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Mesenchymal stem cells represent an alternate cell source to substitute for primary hepa-
tocytes in hepatocyte transplantation because of their multiple differentiation potential
and nearly unlimited availability. They may differentiate into hepatocyte-like cells in vitro
and maintain specific hepatocyte functions also after transplantation into the regenerat-
ing livers of mice or rats both under injury and non-injury conditions. Depending on the
underlying liver disease their mode of action is either to replace the diseased liver tissue
or to support liver regeneration through their anti-inflammatory and anti-apoptotic as well
as their pro-proliferative action.
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WHY TALK ABOUT ALTERNATIVES?
It could have been a good idea to replace diseased liver tissue
by healthy hepatocytes in order to provide the metabolic power,
which gets lost during liver damage from any kind of challenge –
viral, genetic, chemical intoxication, etc., (Muraca, 2011; Puppi
et al., 2011; Hughes et al., 2012). This concept is based on the
assumption that the hepatocyte represents the smallest functional
unit of the liver executing all the single metabolic services as the
liver does as a whole. Indeed, hepatocyte transplantation has been
proven feasible in animal trials and turned out to promise an
alternative to liver transplantation in clinical settings. Usually, in
rodents cells are administered to the liver either via the splenic
vein after injection into the spleen or via the portal vein. Cells then
spread with the blood stream over the entire organ and enter the
parenchyma after endothelial penetration. They integrate and pro-
liferate and ideally take over the hepatocytes’ metabolic functions
in the long-term range. There is huge experience in hepatocyte
transplantation available from animal trials comprising acute and
chronic liver disease models. Provided that a mitotic challenge
and a regenerative advantage is presented to the donor hepato-
cytes then significant or even nearly complete repopulation of the
host liver might be achieved. Yet, without this the rate of repop-
ulation is rather low ranging at about 1% (Santoni-Rugiu et al.,
2005; Christ, 2006; Weber et al., 2009; Shafritz and Oertel, 2011).
There is doubt whether this is sufficient to supply the metabolic
capacity needed to overcome the malfunction of the damaged host
liver in clinical applications. An estimate of 1–5% of repopulating
hepatocytes has been considered to suffice for the correction of a
genetic metabolic defect of the liver (Fox and Roy-Chowdhury,
2004a; Lee et al., 2004b). Patients suffering from the defect
of UDP-glucoronosyltransferase (Crigler–Najjar-Syndrome; Fox

et al., 1998) or of glucose-6-phosphatase (glycogen storage dis-
ease type Ia; Muraca et al., 2002) improved after receiving human
hepatocyte transplants at least for a transient period of time.
Thus, hepatocyte transplantation has also gained proof-of-concept
in clinical trials, which is documented by more than 30 ongo-
ing or published studies (Muraca, 2011; Christ and Brückner,
2012; Hughes et al., 2012). Yet, one problem seriously hampers
clinical breakthrough of hepatocyte transplantation. There are
30% more patients on the waiting list for liver transplantation
than actually receive the life-saving organ both in the United
States1 and in Europe2 indicating the scarcity of donor livers.
It is self-evident that in this situation also livers to isolate pri-
mary hepatocytes for purposes of cell transplantation are scarce
and, they are often marginal yielding hepatocytes of minor quality
and insufficient quantity. Hence, even if hepatocyte transplan-
tation turned out a versatile alternative to liver transplantation
the shortage of donor livers prompted the search for novel cell
resources to generate hepatocytes or hepatocyte-like cells. It might
be assumed that the principles of hepatocyte transplantation are
also valid for these “artificial hepatocytes” in terms of cell trans-
plant quantity, site of application, mode of action, principles of
tissue integration, and finally therapeutic support in the short-
and long-term range. This approach sounds rather straightfor-
ward and therefore it is worthy to talk about alternatives, which
would aid to provide surgical potential in order to manage the bot-
tleneck of donor liver availability both for organ and hepatocyte
transplantation.

1www.unos.org/
2http://www.eurotransplant.nl/
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HEPATIC STEM CELLS ARE DOING THE JOB OF LIVER
REGENERATION
Tissue turnover is not the liver’s most prominent quality under
resting, i.e., healthy conditions. With only 0.01% hepatocytes
undergoing mitosis the organ seems rather indolent without any
provocation (Steiner et al., 1966; Koniaris et al., 2003). Yet, in case
of liver damage accompanied by massive hepatocyte loss the organ
displays a remarkable regenerative potential. After two third partial
hepatectomy the liver mass is restored after only about 1–2 weeks in
rodents. The regenerative process is tightly regulated by a plethora
of cytokines, hormones, factors, and their interactions. The initial
response is triggered by the liver-resident macrophages, the Kupf-
fer cells, which engages the activation by tumor necrosis factor α

(TNF-α), components of the complement system (C3a/5a), lym-
photoxin, just to mention some of those best known until today.
The Kupffer cells then secrete the pro-inflammatory cytokine
IL-6, which targets the hepatocytes and activates the canonical
IL-6-signaling pathway involving gp130-mediated dimerization of
STAT3 and the downstream activation of IL-6 target genes. This so-
called priming phase initiates hepatocyte proliferation involving a
second set of factors comprising hepatocyte growth factor (HGF)
and epidermal growth factor (EGF) receptor ligand family such as
transforming growth factor α (TGF-α), heparin-binding EGF-like
growth factor and amphiregulin. Hepatocyte proliferation con-
tinues until the original mass of the liver is restored (Fausto and
Campbell, 2003; Michalopoulos, 2007, 2010; Riehle et al., 2011).
Thus, liver regeneration after partial hepatectomy obviously does
not involve liver stem cells. Yet, there is evidence that hepatocytes
may not only generate hepatocytes but may also differentiate into
other liver cell types such as biliary epithelial cells (Michalopou-
los et al., 2005) or pancreatic cells (Horb et al., 2003; Burke et al.,
2006). Hence, hepatocytes themselves fulfill the basic criteria of
stem cells, the self-renewal and multiple differentiation potential
giving rise to progeny of at least two different lineages.

The liver contains a parenchymal back-up compartment, which
is activated under injury conditions preventing mature hepatocyte
proliferation and/or causing hepatocyte replicative senescence.
Experimentally, such situations may be provoked in rodents by
feeding a choline-deficient diet in combination with the admin-
istration of acetylaminofluorene (AAF) or ethionine, by galac-
tosamine or dipin combined with partial hepatectomy to mention
a few (Koniaris et al., 2003; Santoni-Rugiu et al., 2005; Shafritz and
Oertel, 2011). Liver progenitor cells – called oval cells in rodents –
emerge in the periportal areas of the liver lobule comprising the
Canals of Hering, structural links between the terminal biliary
branches and the periportal hepatocytes surrounding the proxi-
mal parts of the sinusoids. Under healthy conditions oval cells are
rare and hardly detectable. It is widely agreed upon that the oval
cells are the bipotent progeny of hepatic stem cells, of which their
real nature and existence in the adult liver has still to be substanti-
ated (Sell, 2001; Fausto, 2004; Kofman et al., 2005; Santoni-Rugiu
et al., 2005; Oertel and Shafritz, 2008). But, due to similar marker
gene expression patterns it has been proposed that there might
exist a precursor/product relationship between the embryonic
hepatoblasts and the oval cells (Fausto and Campbell, 2003). In
humans hepatic progenitor cells, perhaps equivalent to the oval
cells in rodents, appear in the pathophysiological situations of viral

hepatitis, liver cancer and massive drug intoxication (Roskams
et al., 2004, 2010). Injuries occurring under these conditions pro-
voke so-called ductular reactions, of which the hallmark is the
appearance of transit amplifying cells, the progeny of hepatic prog-
enitor cells residing in the liver stem cell niche, the Canals of Hering
(Roskams et al., 2004; Gouw et al., 2011). Hepatic progenitor cells
may be identified based on the expression of cytokeratin 7 (CK7),
epithelial cell adhesion molecule (EpCAM), neural adhesion mol-
ecule, and CD133 (Alison et al., 2009; Gouw et al., 2011; Rountree
et al., 2012). The cells of the ductular reactions display an inter-
mediate immunophenotype featuring both biliary and hepatocyte
marker expression. There is emerging evidence that the etiology
of the liver disease may imprint the phenotype of the cells of the
ductular reaction indicating their bipotent differentiation capacity,
but which may also be the result of stimulation of different hepatic
stem cell niches or the differential activation of one and the same
niche under different hepatic injury conditions (Van Den Heuvel
et al., 2001; Spee et al., 2010; Turner et al., 2011). Indeed, active
NOTCH signaling seems to specify cholangiocyte differentiation
whereas this pathway must be shut off for hepatocyte differenti-
ation, which, however, requires in addition active Wnt signaling
(Spee et al., 2010; Nejak-Bowen and Monga, 2011; Boulter et al.,
2012).

In recent times it became obvious that hepatic stem cells might
also derive from extrahepatic sources such as the bone marrow. In
the animal model of fumarylacetoacetate hydrolase (FAH) defi-
ciency featuring human Tyrosinemia type I transplantation of
hematopoietic stem cells (HSC) resulted in the rescue of the disease
phenotype in the mouse liver due to the generation of HSC-
derived functional hepatocytes (Lagasse et al., 2000; Grompe, 2003;
Wang et al., 2003a). Oval cells were also attributed to be of bone
marrow origin (Petersen et al., 1999; Alison et al., 2000; Theise
et al., 2000). Yet, not differentiation of the HSC into hepatocytes
but rather fusion with host hepatocytes was the product of donor
cell-derived hepatocytes (Petersen et al., 1999; Alison et al., 2000;
Theise et al., 2000; Alvarez-Dolado et al., 2003; Vassilopoulos et al.,
2003; Wang et al., 2003a,b; Camargo et al., 2004).

Besides HSC the bone marrow harbors mesenchymal stem
cells (MSC), which are CD34- and CD45-negative indicating their
non-hematopoietic nature. They feature multiple differentiation
potential including lineage commitment into cells of all three germ
layers (Pereira et al., 1995; Pittenger et al., 1999; Jiang et al., 2002).
Their hepatocyte differentiation capacity in vitro and in vivo has
been demonstrated and because of their easy availability and low
ethical risks MSC have become an attractive cell source for clinical
cell therapy approaches including cell therapy of liver diseases (see
below).

There is great hope in induced pluripotent stem cells (iPS),
which were generated first in mice from somatic cells comple-
mented with the so-called pluripotency factors, Oct4, Sox2, Klf4,
and c-Myc re-programming the cells into an embryonic stem cell-
like genotype (Takahashi and Yamanaka, 2006). One prominent
feature of these cells is their pluripotent differentiation capabil-
ity, which comprises differentiation into cells from the three germ
layers such as cardiomyocytes, adipocytes, neurons, hematopoi-
etic precursors, osteoclasts, pancreatic cells (for recent reviews cf.;
Hanna et al., 2010; Okita and Yamanaka, 2011; Bilic and Belmonte,
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2012). Endodermal differentiation includes also hepatocyte dif-
ferentiation (Yagi et al., 2009; Ghodsizadeh et al., 2010; Takayama
et al., 2012). Introduction of the factors is achieved by viral, chem-
ical, and DNA-mediated delivery. All of these methods raise safety
concerns, which in addition to the tendency of the iPS to form ter-
atoma, restrict the clinical use of these cells so far. However, first
liver repopulation experiments in mice demonstrated the high
regenerative potential of iPS (Espejel et al., 2010), which certainly
opens a clinical perspective. This is highly relevant since applica-
tion of cells of autologous origin back to the patient avoids the
long-term risks associated with immunosuppression.

Thus, in summary liver regeneration might be accomplished
by liver stem cells either of intrinsic origin or from extrahep-
atic sources like bone marrow (MSC) or any somatic cell. This
clearly opens the perspective to generate “artificial hepatocytes”
from stem cells for clinical hepatocyte transplantation (Fox and
Roy-Chowdhury, 2004b).

MESENCHYMAL STEM CELLS – THE PREMIUM LIVER CELLS?
One feasible alternative to human adult hepatocytes is the use of
hepatocytes derived from human MSC. Experiments in rats (Wang
et al., 2004; Lange et al., 2005),mice (Jiang et al., 2002),and humans
(Schwartz et al., 2002; Lee et al., 2004a; Hong et al., 2005; Seo et al.,
2005; Taléns-Visconti et al., 2006; Aurich et al., 2007; Banas et al.,
2007) confirmed the in vitro differentiation potential of MSC from
prominent sources like bone marrow or adipose tissue. In the fol-
lowing we will reference some of the studies using MSC in order
to indicate their versatile application in animal models of different
liver diseases.

Cultured bone marrow-derived MSC from male albino rats
were infused into the tail vein of female rats treated with carbonte-
trachloride (CCl4) to induce liver fibrosis. Y chromosome-positive
donor cells were found in the female host liver exhibiting reduced
collagen depositions and improved liver functions (Abdel Aziz
et al., 2007). Attenuation of CCl4-induced liver fibrosis was also
demonstrated using hepatocyte-like cells differentiated from bone
marrow-derived MSC in the rat (Oyagi et al., 2006). Undifferen-
tiated human bone marrow-derived MSC attenuated acute liver
injury induced by allyl alcohol in Sprague Dawley rats (Sato et al.,
2005). Hepatic integration and function of human adipose tissue-
derived MSC pre-differentiated into hepatocyte-like cells prior to
transplantation was shown both in CCl4-treated mice (Seo et al.,
2005; Banas et al., 2007) and rats after partial hepatectomy (Sgodda
et al., 2007). Not surprisingly, hepatocyte pre-differentiated MSC
were more effective as compared to their undifferentiated precur-
sors. In the hepatectomized SCID mouse model bone marrow-
derived MSC pre-differentiated into hepatocyte-like cells in vitro
xenografted to the mouse livers and expressed hepatocyte markers
such as albumin and CK18 (Lysy et al., 2008; Aurich et al., 2009).
MSCs engrafted predominantly in the periportal portion of the
liver lobule displaying hepatocyte-specific features like glycogen
storage and expression of phosphoenolpyruvate carboxykinase,
connexin32, albumin, and the human hepatocyte-specific antigen
HepPar1 (Aurich et al., 2007).

In summary, irrespective of the site of application, i.e., sys-
temic infusion, intrahepatic injection, intrasplenic delivery, or
portal vein infusion MSC were found in the liver of the host

animal forming clusters of donor cells. These cells were func-
tional in terms of expression of specific markers and secretion
of albumin. In the case of acute and chronic liver architecture
deterioration MSC improved the disease. Both undifferentiated
and hepatocyte-differentiated MSC integrate functionally into the
host liver but at significant higher rates using differentiated cells.
Facing the fact that functional characterization of MSC-derived
hepatocyte-like cells after transplantation is fragmentary at best,
is it then reasonable to use MSC in clinical applications?

MSC FOR HEPATIC REPAIR – SAFE OR NOT SAFE?
In the following section animal studies will be exemplified to
delineate critical aspects of potential safety concerns before trans-
lation of MSC-based hepatocyte transplantation into the clinics.
These include site of administration, distribution, bioavailability,
elimination, and tumorigenicity.

MSC display migratory competence. After systemic application
they migrate to inflammatory sites attracted by chemokines lib-
erated from the regions of tissue injury. Intrasplenic and hepatic
injection have been chosen as the sites primarily used for trans-
plantation of adult hepatocytes. It may be anticipated that a
portion of injected cells resides in the spleen, which provides an
acceptable tissue environment for adult hepatocytes to survive,
proliferate, and execute hepatocyte-specific functions without sys-
temic side effects (Kusano and Mito, 1982).Very likely the mechan-
sims of hepatic integration of stem cell-derived hepatocytes is
similar or even equal to that of adult hepatocytes as discussed
above. Transplanted hepatocytes mainly engraft in the periportal
regions of the liver lobule and acquire the gene expression pattern
of periportal hepatocytes (Aurich et al., 2005). However, shifting
transplanted hepatocytes into the perivenous areas by treatment
with carbontetrachloride resulted in the change from a peripor-
tal to a perivenous hepatocyte expression pattern in these cells.
This indicates that the hepatic microenvironment governs the dif-
ferentiation state of transplanted cells directing position-specific
gene expression (Gupta et al., 1999; Koenig et al., 2007). Intrapor-
tal infusion of hepatocytes resulted also in entrapment of cells
passaged through the liver into the lung parenchyma of New
Zealand rabbits (Schneider et al., 2003). Yet, virtually all hepa-
tocytes were cleared from the pulmonary capillaries within 24 h
(Rajvanshi et al., 1999; Schneider et al., 2003). Hepatic engraft-
ment after transplantation of human bone marrow-derived MSC
into the spleen or the liver was similar in SCID mice (Lysy et al.,
2008). As mentioned above MSC-derived hepatocyte-like cells
both after intrasplenic and portal administration were found in
the periportal areas of the liver lobule where they featured typical
characteristics of periportal hepatocytes 10 weeks post-transplant
(Aurich et al., 2007, 2009).

Principally, undifferentiated MSC may contribute to the forma-
tion of most if not all somatic cell types. This has been confirmed
by injecting mouse multipotent adult progenitor cells into mouse
blastocysts. Donor cells were found in hematopoietic organs and in
the epithelia of the lung, liver, and gut (Jiang et al., 2002). Injection
of undifferentiated murine bone marrow-derived MSC into the
tail vein of NOD/SCID mice resulted in engraftment of donor cells
into gastrointestinal organs but also in the lung and skin (Anjos-
Afonso et al., 2004), a result, which was also demonstrated after
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intravenous application of undifferentiated bone marrow MSC
into baboons (Devine et al., 2003). Taking advantage of the per-
missive milieu of tissues and organs during organogenesis, fetal
sheep were transplanted i.p. with human bone marrow-derived
MSC, which integrated and differentiated into blood, liver, and
skin cells (Almeida-Porada and Zanjani, 2004). Intrahepatic versus
intraperitoneal injection of human MSC improved the percentage
amount of human hepatocytes in sheep livers by fivefold (Cham-
berlain et al., 2007). It may be concluded that under minimal injury
conditions as in the models described here MSC may give rise to
cell types of different tissues and organs but that hepatic injury
leads primarily to engraftment in the liver. Hence, it is very likely
that MSC, both native and hepatocyte-differentiated home to the
liver without significant extrahepatic tissue colonization.

There is evidence that MSC might contribute to extrahep-
atic manifestation of cancer or even liver cancer. It is a generally
accepted concept that mature differentiated cells in a tissue origi-
nate from multipotent stem cells via tissue-specific stem and/or
progenitor cell differentiation. Tumorigenic transformation at
each step of this one-way lineage leads to loss of the differenti-
ated phenotype and may give rise to a putative cancer (stem) cell
developing into tumors of the respective tissues (cf.; Martínez-
Climent et al., 2006; Polyak and Hahn, 2006; Ailles and Weissman,
2007; Wu, 2008; for recent reviews). Common properties of both
tissue-specific stem cells and tumor (stem) cells are their poten-
tial of self-renewal, differentiation, and gene expression signatures
supporting the abovementioned concept. Thus, any mutational
event given will cause expansion of stem/progenitor cells normally
quiescent in the healthy tissue thereby increasing their propensity
to tumor development. The tumor stroma contains mesenchymal
cells (MTC) with an invasive phenotype contributing to neoangio-
genesis, which they share with MSC. Thus, similar morphological
and immunological features, as well as the expression of a com-
mon set of stemness signature genes might indicate the risk of the
therapeutic use of MSCs under tumor-promoting conditions (Stu-
deny et al., 2004; Galie et al., 2008). There is controversy whether
or not somatic stem cells are involved in hepatocarcinogenesis
(Wu and Yu, 2007). It is known that MSC tend to malignant
transformation in culture after extended expansion. However, in a
transgenic mouse model of hepatocellular cancer (HCC) induced
by diethylnitrosamine and phenobarbital bone marrow cells did
not progress to HCC (Ishikawa et al., 2004). Similar results were
found in non-transgenic Balb/c mice after chemical induction of
HCC by diethylnitrosamine (Zheng and Liang, 2008). In the Lewis
rat, bone marrow-derived stem cells were recruited to the liver after
feeding a choline-deficient diet, fused with hepatic oval cells but
did not contribute to pre-neoplastic nodule formation (Kubota
et al., 2008). Numerous studies have since shown hepatogenic dif-
ferentiation from both hematopoietic and MSC without cellular
fusion in a variety of different animal disease models (Ishikawa
et al., 2003; Newsome et al., 2003; Jang et al., 2004; Sato et al.,
2005). Thus, even under conditions favoring tumorigenesis in the
liver, no contribution of MSC to tumor formation in the liver has
been reported so far whatever site of application or carcinogen
was being used. Most of the studies described above applied MSC
not pre-differentiated into hepatocyte-like cells prior to hepatic
transplantation. In a murine melanoma model the impact of

differentiated and undifferentiated MSC on tumor growth and
metastasis was investigated. Ectopic administration of allogeneic
MSC showed that MSC after chondrogenic differentiation did not
display migratory activity and reduced the promotion of tumor
growth while undifferentiated MSC migrated to the site of the
tumor and favored tumor growth and metastasis (Akay et al.,
2010). It seems to be a general feature of undifferentiated MSC
to be recruited to the tumor stroma as shown previously in a
culture model of human glioblastoma (Birnbaum et al., 2007).
Nevertheless it cannot be excluded that MSC promote tumor
growth indirectly due to their propensity to form progenitor cells
of tumor vessels exemplifying the pro-angiogenic properties of
MSC (Kinnaird et al., 2004) and/or stromal-fibroblast like cells
thus impacting the tumor stroma and supporting tumor growth
(Huss et al., 2004; Feng and Chen, 2009; Mishra et al., 2009; Zischek
et al., 2009). There is also evidence that MSC by producing anti-
inflammatory molecules reduce pancreatic tumor growth (Zischek
et al., 2009). On the other hand the immunosuppressive features of
undifferentiated MSC might favor tumor growth and metastasis
as shown in rodent animal models (Djouad et al., 2003; Zhu et al.,
2006; Krampera et al., 2007).

Thus, the current knowledge does not allow for the safe use of
MSC in clinical settings at least in terms of tumorigenicity. There-
fore, investigations in large animal models of liver diseases like
in the pig are appreciated to study the behavior of MSC under
the given environment produced by the specific disease. In recent
times pig models for isolation and transplantation of MSC became
available (Casado et al., 2012), which now allow for the evaluation
of both the therapeutic and the potential side effects of MSC as
close as possible to the human situation (Shi et al., 2010; Groth
et al., 2012; Li et al., 2012).

MSC FOR HEPATIC REPAIR –WHICH MODE OF ACTION DO
WE NEED?
Due to their specific properties like low immunogenicity and pro-
motion of anti-inflammatory responses MSC act immunomodu-
latory (Djouad et al., 2003; Krampera et al., 2007; Newman et al.,
2009). The application of allogeneic MSC does not provoke an
immune response in vitro or in vivo. This might be partially due to
the expression of intermediate levels of HLA class I antigens and
lack of expression of HLA class II antigens on the cell surface (Di
Nicola et al., 2002; Le Blanc et al., 2003; Klyushnenkova et al., 2005;
Sotiropoulou et al., 2006). The MSC-mediated immune modula-
tion mechanistically varies depending on the immune cell type
affected (Meisel et al., 2004; Aggarwal and Pittenger, 2005; Nasef
et al., 2007; Feng and Chen, 2009; Siegel et al., 2009). MSC interact
with dendritic cells (DC) as well as with T-cells, B-lymphocytes,
and with NK cells (Aggarwal and Pittenger, 2005; Nauta and Fibbe,
2007; Noel et al., 2007; Stagg and Galipeau, 2007). They modulate
generation, activation as well as function of DC at different levels
of differentiation (Jiang et al., 2005; Nauta et al., 2006; Hematti,
2008).They inhibit the maturation and migration of DC to the
lymph nodes and the secretion of TNF-α by DC (Krampera et al.,
2006; Spaggiari et al., 2006; Nasef et al., 2007; Ramasamy et al.,
2007).

Recent studies identified two different functional types of MSC.
Depending on the prevailing conditions immunosuppressive MSC
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or immunogenic MSC may be distinguished. In the presence of
pro-inflammatory cytokines like TNF-α and interferon-gamma
(IFN-γ) the immunosuppressive phenotype of MSC is favored. If
anti-inflammatory cytokines like IL-10 are predominant the sup-
pressive effect of MSC is abrogated (Renner et al., 2009). Depend-
ing on the level of IFN-γ MSC furthermore exhibit antigen-
presenting properties (Chan et al., 2006). After chondrogenic
differentiation the immunological properties of xenogeneic MSC
changed. Differentiated MSC promoted human DC maturation by
stimulation of CD38 expression on the DC and upregulation of B7
expression on MSC. Yet, osteogenic, chondrogenic and adipogenic
differentiation did not alter the immunosuppressive properties of
MSC (Chen et al., 2007), which supported the conclusion that
MSC, undifferentiated, or differentiated, may be accepted even by
HLA-incompatible patients.

MSC attenuate secretion of major pro-inflammatory cytokines
like TNF-α and IFN-γ and thus reverse tissue inflammation, which
is supported by an increased expression of the immunosuppressive
cytokines IL-10 and TGF-β secreted by the MSC (Krampera et al.,
2006; Ryan et al., 2007; Zheng et al., 2008). Taken together this
would explain the anti-inflammatory features of MSC (Di Nicola
et al., 2002; Aggarwal and Pittenger, 2005; Chabannes et al., 2007;
Feng and Chen, 2009; Kode et al., 2009; Newman et al., 2009;
Mao et al., 2010). Immunosuppressive and anti-inflammatory
effects of MSC may be mediated on the molecular level by heme
oxygenase (HO-1) and iNOS (Munn et al., 1998), indoleamine 2,3-
dioxygenase (IDO) preventing the T-cell response through tryp-
tophan depletion (Aggarwal and Pittenger, 2005) or prostaglandin
E2 (PGE2; Bartholomew et al., 2002; Aggarwal and Pittenger, 2005;
Beyth et al., 2005; Le Blanc and Ringden, 2005; Yanez et al., 2006;
Nasef et al., 2007; Hematti, 2008). So far major attempts are under
way to apply MSC for the prevention of Graft versus Host Disease
(GVHD), rejection of organ transplants and for modulation of
inflammation in general.

It may be concluded that MSC may play a pleiotropic role
impacting a given disease by a specified mode of action, which is
triggered by the diseased tissue environment. This includes tissue
regeneration through substitution of the tissue lesion by func-
tional cells differentiated from the MSC but also modulation of an
inflammatory tissue environment thus improving or stimulating
self-regeneration of the affected tissue. These pleiotropic mode of
action is highly appreciated to treat liver diseases of different eti-
ology. Acute or chronic liver injuries require the down-regulation
of inflammatory processes in order to prevent progressing tis-
sue damage whereas ample liver resection due to liver cancer
might require substitution of functional loss. Hence, in the one
case undifferentiated MSC might represent the cell source of
choice while in the latter hepatocyte-differentiated MSC might
be appreciated.

WHAT TO DO NEXT?
It must be anticipated that nearly all tissues harbor MSC, which
upon tissue injury proliferate and differentiate into the cells of the
tissue of origin to replace and functionally regenerate the injured
tissue regions. Recently, MSC-like cells have even been isolated
from adult human liver (Najimi et al., 2007; Covas et al., 2008)
and liver grafts (Pan et al., 2011) suggesting that these cells might

contribute to tissue repair after hepatic injury. So why not use
MSC for allogeneic stem cell transplantation in liver diseases? As
outlined above this concept has widely been proven in animal
models of a great variety of different liver diseases, and indeed,
finds increasing interest to progress into clinical translation. Liver
cirrhosis is characterized by the irreversible deterioration of the
liver’s architecture resulting in the formation of regenerative nod-
ules, which are separated by fibrotic septae. It may progress to
liver cancer and/or liver failure with a very high incidence of mor-
tality. MSC have been shown to ameliorate liver fibrosis in mice
and rats, which was likely due to the reduction of collagen syn-
thesis and the induction of expression of metalloproteinases, the
major players in matrix degradation and remodeling (Parekkadan
et al., 2007; Banas et al., 2008; Tsai et al., 2009). Acute liver failure
is a highly inflammatory response of the liver to exogenous toxic
insults, which is characterized by parenchymal dysfunction leading
to systemic organ failures due to the lack of metabolic homeosta-
sis normally provided by the healthy liver. The disease requires
intensive care and like liver failure due to chronic dysfunction
bears a high risk of mortality (Ostapowicz and Lee, 2000; Gill and
Sterling, 2001; Rahman and Hodgson, 2001; O’Grady, 2005). Tak-
ing advantage of the anti-inflammatory, anti-apoptotic, and pro-
proliferative features of MSC it has been shown in animal models
that the cells attenuated acute liver failure by inhibition of inflam-
matory infiltration, reducing the rate of cell death, by increasing
tissue recovery through stimulation of hepatocyte proliferation,
and finally by augmenting survival rate (Parekkadan et al., 2007;
van Poll et al., 2008; Zagoura et al., 2012). These encouraging
results from animal studies prompted clinical application of MSC
in chronic and acute liver failure3. However, so far there is only lim-
ited information available on the clinical outcome. In patients suf-
fering from decompensated liver cirrhosis treatment with umbili-
cal cord-derived MSC reduced ascites volume and improved liver
function in the short-term range (Kharaziha et al., 2009; Zhang
et al., 2012) and patients with end-stage liver failure improved
in terms of ascites volume reduction and improvement in Child
score after autologous bone marrow-derived MSC transplantation
(Amer et al., 2011). These phase I/II clinical trials demonstrated
safety of hepatic MSC transplantation at least under these indica-
tions but efficacy still awaits confirmation. Even if some clinical
parameters might improve, the fate and long-term survival of the
transplanted cells in the host liver, their mode of action, and finally
safety in the long-term range have to be demonstrated.

CONCLUSION
It is likely that depending on the etiology and pathophysiology
of the liver disease to be treated MSC act differently according to
their pleiotropic spectrum of action. Thus, the anti-inflammatory,
anti-apoptotic, and pro-proliferative features of MSC might be
favorable in cases of chronic inflammatory liver diseases but in
addition a functional tissue replacement is warranted in cases
where massive tissue loss has to be substituted to provide suffi-
cient metabolic capacity like in acute liver failure and huge liver
resections. Therefore, it is necessary to understand the impact of

3http://clinicaltrials.gov
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MSC both on the molecular and cellular level and their inter-
actions with the host liver tissue under a given microenviron-
ment as created by the diseased liver. It might also be thought
to use MSC in combination with primary human hepatocytes
to either support hepatocyte function and moreover to mini-
mize immunological rejection of the transplant in the short-term
range taking advantage of the immunosuppressive features of

MSC (Stutchfield et al., 2010). This could help to bridge the
patient to liver transplantation and even through the critical
phase of acute liver failure until the host liver recovers from
the acute insult. This is of high interest because this setting
would enable allogeneic hepatocyte transplantation avoiding long-
term immunosuppression with all the known undesired adverse
effects.
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