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Abstract 

Healthcare-Associated Infections (HAI) impose a substantial health and financial burden. Surveillance for HAI is 
essential to develop and evaluate prevention and control efforts. The traditional approaches to HAI surveillance are 
often limited in scope and efficiency by the need to manually obtain and integrate data from disparate paper charts 
and information systems. The considerable effort required for discovery and integration of relevant data from 
multiple sources limits the current effectiveness of HAI surveillance. Knowledge-based systems can address this 
problem of contextualizing data to support integration and reasoning. In order to facilitate knowledge-based decision 
making in this area, availability of a reference vocabulary is crucial. The existing terminologies in this domain still 
suffer from inconsistencies and confusion in different medical/clinical practices, and there is a need for their further 
improvement and clarification. To develop a common understanding of the infection control domain and to achieve 
data interoperability in the area of hospital-acquired infections, we present the HAI Ontology (HAIO) to improve 
knowledge processing in pervasive healthcare environments, as part of the HAIKU (Hospital Acquired Infections – 
Knowledge in Use) system. The HAIKU framework assists physicians and infection control practitioners by 
providing recommendations regarding case detection, risk stratification and identification of diagnostic factors. 
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1. Introduction 

Healthcare-Associated Infections (HAIs) are a common complication of patient care, and are caused 
by exposure to various bacteria, fungi, or viruses in settings such as hospitals, long-term care facilities, 
rehabilitation centers, and community clinics [1]. Some of the most common HAI’s are bloodstream 
infections, urinary tract infections (UTIs), surgical site infections (SSIs), pneumonia, tuberculosis, 
Clostridium difficile infections, methicillin resistant Staphylococcus aureus infections (MRSA), severe 
acute respiratory syndrome, gastroenteritis, pertussis, and ventilator associated pneumonia (VAP). HAIs 
impose tremendous direct (e.g. hospitalization, utilities, devices, medications, lab tests, etc.), indirect (e.g. 
mortality, lost/wages, etc.), and intangible (e.g. anxiety, disability, job loss, pain, etc.) costs [2]. In the 
United States, HAIs are estimated to result in “direct annual costs of $35.7 - $45.0 billion for hospitals 
and healthcare facilities with combined medical costs of $20,549 - $25,903 per infection occurrence” [2]. 
Many of the HAIs and related costs can be effectively prevented through proper surveillance and control 
plans. In most hospitals in Canada, infection control practitioners rely upon routine microbiology test 
results to flag patients with a possible HAI. Once a patient is flagged, staffs gather the patient’s data from 
multiple sources to determine whether a HAI has occurred [3]. Automating this data gathering and 
integration is currently very challenging because the data in each of the source systems lack the 
contextual information necessary for automated integration and reasoning. Standardization and consistent 
integration of disparate biomedical data, however, would enable automated data integration and 
reasoning.  This capacity could improve the decision-making process by allowing infection control staff 
to querying over several heterogeneous knowledge sources. In this context, a knowledge-based approach 
to surveillance of Healthcare-Associated Infections could advance data and knowledge integration, and 
thereby decrease the incidence of HAIs and facilitate effective resource allocation to improve patient care 
and enhance overall health systems performance.  

The increasing success in the application of knowledge modeling to support automated data integration 
and reasoning has spurred an explosion in biomedical ontology development and a trend towards 
institutionalizing ontologies and standardizing representation language within information systems 
serving the biomedical sciences. Ontologies capture the domain knowledge by defining concepts, 
relationships, individuals, rules and axioms. Our research mainly focuses on the four most common HAIs 
(bloodstream infection, UTI’s, SSIs, and pneumonia), often referred to as the “Big Four”, due to the high 
morbidity and mortality rates.  

HAIs (more specifically, nosocomial infections) can be defined as one type of “hospital adverse event” 
as described in the Ontology of adverse event (OAE) [4]. It is also defined in the Infectious Disease 
Ontology (IDO) [5] as an infection “resulting from a transmission process that unfolds in a hospital”. So 
as a first step, we have defined a set of properties to distinguish between HAIs and Community Acquired 
Infections (CAIs). In our early work [6], we demonstrated the potential of the HAIKU framework (Figure 
1) in the domain of clinical intelligence for case detection, risk/causative factor identification/evaluation, 
and diagnostic factor identification/evaluation with a focus on surgical site infections (SSIs). We have 
also explored [7] the possibility of using SADI [8] Semantic Web services for semantic querying of 
clinical data and reported preliminary progress on prototyping a semantic querying infrastructure for the 
surveillance of, and research on hospital-acquired infections. The rest of this paper proceeds as follows. 
In Section 2 we will describe our conceptual modelling method and ontology development approach. We 
represent the usability of our ontological framework in the domain in Section 3 through a set of semantic 
queries. The paper concludes a discussion of the implications of our study and possible future work 
directions.  
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Fig. 1. An abstract representation of the HAIKU framework, which assist physicians and infection control practitioners by providing 
recommendations used for case detection, risk stratification and diagnostic factor identification. The SADI semantic web services 
can populate the relevant HAI Ontology predicates based on the semantic mapping between the data warehouse schema and the 
ontology. Also the results of statistical inference from epidemiological and clinical data can be combined with the logical inference 
to enable inductive reasoning about formal knowledge in the ontological structure. 

2. The HAI Ontology Design  

The HAIKU knowledge base has been developed using the W3C standard Web Ontology Language 
(OWL 2.0)1, which enables us to define complex concepts and the properties in the domain in a highly 
expressive manner. The HAI ontology represents general knowledge about HAI and should be reusable in 
multiple health care contexts. To adapt and customize the ontology for a specific use, however, concepts 
in the ontology must be mapped to data elements within information systems in a specific hospital. In this 
stage of our research project, we therefore aligned and mapped the concepts in the ontology to terms used 
in the local data warehouse (Figure 2) in the Ottawa Hospital (TOH). We used a subset of the data 
warehouse containing data for 715 cardiac surgery patients who had 6,132 encounters, received 12,275 
diagnoses, and underwent 6,029 procedures [9] at the University of Ottawa Heart Institute between 2004-
2007. 

2.1. The Conceptual Model 

Our conceptual model has been created based on the existing knowledge sources, textual resources and 
the relevant literature including the data provided by the National Nosocomial Infections Surveillance 
(NNIS) System [10] (from Jan 1992 - June 2004), the 2012 CDC/NHSN Surveillance definition of 
Healthcare-Associated Infections [11], 2007 CDC Guideline for Isolation Precaution [12], and several 
patient data from TOH. Also we have used several information resources (e.g., the databases containing 

 

1 http://www.w3.org/TR/owl-overview/ 
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information on hospital morbidity and discharge abstracts), existing bio-ontologies (e.g., SNOMED CT2, 
ICD-9 [13], HL7 (http://www.hl7.org/), FMA [14], CheBI [15], Infectious Disease Ontology (IDO)). 

 

Fig. 2. A partial view of the major entities in the Ottawa Hospital Data Warehouse data model. The three major components are 
Patient (represents patient level information), Encounter (captures encounter information), and Service (contains generic 
information regarding services received by patients during encounters). The services represented in the diagram may include 
radiology, pharmacy, transcription, laboratory services, etc.  

2.2. SemanticScience Integrated Ontology (SIO) and the Extra Simple Time Ontology (ESTO) 

In order to facilitate a broad semantic interoperability between the HAI Ontology and other related 
standards and ontologies we are aligning our ontology with SIO3, which offers an integrated upper level 
ontology (types, relations) for consistent knowledge representation across physical, processual and 
informational entities [16]. To support temporal knowledge management we have developed the Extra 
Simple Time Ontology (ESTO)4 based on Allen's temporal logic [17], which supports defining time 
instants, proper time intervals, and infinite time intervals. As an example, the following query can control 
if a specific time interval is subsumed by another interval.  

   ?DiagnosisTime esto:during ?HopitalizationPeriod 

For more information on ESTO we refer the readers to our recent paper [7].  

 2.3. Incorporating Statistical Inference 

In existing surveillance approaches, the incidence of HAIs has been very difficult to document using 
statistical models alone, because statistics have been based upon different definitions. We combine the 

 

2 http://www.ihtsdo.org/snomed-ct/ 
3 Semanticscience Integrated Ontology (SIO) 
4 http://unbsj.biordf.net/ontologies/extra-simple-time-ontology.owl 
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results of statistical inference from epidemiological and clinical data with formal knowledge to enables 
inductive reasoning about formal knowledge in the ontological structure. We also use these statistical data 
for enriching the background knowledge used for defining relationships (causal or associative), rules and 
other axioms within the HAIKU conceptual model. For example, admitted patients have different levels 
of susceptibility to acquiring an infection following exposure to a given infectious agent. Statistical 
models can be constructed to assist in the case detection process by estimating the probability that a 
patient is a suspect, probable or confirmed case, based on various criteria such as identification factors 
(e.g. readmission to hospital for therapy of SSI), risk factors (e.g. old age, or prolonged operative time) 
(Figure 3) and clinical findings (i.e. lab order, lab result, imaging, procedures, drug order, etc.) [9]. 

 

Fig. 3. The general overview of the Trigger factors taxonomy (visualized using OntoGraph5). The identification factors, which are 
usually identified after the development of HAI, can be used to identify confirmed cases, and risk factors can be used to infer the 
status of patients as a suspect or probable case. When infection control programs use risk factors, or identification factors, to trigger 
surveillance activities, they are referred to as trigger factors [9].  

3. Evaluation and Semantic Querying Using SADI Semantic Web services 

We evaluate the ontology using OWL reasoners to check for consistency, satisfiability, expected or 
unexpected inferred relationships, and subsumption. To evaluate case detection methods, we rely on the 
results from the TOH's ongoing chart review process for HAI. We also assess the ontology based on its 
ability to meet the initial design requirements by defining different queries (simple or conjunctive) over 
the defined axioms. We use SADI services [7, 8] that populate the relevant HAI Ontology predicates 
based on the semantic mapping between the data warehouse schema and the ontology, using relevant data 
stored in the data warehouse. For querying purpose we use SPARQL6 Query Language for RDF7. A 
sample case detection query can be modeled as follows: 
 
Query: Which patients diagnosed with SSI had older age as a risk factor? 
 
PREFIX haio: <http://unbsj.biordf.net/haiku/HAI.owl#> 
PREFIX haiso: <http://unbsj.biordf.net/haiku/haiku-sadi-service-ontology.owl#> 
PREFIX esto: <http://unbsj.biordf.net/ontologies/extra-simple-time-ontology.owl#> 
PREFIX sio: <http://semanticscience.org/resource/> 
PREFIX rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#> 
SELECT  DISTINCT ?Patient  
FROM <http://unbsj.biordf.net/haiku/old_age_as_risk_factor.rdf> 

 

5 http://protegewiki.stanford.edu/wiki/OntoGraf 
6 http://www.w3.org/TR/rdf-sparql-query/ 
7 Resource Description Framework (RDF):  www.w3.org/RDF/ 
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WHERE  
{ 
  # Enumerate patients with haio:Old_age_as_risk_factor 

 haio:Old_age_as_risk_factor haiso:inverse-what_risk_factor  
?HavingRiskFactorSit . 

 ?HavingRiskFactorSit haio:who_has_risk_factor ?Patient . 
 ?HavingRiskFactorSit haio:situation_has_time ?HavingRiskFactorSitTime . 
 
  # Enumerate their diseases: 

  ?Diagnosis haio:is_performed_for ?Patient . 
  ?Incident haio:identified_through ?Diagnosis . 
  ?Diagnosis haio:situation_has_time ?DiagnosisTime . 
 
  # Temporal check: 

  ?HavingRiskFactorSitTime esto:contains ?DiagnosisTime . 
 
  # Check if the disease is an SSI: 

  ?Incident haio:disease_has_type haio:SSI . 
} 
 

Questions of this type allow surveillance practitioners to estimate the importance of particular risk 
factors. 

4. Conclusions 

HAIs place a major burden on patients and the healthcare system. Surveillance is critical for 
preventing HAI, but current surveillance efforts are limited by the need to manually integrate data, which 
lack uniform semantics and are scattered across disparate information systems. Knowledge modeling has 
been used successfully in many domains to add context to data and enable automated data integration and 
reasoning, especially in the form of query answering. Initial applications of knowledge modeling to 
surveillance have shown considerable promise, but they have been limited in the scope and the extent to 
which they have been used to drive knowledge-based surveillance systems within hospitals. In this paper 
we have described how our effort in knowledge modeling enabled us to address these limitations. Our 
proposed knowledge-based framework provides evidence on the ability of semantic technologies to 
support HAI surveillance. As future work we consider enriching the ontological structure to address more 
complex queries. We will also continue to explore the potential benefit of incorporating the results of the 
statistical inference into our logical framework. In particular, we intend to apply these enhancements to 
improving the accuracy of case detection. 
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