts or flaws 
in study designs.

A model can learn to overfit to development dataset by learning 
patterns that are too specific to the dataset. For example, a 
model learnt to classify a skin lesion as malignant if the image 
had a ruler in it. The model had learnt to recognize the spurious 
signal of the presence of a ruler in the images of development 
dataset with increased chances of a cancerous lesion.[27] 
Similarly, another model learnt to diagnose pneumonia from 
chest X‑rays based on the increased association between 
a portable X‑ray machine used for recording X rays and 
pneumonia.[40] These are examples of the model adjusting 
its parameters to spurious signals within the development 
dataset. The reader must suspect overfitting when there are 
vast differences in performance metrics of the model between 
validation and external testing.

Is the study repeatable and reproducible? Are source 
code and datasets available for scrutiny?
Identical images shown to the model at separate times should 
yield identical predictions. A repeat imaging may contain the 
minor difference of pixels but should give similar predictions 
from the model (repeatability). When similar images are taken 
with different hardware at different institutions employing 
different operators and protocols, the differences in predictions 
should be quantified (reproducibility).

Reproducibility in ML has been a critical challenge that 
has become even more important in the context of medical 
applications.[41,42] The reproducibility may be formalized at 
the following three levels[43]:
(a)	 Model reproducibility — whether the description of the 

model is detailed enough such that another researcher can 
independently write the code for the model and reproduce 
the claimed results.

(b)	 Model+code reproducibility — The source code that 
led to the claimed performance along with the model 
descriptions may be shared with researches who can 
independently run the code on their data without having 
to worry about the grueling details of the model.

(c)	 Model+code+data reproducibility — Many ML labs also 
release the data along with the model and code for others 
researches to replicate, explore, and experiment.

In practice, the “Model reproducibility” is almost impossible 
to achieve especially for the latest high‑performing ML models 
because of the many little details usually left unspecified in 
the model descriptions which may significantly impact the 
performance of the models. Reporting of all the three aspects of 
the tool namely model, code, and development data generally 
leads to reproducible results when applied to other datasets. 
Sharing of raw clinical data is often not a pragmatic solution 
due to institutional patient‑privacy policies. Even when the 
raw clinical development data are available, reproducibility is 
not guaranteed as the models may be non‑deterministic due to 
parallel processing (different runs may give different results) 
or use specific random numbers seeds.
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Does the AI intervention affect patient outcomes?
The outcomes of standalone in silico experiments that contrast 
with the messy world of usual clinical practice should be 
interpreted with caution. While important for laying the 
groundwork for future clinical trials, they themselves do 
not show causal inference pertaining to clinical outcomes. 
“Whether the reported model will affect clinical outcomes?” 
is a counter factual question implying causal inference that 
needs RCTs for a conclusive answer, a rare phenomenon in 
today’s world of so called “AI clinical trials.”[19] An RCT 
enrolled 350 pediatric patients where cataract assessment 
with or without an AI platform was compared to diagnose 
cataract and provide treatment recommendation (surgery or 
follow up). The AI reported metrics for diagnostic accuracy 
and treatment recommendations were 87% (sensitivity 90%, 
specificity 86%) and 71% (sensitivity 87%, specificity 44%), 
respectively. The consultants performed significantly better 
by comparison for accuracy of diagnosis  (99%, sensitivity 
98%, specificity 99.6%) and treatment recommendation (97%, 
sensitivity 95%, specificity 100%)  (P  <  0.001 for both). 
The same AI model had earlier shown a significantly higher 
performance in a non‑randomized clinical trial setting for 
accuracy of diagnosis and treatment recommendation (98% and 
93%, respectively).[20] When a clinician is evaluating a cataract 
or a skin lesion they are not merely analyzing a photograph in 
isolation but performing a holistic assessment in the context of 
patient’s history and physical examination. A study compared 
a DNN with 21 board certified dermatologists in diagnosing 
skin cancer based on analysis of photographs of skin lesion 
shown to both groups. The study reported dermatologist level 
accuracy in diagnosing skin cancer by DNN.[27] Drawing 
inferences from such comparisons that are far removed from 
usual clinical practice is not helpful in answering the above 
stated counterfactual question. A new tool is worth its salt only 
if it can make a dent in the clinical outcomes.

Conclusion

ML often championed as a solution to prediction problems 
from big data, also evoke concerns that artificial intelligence 
in clinical medicine is overhyped and requires proper 
guidance, knowledge, or expertise, to mitigate methodological 
shortcomings, poor transparency, and poor reproducibility. 
ML models learning from expert labeled data predict with 
consistency, speed, and lack of fatigue, a feat rarely achievable 
by humans. Given an abundance of time and information, 
the expert clinician should be able to deliver comparable 
predictions, a useful benchmark while evaluating the 
performance of ML models. The Transparent Reporting of a 
Multivariable Prediction Model for Individual Prognosis or 
Diagnosis  (TRIPOD) statement published in 2015 provides 
guidance on key items to report when describing studies on 
developing, evaluating  (or validating), or updating clinical 
prediction models. A new initiative to develop a version of the 
TRIPOD statement (TRIPODML) focusing on ML prediction 
algorithms is underway.[44] The process of training/validation 

and external testing should not be restricted to a one‑time 
event but should be an ongoing process spanning different 
geographical locations and ethnic populations. Predictive 
performance metrics of ML models should not be confused 
with causal inference between its input and output. Prospective 
RCTs comparing the output of the ML model and clinicians 
are necessary to unravel its true utility as a clinical tool. 
Unbelievable performance metrics displayed by ML model 
should raise a red flag and be investigated further. A useful 
checklist to critically appraise a ML paper is summarized 
in Table  2. ML and the clinical gestalt must compete in a 
RCT before they can complement each other in a real‑world 
deployment to improve diagnosis, prognosis, monitoring, and 
administration of treatments, in realizing the common aim of 
improving health outcomes.

Disclosures: None

Search strategy and selection criteria
We searched PubMed, Medline, and Google scholar for 
relevant articles published in English between Jan 1, 2010 
and Sep 30, 2020 using the terms “artificial intelligence,” 
“ML,” “supervised learning,” “deep learning,” “deep neural 
network,” “convolutional neural network,” “big data,” “fine 
tuning,” “black box,” “critical appraisal,” “evidence‑based 
medicine.” We selected studies that were relevant to the field 
of medicine and neurology. We also searched the reference 
lists of retrieved articles. We then selected the most relevant 
references, paying particular attention to studies within the 
past 5 years and studies with large samples, control groups, 
and reduced bias. We retained some older studies for their 
importance.

Table 2: Summary of key questions in critical appraisal 
of a machine learning research paper

S.No Questions
1 Was the study prospective or retrospective, 

observational, or randomized controlled trial? 
2 Was the protocol published a priori?
3 Why was the dataset obtained, and what is its size?
4 What is the intended use of ML model in the context of 

the clinical pathway?
5 Does the dataset represent the disease spectrum in the 

target population?
6 How was the data split between training, validation and 

external testing?
7 How was the gold standard determined?
8 What was the type of ML employed? Which version of 

the model was used for the study?
9 Is the reported model “continuously evolving” or 

“continuously learning” by design?
10 Does the model suffer from a black box problem?
11 Which performance metric is being reported/optimized? 

How were performance errors identified and analyzed?
12 Is the model performance too good to be true?
13 Is the study repeatable and reproducible? Are source 

code and datasets available for scrutiny?
14 Does the AI intervention affect patient outcomes?
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