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Abstract

Recent advances in optical neuroimaging systems as a functional interface enhance our

understanding of neuronal activity in the brain. High density diffuse optical topography (HD-

DOT) uses multi-distance overlapped channels to improve the spatial resolution of images

comparable to functional magnetic resonance imaging (fMRI). The topology of the source

and detector (SD) array directly impacts the quality of the hemodynamic reconstruction in

HD-DOT imaging modality. In this work, the effect of different SD configurations on the qual-

ity of cerebral hemodynamic recovery is investigated by presenting a simulation setup

based on the analytical approach. Given that the SD arrangement determines the elements

of the Jacobian matrix, we conclude that the more individual components in this matrix, the

better the retrieval quality. The results demonstrate that the multi-distance multi-directional

(MDMD) arrangement produces more unique elements in the Jacobian array. Conse-

quently, the inverse problem can accurately retrieve the brain activity of diffuse optical

topography data.

Introduction

Recent developments in functional neuroimaging systems quantitively enhance our under-

standing of spatially and temporally distributed neural activity in the brain [1,2]. Functional

near-infrared spectroscopy (fNIRS) is a new, emerging, and growing technology for monitor-

ing neurological activity in which red and near-infrared light is used to measure changes in

Oxy- and Deoxyhemoglobin in brain tissue [3–6]. The fNIRS is an optical neuroimaging tech-

nology that is radiation-free, relatively inexpensive, compatible with implanted electronic

devices, and portable and can wirelessly record brain activity [7–10]. Although the fNIRS

systems are mobile and compact, the resolution and depth of the imaging are less than those

obtained by the fMRI [11]. HD-DOT allows brain activity to be mapped in 3D by creating

overlaps between the fNIRS channels. This method uses high-density SD arrays to improve

the spatial resolution that is comparable to fMRI [10].

SD configuration and number of overlapped channels alongside the inverse problem signif-

icantly influences the spatial resolution [10,12]. In this paper, the impact of SD topology on the

spatial resolution and hemodynamic reconstruction of HD-DOT has been investigated. We
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have developed an analytical simulation setup to evaluate the performance of the different

combinations of SD on hemodynamic regeneration. Also, this simulation setup can be

employed to optimize the arrangement of SD and the number of multi-distance channels and

performance of the inverse problem on hemodynamic reconstruction. The SD arrangement

and the number of channels determine the elements of the Jacobian matrix. We observed that

the MDMD arrangement produces more unique components in the Jacobian matrix. The out-

comes of this work indicate that the more individual ingredients in this matrix, the better the

reconstruction quality. The Jacobian is the sensitivity matrix, which is computed by the for-

ward model. In this work, the solution of Diffusion Equation inside inhomogeneous media

similar to properties of the brain tissue constitutes the base of the forward model.

The forward model is a part of the simulation setup, which plays a fundamental role in con-

firming the results of this research. Therefore, in the discussion section, the performance of

the forward model [13] used in this study is compared with the statistical model on Colin 27

brain template [14].

The rest of the study has continued as follows. The second section describes the simulation

setup, which is applied to four different topologies of SD on the forward model. In the follow-

ing, the synthetic fNIRS data are modeled and generated to simulate hemodynamic changes

in the brain. Finally, based on the calculated diffuse reflectance, the inverse method was

employed for hemodynamic reconstruction. Part 3 represents the simulation of the forward

model and hemodynamic reconstruction. The discussion and conclusion of this study are

outlined in sections 4 and 5.

Materials and methods

Modeling approach

The block diagram of the proposed simulation setup illustrated in Fig 1 contains all the steps

taken in this article. This scheme employs an analytical forward model that has less computa-

tion time. As the number of channels increases, the computational volume in the modeling

increases, so the use of analytical models are preferred to numerical approaches [15,16]. Since

the perturbative Diffusion Equation (pDE) equations do not have an analytical solution in

complex geometries, the simple geometry, that can approximate a semi-infinite medium for

thick slabs, is utilized [16].

The sources and detectors are aligned in XY-plane on the top of one layer slab geometry.

Synthetic cerebral hemodynamic is generated to model more realistic reflectance. The cost

function, which is used to modify the regularization parameter, is the correlation between

reconstructed and synthetic data. We will prove that the accuracy of reconstruction depends

on the SD arrangement, the number of channels, and the energy regularization parameter.

Here the forward model plays an essential role since the validation of a model to realistic

results mainly depends on it.

Also, the simulation setup is expandable for many quantities of perturbation inside the

medium and can be used to evaluate the performance of HD-DOT. The purpose of this

scheme is to recover the synthetic hemodynamic in location S1-S9, particularly the recovery

of S5. The different arrangement of SD is applied to the simulation setup, and the potential of

each combination is analyzed in hemodynamic reconstruction. The first arrangement (Fig 1

(a)) represents one repeatable part of HD-DOT [10]; the other remaining provisions are pro-

posed to view the effect of different SD topology on hemodynamic reconstruction (Fig 1(b), 1

(c) and 1(d)). The block diagram of Fig 1(e) illustrates the analytical simulation setup. The fol-

lowing sections will describe this diagram in detail.
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Arrangement of SD

There is a direct relationship between SD topology and the accuracy of hemodynamic signal

reconstruction. The higher the number of channels with different overlapped directions and

distances, the higher the efficiency of the recovery. For the same amount of SD, MDMD

arrangement (shown in Fig 1(d)), has higher multi-distance, multi-directional channels com-

pared to HD-DOT. Arrangement-1 and arrangement-2 both have the same number of SD, but

the lowest quantity of channels belongs to arrangement-1. These four arrangements are illus-

trated in Fig 2 and compared in terms of multi-distance, multi-directional, and the number of

channels.

The simulation setup was created based on the analytical solution of perturbation theory

to verify the accuracy of the SD arrangement in the reconstruction of the hemodynamic

response, which will be described in the next section.

Theory for reflectance perturbation

The analytical solution for perturbative DE has been obtained for the geometry of Fig 3. The

geometry of the boundary for the analytical solution of the perturbative DE is a slab. The slab

geometry is widely used for calculation of the reflectance in brain functional imaging [16–20].

It is better to note that the boundary is not limited in the direction of axis X and Y [16].

Fig 1. Illustrates the modeling approach in this work and the different arrangements of source and detector in XY-plane. (a), (b), (c), and (d)

represent the configuration of the SD in four different modes (HD-DOT, Arrangement-1, Arrangement-2, and MDMD topology). (e) Block diagram of

analytical simulation setup.

https://doi.org/10.1371/journal.pone.0230206.g001
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For the sake of simplicity, the geometry has been supposed to have only one layer. The

absorption and scattering coefficient of the slab respectively considered to be μa = 0.01mm−1

and m0s ¼ 1mm� 1 and the thickness of slab is equal to40mm and refractive index nr = 1.4 [16].

The result obtained by this approach is accurate when the defect causes small perturbation

on photon migration. Consequently, the volume of the inhomogeneity (inclusion) is regarded

to be small concerning baseline optical properties of the homogeneous medium [16].

The reflectance of each channel has been calculated for several inclusions inside the

medium. Reflectance in inhomogeneous media is the superposition of the reflectance inside

homogeneous media R0(ρ, t), plus the absorption (δRa(ρ, t)) and scattering (δRD (ρ, t)) effect of

inclusion [16].

Rpertðr; tÞ ¼ R0ðr; tÞ þ dRaðr; tÞ þ dRDðr; tÞ ð1Þ

Inside the slab medium, nine dynamic perturbations are inserted to simulate the real func-

tion of the brain in the cerebral cortex. Each perturbation is located at the center of a voxel at

15mm depth.

The final expression of Rpert(ρ) For each channel derived based on Born approximation

[21]. Finally, the diffuse reflectance for the channel between a source located in Sx and a detec-

tor at Dx would be:

Rpertðrj;TsÞ ¼ R0ðrjÞ þ
X9

i¼1

dRaðrj;Ts; iÞ ð2Þ

Where R0(ρj) is the reflectance for homogeneous media and the δRa(ρj, Ts, i) is the absorption

perturbation of ith inclusion and Ts is the sampling time of dynamic perturbation.

The channel definition in Eq (2) is based on the source (Sx) and detector (Dx), and the cor-

responding distance between them (ρj).
The position of SD in Cartesian coordinates on the surface of Slab geometry (XY-plane)

and nine perturbed inclusion inside it has displayed in Fig 3. For example, the dynamic pertur-

bation located at the center of S9 voxel has shown in this figure. The distance between adjacent

voxels is considered to be 10mm. Next section will describe how this dynamic perturbation is

generated.

Fig 2. (a), (b), (c), and (d) indicate the SD location, number of channels, number of distinct directions, and distance in XY-plane for HD-DOT,

arrangement-1, arrangement-2, and MDMD respectively.

https://doi.org/10.1371/journal.pone.0230206.g002
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Synthetic fNIRS data

This section describes the scheme for simulating the perturbation inside the medium. So

Rpert(ρj, Ts) is modulated using the synthetic Hemodynamic Response Function (HRF). The

ΔHbO2 and ΔHb concentration in this medium were perturbed in nine regions, to mimic

hemodynamic response concerning the duration of the task. The event or task duration was

considered to be random to examine the performance of the inverse problem in all possible

states. The perturbation is generated by the convolution of the boxcar function with synthetic

hemodynamic. Boxcar function (s(t)) is regularly repeated as a rectangular pulse waveform

with modulated duty cycle (related to the duration of task). The amplitude of 1 indicates the

task, and 0 refers to rest [22]. S(t) is the pulse-width modulated signal:

sðtÞ ¼
1 ti : ti þ dj
0 otherwise

(

ð3Þ

Where, i = 1: N; j = 1,2, . . ., (N − ti), and dj represents the duration of each task. The HRF(t)

was modeled as a linear combination of two different gamma variant time-dependent function

[23]:

HRFðtÞ ¼ a� ½φðt; t1; r1Þ � b� φðt; t2; r2Þ� ð4Þ

With:

φ t; tj; rj
� �

¼
1

p!tj

t � rj
tj

 !p

e
� ðt� rjÞ

tj u t � rj
� �

; u t � rj
� �

¼
1 if ðt � rjÞ � 0

0 otherwise

(

ð5Þ

Fig 3. Location of SD in Cartesian coordinates on the surface of slab geometry and nine perturbed inclusion inside it.

https://doi.org/10.1371/journal.pone.0230206.g003
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Where α determines the amplitude, ρ1, and ρ2 regulate the starting, end, and duration of HRF,

τ1, and τ2 tune the ascending and descending shape of HRF, while β control the undershoot.

The value of p coefficient recommended being five [24]. The HRF profile with a peak ampli-

tude of almost 1555 nM was chosen for HbO2 while the Hb profile is the same as HRF for

HbO2 but with an inverted magnitude by 33% attenuation and regulated latency [23]. The

change of HbO2 corresponding to each perturbation would be the convolution of the HRFi(t)
and s(t) plus physiological noise:

DHbO2 i tð Þ ¼ HRFi tð Þ�s tð Þ þ ;phy tð Þ and DHbi tð Þ ¼ �
1

3
� DHbO2i tð Þ ð6Þ

The physiological noise was modeled as a linear combination of sinusoids [25]:

;phyðtÞ ¼
X5

i ¼ 1

½Ai sinð2pfit þ yiÞ� ð7Þ

The ;phy(t) for each perturbation is the average of the ten trials of the Eq (7). The value of

amplitude and frequency of the sinusoids would be different for each repetition, while phase θi
are equally distributed between 0 and 2π for each trial [23].

Inverse problem: Hemodynamic reconstruction

The detectors record the variation in the light intensity, which is formed by the corresponding

source. These detectors represent the optical properties of the channel that is called optical

density. The Modified Beer-Lambert law (MBLL) is used to relate changes in optical density to

changes in concentration of Oxy and Deoxyhemoglobin under the assumption that the scatter-

ing losses are constant (S1 Appendix indicates further information about these equations). The

variation in Oxy-Hemoglobin (ΔHbO2(t)) and Deoxy-Hemoglobin (ΔHb(t)) according to Beer

law [26] determines the change in absorption coefficient (Δμa(λ)). According to Beer’s law

[26]:

Dma ¼
Xn

i¼1

εiDci ð8Þ

Where, n represent the number of the light absorbing agent (chromophores) in the tissue.

However, in near-infrared wavelength (700-900nm), the dominant absorption changes are

caused by the concentration of O2Hb and HHb. As a result, the Δμa can be expressed by:

DmaðlÞ ¼ ε
HbO2

l :DHbO2 þ ε
Hb
l
:DHb ð9Þ

Where, εHbO2

l and εHb
l

represent the extinction coefficients of Oxy and Deoxyhemoglobin,

respectively. The forward model is formed by using the synthetic fNIRS and perturbation the-

ory in two wavelengths.

The solution of the inverse problem to the forward model is required to estimate the syn-

thetic hemodynamic. The forward model can be rewritten as:

DRpert
j ðTsÞ= R

0

i ðrjÞ ¼ Jðmað~rÞÞj�iDmað~ri ;TsÞ ð10Þ

Where, Dmað~ri ;TsÞ is the absorption perturbation for each location of the domain under the

head surface. Dmað~ri ;TsÞ is modulated by synthetic hemodynamic and Jðmað~rÞÞ is the Jacobian
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matrix (it shows the sensitivity of reflectance to each perturbation in specific depth):

Jðmað~rÞÞj�i ¼

dRaðr1Þ=R0
1
ðr1Þ dRaðr1Þ=R0

2
ðr1Þ . . . dRaðr1Þ=R0

i ðr1Þ

dRaðr2Þ=R0
1
ðr2Þ dRaðr2Þ=R0

2
ðr2Þ . . . dRaðr2Þ=R0

i ðr2Þ

..

.

dRaðrjÞ=R0
1
ðrjÞ dRaðrjÞ=R0

2
ðrjÞ . . . dRaðrjÞ=R0

i ðrjÞ

0

B
B
B
B
B
B
@

1

C
C
C
C
C
C
A

ð11Þ

Where index “j” refers to the number of channels and index “i” refers to the number of pertur-

bations under the SD array. There are several approaches to solve the inverse problem of Eq

(10) [27]. One of the commonly employed methods to provide a solution to the inverse prob-

lem is energy regularization [28]. Reconstruction of the hemodynamic is obtained by:

Dmað~r;TsÞ ¼ Jðmað~rÞÞ
T
½Jðmað~rÞÞJðmað~rÞÞ

T
þ �I�� 1

DRpertðTsÞ ð12Þ

Where, Jðmað~rÞÞ
T

is the transposition of the Jacobian matrix, “�” is the energy regularization

parameter and “I” is the identity matrix. The optimum value for “�” is found empirically based

on the simulation results.

Given the Eq (9), εHbO2

l and εHb
l

are a function of the wavelength. By calculating the variation

of optical density ΔOD at two wavelengths (in this paper 780 and 820 nm), and assuming that

the length of the traveling light is identical in both wavelengths, the values of Δμa(λ1) and

Δμa(λ2) are obtained. As a result, the corresponding hemodynamic can be reconstructed:

D HbO2ð Þ ¼
εHb
l2
: Dmaðl1Þ � εHb

l1
: Dmaðl2Þ

εHbO2

l1 � εHbl2 � εHbl1 � ε
HbO2

l2

ð13Þ

D Hbð Þ ¼
εHbO2

l2 : Dmaðl1Þ � ε
HbO2

l1 : Dmaðl2Þ

εHbl1 � ε
HbO2

l2 � εHbO2

l1 � εHbl2
ð14Þ

Where in this work λ1 = 780nm and λ2 = 820nm. The extinction coefficients of Oxy and Deoxy

hemoglobin for both wavelengths are given by [29].

Results

Forward simulation

The elements of the Jacobian matrix for the given arrangement have been calculated by sweep-

ing one inhomogeneity in a 3D position in the medium under study. The contrasts (δRa(ρj)⁄
R0(ρj)) of channels (Fig 4) have been obtained for 10mm, 20mm, 30mm, 40mm, 50mm, and

60mm distance between SD. The contrast indicates the sensitivity of reflectance for any pertur-

bation inside 3D geometry. This simulation result shows less sensitivity in profound depth.

This feature has been described comprehensively and in detail by [27]. According to this fig-

ure, penetration depth increases throughout the growing distance among SD.

The synthetic oxyhemoglobin (Δ(HbO2)) and deoxyhemoglobin (Δ(Hb)) are generated

with the corresponding Δμa(λ) at the wavelength of the 780nm and 820nm (Fig 8). The solu-

tion of DE based on perturbation theory and Born approximation for nine perturbations is

employed. The transient brain activity is modeled in a way to modulate absorption. So Δμa(λ)

can be time-dependent (Δμa(λ, t)). Then the reflectance due to perturbations inside the

medium depends on Δμa(λ, t) of each perturbation. Consequently, Rpert(ρ, Ts) is modulated

using synthetic hemodynamic.
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According to the forward model, nine synthetic hemodynamic response is generated at

15mm depth and reconstructed by the solution of the inverse problem. Fig 5 shows the change

in synthetic oxy and deoxyhemoglobin. This figure represents that each hemodynamic has a

distinct pattern compared to others. The different hemodynamic trends in each voxel make it

more challenging to recover hemodynamics, and under these conditions, the capability of the

Fig 4. The contrast (δRa(ρj)⁄;R0(ρj)) in XZ-plane for SD separation from 10mm to 60mm.

https://doi.org/10.1371/journal.pone.0230206.g004

Fig 5. Changes in synthetic oxyhemoglobin (Δ(HbO2)) and deoxyhemoglobin (Δ(Hb)).

https://doi.org/10.1371/journal.pone.0230206.g005
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inverse algorithm and the SD arrangement can be explored. It can be noted that the nearby

hemodynamic activity acts as a systematic noise. Therefore, the hemodynamic recovery of the

S5 region will be more difficult because it is surrounded by eight hemodynamic noises. Thus,

for hemodynamic retrieval of this area, the number and angle of observations must be much

higher than the number of hemodynamic sources under the inspection field.

Inverse procedure: Hemodynamic reconstruction

The correlation rate was used to investigate the similarity between the two synthetic and

obtained hemodynamic. The accuracy of reconstruction not only depends on the arrangement

and number of the SD, but it also relies on the solution of the energy regularization. The opti-

mum value for the energy regularization parameter (�) was achieved by sweeping this parame-

ter from 10−8 to 10−3 and minimizing the cost function; correlation coefficient (CC) for four

different SD topology. By using Eqs (13) and (14), and reconstructed Dmað~r; l;TsÞ in two

wavelengths, the calculated Oxy-Deoxy hemoglobin along with synthetic data are compared

in the S5 region in Fig 6 (in the existence of SD arrangement of HD-DOT, Arrangement-1,

Arrangement-2, and MDMD).

Fig 6 shows that the topologies of Arrangement-2, HD-DOT, and MDMD have been able

to extract the hemodynamics of the S5 region with greater accuracy, but the Arrangement-1

has inferior performance compared to other configurations.

The trend of CC(�) within Fig 7 represents that change in SD topology leads to accurate

hemodynamic reconstruction. It also indicates that the MDMD has superior performance

compared to other arrangements. The production of each SD arrangement also analyzed in

the rebuilding of all dynamic perturbations of S1-S9 using the value of CC. The result of this

comparison, as shown in Fig 8, reveals that almost all the combinations have acceptable perfor-

mance except for the Arrangement-1, which has poor performance in hemodynamic

Fig 6. Visual comparison between reconstructed and synthetic hemodynamics for S5.

https://doi.org/10.1371/journal.pone.0230206.g006
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extraction of the S5 region. This figure also confirms that the MDMD operates properly in

extracting all the hemodynamic sources because it has many unique elements in the Jacobian

matrix compared to other topologies (Fig 9).

The performance of all the topologies studied in this work is summarized in Table 1 in

terms of the topology of the arrangement, the number of SDs, channels, distances, directions,

as well as the unique elements of the Jacobian matrix. This table notes that as much as the

Fig 7. Depicts the performance assessment of different SD arrangements in hemodynamic extraction of the S5 region concerning the

regularization parameter.

https://doi.org/10.1371/journal.pone.0230206.g007

Fig 8. Indicates the similarity of all reconstructed and synthetic hemodynamic in S1-S9 region for HD-DOT, Arrangement-1,

Arrangement-2 and MDMD.

https://doi.org/10.1371/journal.pone.0230206.g008
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arrangement of the SDs creates various distance and direction between the overlapped chan-

nels, the better the hemodynamic extraction will be observed.

A singular value analysis of the Jacobian matrix associated with introduced SD arrange-

ments is used as a benchmark [30]. Besides unique elements of the Jacobian matrix, the singu-

lar value analysis of the different methods in Fig 10 indicates that both shape of the singular

value spectra and the magnitude for MDMD arrangement is higher than other SD

combinations.

It is worth noting that, if the depth information is not necessary, and the objective is to

achieve topography, Arrangement-2 can be replaced instead of MDMD and HD-DOT because

it has fewer SDs (reduces the complexity of the device) and has acceptable performance com-

pared to these arrangements.

Discussion

In this paper, based on a developed simulation setup, the performance of SD arrangement and

their quantity alongside inverse problem on hemodynamic reconstruction has been investi-

gated. The simulation approach consists of a forward model, synthetic fNIRS data generation,

Inverse problem, and SD arrangement.

Fig 9. Represents the number of unique elements in the Jacobian matrix regarding the SD topology.

https://doi.org/10.1371/journal.pone.0230206.g009

Table 1. Summarized the details and the performance of all SD topologies studied in this investigation.

SD Topology Number of

Distance

Number of

Direction

Number of

SD

Number of

Channels

Number of Unique Elements in

Jacobian Matrix

Total Correlation

Coefficient

Arrangement-

1

2 6 9 12 18 0.9586

Arrangement-

2

4 3 9 16 33 0.9764

HD-DOT [10] 4 9 13 36 35 0.9949

MDMD 5 13 13 36 50 0.9986

https://doi.org/10.1371/journal.pone.0230206.t001
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The forward model is an analytical method that is implemented by the solution of the pDE

in slab medium. Analytical methods have been developed earlier to study light emission inside

the simple geometry such as slab medium [13,31–36]. Numerical methods also are used in

complex brain models to study light diffusion in tissues [14,37]. In spite of simplicity and

approximation, analytical methods take less time calculation compared to statistical

approaches, especially when it comes to investigating the effect of several fNIRS channels on

depth sensitivity.

The spatial probability pattern of photons penetrating tissue at the source position, scatter-

ing within the tissue, and being exposed at a particular detector spot, determines the spatial

sensitivity profile for the SD pairs [14]. To verify the forward model, the spatial sensitivity pro-

file is compared with the results of the Monte Carlo method on Colin 27 brain template. The

depth sensitivity for analytical pDE inside slab geometry is defined as follow:

Depth Sensitivity z; xSDð Þ ¼

PxSD
x¼0
dRaðx; y ¼ 0; zÞ

ððxSDÞ=1mmÞ � R0ðxSDÞ
ð15Þ

Where xSD represents the distance between source and detector.

The depth sensitivity of analytical pDE is compared to the regression of Monte Carlo (MC)

on Colin 27 brain template in Fig 11, and the mismatch between these analytical and numeri-

cal methods are illustrated in this figure for given SD separations. Toward SD separation

around 30mm-50mm, the mismatch is less than 60% for penetration depth from 1mm to

28mm. In 15mm depth, the mismatch is less than 20% for SD separation of 30mm-50mm.

The outcomes of the comparison indicate that the analytical approach is not too close to the

results of Monte Carlo methods. It is better to emphasize that there is no analytical solution to

light- tissue interaction inside complex geometries like the brain. Besides that, due to the high

computation time of statistical models are not a desirable candidate to be a forward model in

this simulation setup. Although Monte Carlo methods are accurate in estimation of depth sen-

sitivity, they are not well suited to be used in the forward model. Whenever multiple dynamic

Fig 10. Singular value spectra for Jacobian matrix of HD-DOT, MDMD, Arrangement-1 and 2.

https://doi.org/10.1371/journal.pone.0230206.g010
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perturbations exist in geometry, then numerical methods should be run for each sampling

time.

Consequently, the computation time will grow significantly by applying statistical

approaches. It is suggested to try the solution of analytical techniques on multilayered geome-

tries as a forward model inside the simulation setup. Another alternative to the computation

of the forward model and Jacobian matrices is to use a finite element method (FEM) [27,36].

Recently, both NIRSFAST and Neuro-DOT software have been developed to the solution of

the forward model based on FEM estimation [38–41].

The results of FEM data when it is applied to Diffusion Equation will be close to reality

compared to the analytical techniques, but the computation time will grow considerably [15].

On the other hand, adding dynamics to the perturbations inside the meshed environment will

increase the simulation time significantly. Analytical simulation of 36 channels, including a

sampling rate of 30 samples per second, takes less than 10 minutes. For the same sampling rate

and channels, the FEM simulation will take almost 43–48 hours, depending on system speed.

The geometry and mesh of the medium for simulating the FEM are represented in Fig 12(a)

and 12(b), respectively.

According to the simulation approach presented in Fig 1, White Gaussian Noise (WGN) is

added to each channel (DRpert
j ðrj;TsÞ= R0

i ðrjÞ) before the reconstruction of the simulated data

to avoid inverse-crime. WGN indicates the instrumentational noise, which depends on the

Signal to Noise Ratio (SNR) of the signal acquisition device. The effect of 47 dB SNR on the

performance of different SD arrangements in the hemodynamic recovery of region S5 has

been investigated. Considering the simulation of Fig 13 for Arrangement-1 and 2, there is a

significant change in magnitude and shape of CC versus regularization parameter. While little

difference with the noiseless condition for MDMD and HD-DOT is observed, it can be

Fig 11. Represents the depth sensitivity of the analytical pDE in slab medium and depth sensitivity of the regression of MC on Colin 27 geometry

for SD separation of 10mm-60mm.

https://doi.org/10.1371/journal.pone.0230206.g011
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concluded that 47 dB of SNR has no significant effect on the performance of these two meth-

ods. The SNR has been swept from 32 dB (worst case condition) up to 52 dB (for given � =

10−5) to compare the performance of SD arrangements on hemodynamic reconstruction. The

simulation of Fig 14(a) represents that for any SNR, MDMD performs better than other com-

petitors. Concerning Fig 14(b) in the worst-case condition, the optimal point for the regulari-

zation parameter has been shifted. Even with the highest noise through determining the

appropriate regularization parameter, MDMD still works better than HD-DOT. For SNR = 32

Fig 12. (a) Illustrates the geometry of the Slab medium which is 120mm × 120mm × 40mm. (b) represents the mesh of the medium.

https://doi.org/10.1371/journal.pone.0230206.g012

Fig 13. Demonstrates the effect of noise on performance assessment of different SD arrangements in hemodynamic extraction of the S5 region

concerning the regularization parameter.

https://doi.org/10.1371/journal.pone.0230206.g013
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dB, the reconstructed and synthetic hemodynamic of region S5 are presented in Fig 14(c) and

14(d) for both MDMD and HD-DOT, respectively.

The forward model has been generated with well-defined optical properties using the Jaco-

bian matrix, and the inversion has been performed using the same matrix. Previously, to avoid

Fig 14. (a) Represents the ability of hemodynamic extraction from the S5-region concerning several SNRs. (b) illustrates that in the worst case

condition (SNR = 32 dB), the optimum point for � has changed from 10−5 to 10−4. (c) and (d) Represents reconstructed and synthetic ΔHbO2 and ΔHb
for MDMD and HD-DOT respectively.

https://doi.org/10.1371/journal.pone.0230206.g014
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inverse-crime, WGN was added to each channel. One can also bring the forward model closer

to the more realistic model by adding uncertainty to all elements of the Jacobian matrix. For

this purpose, Jacobian matrix elements are multiplied by the Gaussian random coefficient.

Therefore the forward model is changed as follows:

DRpert
j ðTsÞ

R0
i ðrjÞ

¼ Rndj�i: Jðmað~rÞÞj�i Dma ~ri ;Tsð Þ ð16Þ

The Rnd matrix carries random coefficients with Gaussian distribution, the performance of

the two MDMD and HD-DOT methods are close together, the effect of the changes on the for-

ward model will only be investigated on the performance of these two methods.

Random coefficients with two different distributions are applied to the forward model. The

mean of both data set is one, and the variance (δ) of the first and second random coefficients

are 0.07 and 0.2, respectively (Fig 15(a) and 15(c)). Beside ten simulation runs for 0.07 vari-

ance, the distribution of random coefficients is plotted in Fig 15(a). The performance of both

the MDMD and HD-DOT methods in hemodynamic extraction of the S5 region is compared

in Fig 15(b). Similarly, for the variance of 0.2, the above comparison is repeated 18 times. In

this case, the distribution of random data for this variance is shown in Fig 15(c) and the results

of analyzing of similarity are illustrated in Fig 15(d).

If the variance of random data in the Rnd matrix is 0.07, according to the results of Fig 15

(b), the performance of MDMD is better than HD-DOT. Even with a variance of 0.2, MDMD

still delivers better results. It should be noted that there is no similarity between the data

extracted from the S5 region and the synthetic data under the variance of 0.2 in some states. If

the correlation is less than 0.8, there will be no similarity between the reconstructed and syn-

thetic signals.

Fig 15. (a) Represents Gaussian distribution (mean = 1 and δ = 0.07) of Rnd matrix elements. (b) Boxplot regarding random coefficients. (c)

Represents Gaussian distribution (mean = 1 and δ = 0.2) of Rnd matrix elements. (d) Boxplot regarding random coefficients.

https://doi.org/10.1371/journal.pone.0230206.g015
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Although adding uncertainties to the Jacobian matrix elements in the forward model can

reduce the gap between the results of this work and the real imaging applications. However,

given the limitations of the analytical model used in this comparison, it is not yet possible to

claim that MDMD will have better results than other SD configurations in imaging

applications.

This proposed simulation setup is expandable for many numbers of perturbation inside the

medium and can be used for performance assessment of HD-DOT. A. Eggebrecht and col-

leagues in 2014 have used HD-DOT for mapping brain function [10], the proposed model can

be used for evaluation of the SD separation and arrangement of SD on performance of

HD-DOT.

The outcome of this model can be an instrumentation probe with a specific arrangement of

SD array for monitoring stimulation induced hemodynamic. Among noninvasive stimulation

approaches such as transcranial direct current stimulation and transcranial magnetic stimula-

tion, low-intensity ultrasound stimulation has the spatial resolution in the order of several mil-

limeters [42]. To control the amount of stimulation and study the effect of stimulation on the

brain, a simultaneous recording of the hemodynamic activity of the brain is necessary [43].

Therefore, a non-invasive method is required for recording stimulation-induced hemody-

namic with a spatial and temporal resolution equivalent to the stimulation approach [44].

Summarily, this simulation setup can be employed for performance assessment of high or

low-density DOT, monitoring of stimulation-induced hemodynamic, and SD array design.

Finally, the proposed simulation approach, with declared assumptions and simplifications,

can be used by researchers who want to arrange an array of sources and detectors for optical

topography.

Conclusion

In this paper, an innovative simulation setup proposed for the performance assessment of a

variety of sources and detectors toward the rebuilding of cerebral hemodynamics. MDMD

arrangement involves more unique elements in the Jacobian matrix and will be able to recon-

struct the neural activity accurately. Meanwhile, the performance of several provisions of SD

on the reconstruction of brain function is studied. The result of simulation indicates that rais-

ing the number of multi-distance and multi-directional overlapped channels increase the accu-

racy of brain hemodynamic reconstruction. Also, the simulation setup can be employed for

performance assessment of high or low-density DOT, monitoring of stimulation-induced

hemodynamic, and SD array design. We believe that modeling and simulation of different SD

arrays on hemodynamic extraction optimizes the number of SDs required for accurate spatial

imaging. Consequently reduces the additional cost and complexity of device fabrication. Based

on the modeling approach and simulation results, the achievements of the MDMD looks more

beneficial than other methods. But still, there would be a gap between the outcomes of this

study and real imaging applications. It is suggested to use the proposed simulation approach

with a modified forward model according to the following suggestions. The brain model in

this work is one-layer, while the multi-layered medium can be considered to get closer to the

real results. Also, we must find the interaction between the perturbations in the solution of DE

equations (whenever the perturbations are not small regarding the baseline optical properties),

while Born approximation is used in this work. In this study the diffuse reflectance modulated

due to change in absorption coefficient. The changes in the optical scattering coefficient, along

with the absorption coefficient, should be taken into account for more accurate simulation of

diffuse reflectance.
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