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Abstract

Transcription factors (TFs) play an important role in regulating gene expression, thus identification of the regions bound by
them has become a fundamental step for molecular and cellular biology. In recent years, an increasing number of deep
learning (DL) based methods have been proposed for predicting TF binding sites (TFBSs) and achieved impressive prediction
performance. However, these methods mainly focus on predicting the sequence specificity of TF-DNA binding, which is
equivalent to a sequence-level binary classification task, and fail to identify motifs and TFBSs accurately. In this paper, we
developed a fully convolutional network coupled with global average pooling (FCNA), which by contrast is equivalent to a
nucleotide-level binary classification task, to roughly locate TFBSs and accurately identify motifs. Experimental results on
human ChIP-seq datasets show that FCNA outperforms other competing methods significantly. Besides, we find that the
regions located by FCNA can be used by motif discovery tools to further refine the prediction performance. Furthermore, we
observe that FCNA can accurately identify TF-DNA binding motifs across different cell lines and infer indirect TF-DNA
bindings.

Key words: fully Convolutional Neural Network; global Average Pooling; nucleotide-level prediction; TFBSs location

Introduction
Transcription factors (TFs) can activate or suppress transcrip-
tion of genes by binding to specific DNA noncoding regions,
thereby playing an integral role in gene expression. Previous
studies have confirmed that TF binding sites (TFBSs) are some
short DNA sequences and relatively conserved in the long-term
evolution [1], and generally have specific patterns that are com-
monly called TF-DNA binding motifs. Identification of TFBSs and
their corresponding motifs have become a fundamental step for
molecular and cellular biology [2].
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Due to the fast development of high-throughput sequencing
technology in the last decades, particularly, Chromatin Immuno-
precipitation sequencing (ChIP-seq) [3] provides a large amount
of TF-DNA binding data and enables new insights into gene
regulation. Abundant TF-DNA binding data provide an unprece-
dented opportunity for developing computational methods to
predict TFBSs and motifs. Based on these binding data, a series
of computational methods have been proposed for predicting
motifs. For example, MEME (Multiple EM for Motif Elicitation)
[4], based on expectation maximization (EM), predicted TF-DNA
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binding motifs by searching for repeated, ungapped sequence
patterns that occur in the biological sequences. DREME (Dis-
criminative Regular Expression Motif Elicitation) [5] used a sim-
pler, nonprobabilistic model (regular expressions) to describe
the short binding motifs characteristic of single TFs, which is
often used as the complement of MEME. MEME-ChIP [6] iden-
tified motifs from ChIP-seq peak regions by assembling two
complementary motif discovery tools: MEME and DREME. How-
ever, the high computational complexity of these motif dis-
covery tools restricts the number of input sequences or the
range of search space, which may sacrifice the accuracy of
identifying motifs. Over the past 5 years, deep learning (DL)
have achieved impressive performance in many fields, such
as computer vision and natural language processing, inspiring
researchers to design DL-based methods to predict TFBSs and
motifs [7–9]. For example, DeepBind [10], one of the earliest and
most well-verified DL-based algorithms, applied convolutional
neural networks (CNNs) to predict the sequence specificity of TF-
DNA binding. DeepSea [11], another impressive DL-based algo-
rithm, also used deep CNN to predict TF-NDA binding motifs and
the chromatin effects of sequence alterations from large-scale
chromatin-profiling data. DanQ [12] predicted TF-NDA bind-
ing motifs and prioritized functional SNPs by combining CNN
with recurrent neural networks (RNNs). However, these DL-based
methods mainly focus on predicting the sequence specificity of
TF-DNA binding, and fail to identify motifs and TFBSs accurately.
Besides, they view motif discovery as a sequence-level binary
classification task, thereby they need to carefully select negative
sequences for positive sequences (peak regions), and different
selection strategies will give rise to diverse predictions.

In this paper, we developed a novel motif discovery method
which is mainly based on a fully CNN coupled with global
average pooling, namely fully convolutional network coupled
with global average pooling (FCNA). The proposed model FCNA
views motif discovery as a nucleotide-level binary classifica-
tion task, which can (i) avoid generating negative sequences,
and (ii) locate some short regions that contain TFBSs, and (iii)
predict TF-DNA binding motifs accurately. Specifically, (i) high-
quality position counting matrices (PCMs) were collected from
the HOCOMOCO motif database [13], by which each nucleotide
in DNA sequences was annotated; (ii) FCNA, which incorporates
a fully CNN, a global average pooling, and a hard negative mining
loss, was trained on the annotated TF-DNA binding data; (iii) the
trained FCNA was used to locate TFBSs and predict motifs on the
test data. Experimental results on the ChIP-seq datasets show
that FCNA outperforms other competing methods significantly.
Besides, FCNA was first to locate some short regions that con-
tain TFBSs, on which motif discovery tools were then trained
to predict TF-DNA binding motifs. As a result, we find that
the regions located by FCNA can contribute to further refining
the performance of predicting motifs. Furthermore, according
to the predicted motifs, we observe that FCNA can accurately
identify TF-DNA binding motifs across different cell lines and
infer indirect TF-DNA bindings.

Materials and methods
Data preparation

We collected 53 TF ChIP-seq datasets from the ENCODE project,
which are separately from three cell lines including A549 (20),
GM12878 (21), and MCF7 (12), and downloaded high-quality PCMs
(marked as A) from the HOCOMOCO motif database. For each TF
dataset, 500 bp regions surrounding peaks were extracted, and

its corresponding PCM was used to annotate each nucleotide in
the 500 bp regions as 0 or 1 in which label ‘1’ means that the
nucleotide belongs to TFBSs. Briefly, since PCM not only provide
the counting number of four nucleotides at each position but
also the exact length of the corresponding motif, each region of
the same length as the motif was scored by the PCM, and then
the region with the highest score was chosen as the positive
data, which assumes that the chosen region is the TFBS. As we
known, TFBSs are short sequences ranging from 5 bp to 22 bp.
Therefore, the annotated data are extremely imbalanced in the
experiments, and the ratio of negative to positive is about 32.

The framework of FCNA

The fully convolutional network (FCN) was originally applied
to image segmentation [14], which replaces all fully-connected
layers with convolutional layers and can take input of arbitrary
size and produce correspondingly-sized output with efficient
inference and learning. FCN often adapts classification networks
(e.g. VGG [15], ResNet [16]) into FCN, and uses deconvolution
operations to gradually restore downsampled feature maps to
the original image size, and uses a skip line to combine semantic
information from a deep layer with appearance information
from a shallow layer. Another typical segmentation model U-
Net [17] was applied to biomedical image segmentation, which
is similar to FCN but adopts a symmetrical architecture, and
uses upsample operations and normal convolution operations
to gradually restore downsampled feature maps to the original
image size.

Inspired by the original FCN and U-Net, we designed a novel
motif discovery method namely FCNA for locating TFBSs and
predicting TF-DNA binding motifs. As shown in Figure 1, FCNA
is a symmetrical architecture, which consists of a top–down
encoding process (left), a bottom–up decoding process (right).
The source code and data are available at: https://github.com/
turningpoint1988/FCNA.

Top–down encoding process

This process contains three convolutional blocks and a global
average layer, in which each block is composed of a convolutional
layer, a ReLU layer, a max-pooling layer and a dropout layer.
The computation process can be mathematically described in
Equation (1).

X = max
(
0, S � M + b

)
Y = maxpool(X)
Z = dropout(Y)

(1)

where S is a one-hot matrix encoded by the one-hot method,
and X means the convolution of the convolutional kernel M
and the matrix S, and � denotes the convolution operation. The
convolutional layer is often viewed as motif scanners, which
is used to score each segment of sequences. The max-pooling
layer is used to reduce the computational complexity and select
the best response of local adjacent regions. The dropout layer is
often used to alleviate the overfitting problem.

In the application of image segmentation, several studies
have demonstrated that global average pooling can capture the
global context of images [18, 19]. Similarly, the global context
of DNA sequences is also important for motif discovery, e.g.
the information of flanking regions can influence the binding
activity of TF-DNA [20]. Hence, we added a global average pooling
layer on the top of the last convolutional block to capture the
global context of TF-DNA binding sequences.

https://github.com/turningpoint1988/FCNA
https://github.com/turningpoint1988/FCNA
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Figure 1. The framework of FCNA, which mainly contains a top–down encoding process (left), a bottom–up decoding process (right).

Bottom–up decoding process

This process, symmetrically, has four deconvolutional blocks
and four skip lines, in which each block is composed of an
upsample layer, a batch normalization (BN) layer, a ReLU layer,
and a convolutional layer, and each line is a summation opera-
tion. The computation process can be mathematically described
in Equation (2).

Y+ = upsample
(
Z+)

Y+ = Y+ + Z
Y+ = BN

(
Y+)

X+ = max
(
0, Y+)

S+ = X+ � M+ + b+

(2)

where Z is the outputs of the encoding process at the same level
and � denotes the convolution operation. The upsample layer is
used to restore the size of downsampled feature maps. The skip
line is used to combine high-level semantic information from
a deep layer with detailed location information from a shallow
layer, which contributes to accurately predicting the label of each
position.

Hard negative mining loss

Since the annotated data are extremely imbalanced, the normal
binary classification is not suitable for this situation. However, in
the field of object detection, a few efficient methods have been
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developed to solve the problem of imbalanced data. Particularly,
the hard negative mining method [21] is commonly-used to
deal with imbalanced positive and negative data. Following the
concept of the method, we designed a hard negative mining
loss for locating TFBSs and predicting motifs, which is briefly
described as follows: (i) computing the losses of all positive and
negative data; (ii) sorting the losses of the negative data, and
selecting the top-k losses of them where k is determined by a
specified ratio; (iii) separately taking the average of the losses of
all the positive data and the losses of the selected negative data,
and then outputting the summation of them. The computation
process can be mathematically described in Equation (3).

Losspos = Crossentropy
(
S+

pos

)
Lossneg = Crossentropy

(
S+

neg

)
Loss+

neg = top-k
(
Lossneg, ratio = 0.3

)
Loss = mean

(
Losspos

) + mean
(
Loss+

neg

) (3)

where S+ is the output of the last deconvolutional block, and the
ratio was set to 0.3 in this paper.

Locating TFBSs and predicting motifs

As shown in Figure 1, since the outputs of FCNA are the
nucleotide-level predictions, so a post processing of them is
needed to locate TFBSs and to predict motifs.

Locating TFBSs

Firstly, a threshold value (e.g. 0.9) was set empirically, and the
probabilities of all nucleotides were transformed into 1 if bigger
than the threshold value or 0 otherwise. Secondly, a sliding
window of short length 50 bp (the motif length < 50 bp < < the
sequence length) was used to count the number of label 1.
Thirdly, the region containing the maximum number of label 1
was selected from the whole sequence as the location of TFBSs.
Since it is difficult to precisely locate TFBSs with 100%, we can
use a window of short length to roughly locate them. In the later
experiments, we will show that the located regions can be used
to further refine the prediction performance.

Predicting motifs

Firstly, the process of locating TFBSs described above was
repeated to obtain the located regions from DNA sequences.
Secondly, the trained weights of the first convolutional layer
were used to score each subregion of the located regions, from
which the ones with the highest score were then selected.
Thirdly, these selected subregions were aligned to compute
position frequency matrixes (PFMs). Finally, TOMTOM [22] was
utilized to match the PFMs with experimentally validated motifs
from standard databases.

Evaluation metrics

In this paper, Intersection over Union (IOU) was used to test
the nucleotide-level prediction performance of FCNA, which is
a commonly-used metric in the field of image segmentation.
IOU can measure the overlapping ratio of the predicted labels
and the true labels, and gets to 1 if completely overlap. To test
the performance of predicting motifs, three statistical signif-
icances including P-value, e-value and q-value were adopted,
which are commonly-used for comparing predicted motifs with
experimentally validated motifs [19].

In the process of evaluation, a 5-fold cross-validation strategy
was employed. In other words, all data are randomly divided into
five parts, and four parts of them are used as the training data,
whereas the remaining one is used as the test data.

The competing methods

In this paper, we designed three comparative methods including
CNN, CNN+ and MEME-ChIP.

CNN: its architecture is similar to DeepSea, which has three
convolutional layers. Here we did not compare DeepBind, as our
previous studies have shown that the deep model (DeepSea)
is better than the shallow model (DeepBind) in the task of
predicting TFBSs [23, 24].

CNN+: its architecture is similar to DeepSea, but it has prior
knowledge about the length of motifs, which means that the
kernel size of the first convolutional layer is the same as the
length of motifs. Here we wanted to investigate the effect of the
motif length on the prediction performance.

MEME-ChIP: it integrates two complementary motif discovery
tools: MEME and DREME, which are the most commonly-used
traditional methods.

Experimental results
Hyperparameters selection

In this section, some important hyperparameters were investi-
gated by using 20 TF-DNA binding datasets from A549, whereas
other hyperparameters were set to default values. The evalua-
tion metric is mean IOU (miou).

As shown in Figure 2A, the effect of the hard negative mining
loss on the prediction performance of FCNA was investigated. In
this experiment, we manually set a specified value (e.g. 0.3) to
select hard negative examples (note that the specified value 0.3
was not validated). From the results, we can see that FCNA with
the hard negative mining loss significantly outperforms FCNA
with the normal loss, and the performance gain is 0.095, which
demonstrates that the hard negative mining loss is very efficient
for handling imbalanced data.

As shown in Figure 2B, the effect of global average pool-
ing on the prediction performance of FCNA was the effect of
the hard negative mining loss on the prediction performance
of FCNA was investigated. In this experiment, both FCN and
FCNA adopted the hard negative mining loss and other same
settings except global average pooling. From the results, we can
find that FCNA significantly outperforms FCN, and the perfor-
mance gain is 0.096, which demonstrates that global average
pooling is very efficient for locating TFBSs, and also shows
that the global context of TF-DNA binding sequences is very
important.

As shown in Figure 2C, the effect of the threshold value on
the prediction performance of FCNA was the effect of the hard
negative mining loss on the prediction performance of FCNA was
investigated. In this experiment, we set three threshold values
{0.5, 0.7, and 0.9} to transform the probabilities of outputs into
1 or 0. From the results, we observe that the performance of
using 0.7 is better than that of using the other two values, and
the performance gains are 0.01 and 0.02. Intuitively, we are more
concerned about the true-positive samples, so a big value was
set to decrease some false-positive samples, but it may filter out
too many true-positive samples if too big. The detailed results
were recorded in Supplementary Table 3.
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Figure 2. The performance comparison of three important hyperparameters, including hard negative mining loss (A), global average pooling (B), different threshold

values (C).

Figure 3. The performance comparison of four motif discovery methods. The adopted metrics are separately −log2(P-value) (A), −log2(e-value) (B) and –log2

(q-value) (C).

The performance of predicting motifs
In this section, we first made similarity comparisons between
motifs predicted by FCNA from 41 TF-DNA binding datasets
(A549 + GM12878) and experimentally validated motifs in the
HOCOMOCO database by using TOMTOM. Then, similar com-
parisons were extended to the other three competing methods
including MEME-ChIP, CNN and CNN+. The evaluation metrics
are –log2(P-value), −log2(e-value) and –log2(q-value).

First, we compared CNN with CNN+ to investigate the effect
of the prior knowledge (motif length) on the performance of pre-
dicting motifs. As shown in Figure 3, the –log2(P-value), −log2(e-
value) and –log2(q-value) of CNN are slightly higher than the
values for CNN+ (Wilcoxon test P-values are 0.41, 0.36 and 0.39,
respectively). Furthermore, the sequence-level prediction perfor-
mance between them was compared, and the evaluation metrics
AUC and PRAUC were used. As shown in Supplementary Figure
1, the sequence-level prediction performance of CNN and CNN+
is almost the same. The above results demonstrate that the
motif length cannot significantly influence the final prediction
performance.

Then, we compared FCNA with CNN, CNN+ and MEME-ChIP
to test the motif prediction performance of FCNA. As shown in

Figure 3, the –log2(P-value), −log2(e-value), and –log2(q-value) of
CNN are significantly higher than the values for other competing
methods (Wilcoxon test P-values are <2.9e-09, <3.7e-11 and
<2.22e-16, respectively), which quantitatively demonstrates that
FCNA is much better than others in the task of predicting motifs.
As shown in Table 1 and Supplementary Table 1, all the motif
logos found by FCNA are better matched with the motif logos in
the HOCOMOCO database than other methods, which visually
shows that FCNA is superior to others. The above results confirm
that the proposed method FCNA is very efficient for predicting
motifs. The detailed results were recorded in Supplementary
Table 4.

Finally, we explored the ability of FCNA to find indirect TF-
DNA binding motifs. Following the process of predicting motifs,
TOMTOM was used to match some validated motifs with high
–log2(P-value). Except for the target TF (which generally has the
highest –log2(P-value)), the top-5 TFs from all the matched TFs
were picked out according to the –log2(P-value). As shown in
Figure 4 and Supplementary Table 5, we observe two scenarios:
(i) the matched TFs with high –log2(P-value) may interact with
the target TF, and cobind to neighboring sites; (ii) the matched
TFs and the target TF belongs to the same TF family. For the
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Table 1. Motif logos comparison of different methods
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Figure 4. The TFs found by FCNA. The TFs of the inner loop are the target TFs and the TFs of the outer loop are the indirect TFs, where the size of circle corresponds

to the –log2(P-value) value. Different colors are used to designate different TF classes, where brown means ‘super class’, and yellow means ‘class’, and green means

‘family’, and blue means ‘sub-family’, and pink means ‘other super classes’. The TFs marked by green and blue belong to the same TF family sharing the consensus

binding sequence while the ones marked by other colors are more likely to cobind with the target TF.

first scenario, for example, the matched TFs of ATF3 contain
USF1 and USF2, where ATF3 belongs to the basic leucine zip-
per family whereas USF1 and USF2 belong to the basic helix–
loop–helix leucine zipper family, but ATF3 has a tethered bind-
ing with USF (USF is the heterodimer of USF1 and USF2) [25].
The matched TFs of FOSL2 contain JUN-related TFs (JUN, JUND
and JUNB) meanwhile the matched TFs of JUND also contain
FOS-related TFs (FOSL1, FOSL2, FOSB and FOS), and the related
study has demonstrated that all JUN–FOS heterodimers strongly
bind to the TPA-response element [26]. For the second scenario,
for instance, the matched TFs of SP1 contain SP-related TFs
(SP2, SP3 and SP4), and the matched TFs of CEBPB contain CEBP-
related TFs (CEBPA, CEBPD and CEBPE), and the matched TFs
of CTCF contain CTCFL, as they belong to the same TF family
and share the consensus binding sequence. According to the
matched TFs of all target TFs, we find that in most cases,
majority of the matched TFs have the same TF family as the

target TF (the second scenario), and minority of the matched
TFs have a cobinding with the target TF (the first scenario),
which demonstrates that FCNA is inclined to first find the TFs
belonging to the same TF family and then the cobinding TFs.

Refining the prediction performance by using
the located regions

In this section, we explored how to utilize the located regions
efficiently. Firstly, the trained FCNA was used to locate the
regions of 50 bp that may contain TFBSs. Secondly, five thresh-
old values {0.5, 0.6, 0.7, 0.8 and 0.9} were set to transform the
probabilities of outputs into 1 or 0, and the locating accuracy was
computed in terms of the Equation (4). Thirdly, according to the
locating accuracy (A0.5 = 0.871, A0.6 = 0.896, A0.7 = 0.907, A0.8 = 0.921
and A0.9 = 0.938), the value 0.9 was adopted to filter out a few
false-positive regions from the located regions, and the rest of
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Figure 5. The performance comparison of methods and refined methods, including FCNA and FCNA-Refine (A, B, C), MEME-ChIP and MEME-ChIP-Refine (D, E, F).

them was used as the final located regions. Finally, MEME-ChIP
and a slightly-modified FCNA that just adjusts the kernel size of
convolutional layers and pooling layers were employed to predict
motifs on the final located regions. In the experiments, the 20
TF-DNA binding datasets from A549 were used, and the detailed
results were recorded in Supplementary Table 6.

A =
sum

(
seqi =

{
1, TP ∩ PP is true
0, otherwise

)

N
, i ∈ [1, · · · , N] (4)

where TP and PP separately represent the true positive sites (label
1) and the predicted positive sites of the i-th sequence, and N
denotes the total number of sequences.

As shown in Figure 5 A–C, we used the slightly-modified
FCNA to conduct experiments on the located regions, named as
FCNA-Refine, and tested the miou, the iou for label 0 (0-iou) and
the iou for label 1 (1-iou). From the results, the miou of FCNA-
Refine is much better than that of FCNA, and the miou gain
is 0.101. The 1-iou of FCNA-Refine is much better than that of
FCNA, and the gain is 0.231, whereas 0-iou of FCNA-Refine is
worse than that of FCNA, and the gain is −0.03, of which the
reason is that the number of label 0 in the located regions is

much less than that in the original sequences. However, we were
more concerned about the iou for label 1.

As shown in Figure 5 D–F, we used MEME-ChIP to conduct
experiments on the located regions, named as MEME-ChIP-
Refine, and tested the –log2(P-value), −log2(e-value) and –log2(q-
value). From the results, the three statistical significances of
MEME-ChIP-Refine are significantly higher than the values for
MEME-ChIP (Wilcoxon test P-values are 0.00014, 0.00016 and
0.00029, respectively).

Above all, we find that the regions located by FCNA can be
used by motif discovery tools to further refine the prediction
performance. Thereby, FCNA can be employed to locate target
regions from coarse data, and the located regions are then used
for the subsequent analysis.

Identifying TF-DNA binding motifs across different cells

In this section, we investigated the performance of FCNA for
identifying TF-DNA binding motifs across different cell lines. In
the experiments, FCNA was trained on the A549 and GM12878
cells to predict motifs on the MCF7 cell.

As shown in Table 2 and Supplementary Table 2, the P-value,
e-value, q-value, and miou are very high, and the predicted motif
logos are also well matched with the experimentally validated
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Table 2. Motif logos visualization

motifs in the HOCOMOCO database, which demonstrates that
FCNA can accurately identify TF-DNA binding motifs across
different cell lines. Thereby, FCNA can be used to predict the
same TF-DNA binding motifs across different cell lines.

Conclusions and discussion
In this paper, we proposed a novel motif discovery method,
namely FCNA which incorporates a FCN, a global average pool-
ing, and a hard negative mining loss, to locate TFBSs and predict
TF-DNA binding motifs. Experimental results on several ChIP-
seq datasets show that FCNA significantly outperforms the com-
peting methods, which demonstrates that FCNA can efficiently
solve the problem of failing to accurately predict motifs that
almost all DL-based methods face. Besides, through a series of
experiments, we find that (i) FCNA is inclined to first find the TFs
belonging to the same TF family and then find the cobinding TFs;
(ii) the regions located by FCNA can be used by motif discovery
tools to further refine the prediction performance; (iii) FCNA can
accurately identify TF-DNA binding motifs across different cell
lines and thereby be used to predict the same TF-DNA binding
motifs across different cell lines.

Two possible issues in this paper should be discussed: (i) since
it is difficult to use FCNA to precisely locate TFBSs, so the results
predicted by FNCA must contain a few false-positive samples.
To remove these false-positive samples, a high threshold value
was used in the experiments, but doing this will inevitably
delete some true positive samples; (ii) since FCNA makes use
of the strongly-supervised label information (nucleotide-level

labels) to predict motifs, so FCNA is overwhelmingly dependent
on the quality of nucleotide-level labels. Therefore, some more
comprehensive methods should be proposed to solve the two
issues in the future works.

Key Points
• In the task of predicting transcription factor binding

sites (TFBSs), most of methods based on deep learn-
ing mainly focus on predicting the sequence speci-
ficity of TF-DNA binding and fail to identify motifs
and TFBSs accurately. It is important to develop an
efficient method for solving this problem.

• The concept of using fully convolutional networks
to locate TFBSs and predict binding motifs is firstly
proposed in this paper.

• Experimental results on in vivo datasets show that
the proposed method significantly outperforms other
competing methods and that the located regions can
be used to further improve the prediction perfor-
mance.
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