
TYPE Original Research

PUBLISHED 27 July 2022

DOI 10.3389/fvets.2022.951168

OPEN ACCESS

EDITED BY

Anning Li,

Northwest A&F University, China

REVIEWED BY

Xing Du,

Nanjing Agricultural University, China

Linjie Wang,

Sichuan Agricultural University, China

*CORRESPONDENCE

Bojiang Li

bojiangli@syau.edu.cn

Shuyi Zhang

szhang@syau.edu.cn

SPECIALTY SECTION

This article was submitted to

Livestock Genomics,

a section of the journal

Frontiers in Veterinary Science

RECEIVED 23 May 2022

ACCEPTED 05 July 2022

PUBLISHED 27 July 2022

CITATION

Tan X, He Y, Qin Y, Yan Z, Chen J,

Zhao R, Zhou S, Irwin DM, Li B and

Zhang S (2022) Comparative analysis

of di�erentially abundant proteins

between high and low intramuscular

fat content groups in donkeys.

Front. Vet. Sci. 9:951168.

doi: 10.3389/fvets.2022.951168

COPYRIGHT

© 2022 Tan, He, Qin, Yan, Chen, Zhao,

Zhou, Irwin, Li and Zhang. This is an

open-access article distributed under

the terms of the Creative Commons

Attribution License (CC BY). The use,

distribution or reproduction in other

forums is permitted, provided the

original author(s) and the copyright

owner(s) are credited and that the

original publication in this journal is

cited, in accordance with accepted

academic practice. No use, distribution

or reproduction is permitted which

does not comply with these terms.

Comparative analysis of
di�erentially abundant proteins
between high and low
intramuscular fat content
groups in donkeys

Xiaofan Tan1, Yu He1, Yanchun Qin1, Zhiwei Yan1,

Jing Chen1, Ruixue Zhao1, Shenglan Zhou1, David M. Irwin2,

Bojiang Li1* and Shuyi Zhang1*

1Department of Animal Genetics, Breeding and Reproduction, College of Animal Science and

Veterinary Medicine, Shenyang Agricultural University, Shenyang, China, 2Department of Laboratory

Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada

Intramuscular fat (IMF) is an important regulator that determines meat

quality, and its content is closely related to flavor, tenderness, and juiciness.

Many studies have used quantitative proteomic analysis to identify proteins

associated with meat quality traits in livestock, however, the potential

candidate proteins that influence IMF in donkey muscle are not fully

understood. In this study, we performed quantitative proteomic analysis,

with tandem-mass-tagged (TMT) labeling, with samples from the longissimus

dorsi (LD) muscle of the donkey. A total of 585,555 spectra were identified

from the six muscle samples used in this study. In total, 20,583 peptides

were detected, including 15,279 unique peptides, and 2,540 proteins were

identified. We analyzed di�erentially abundant proteins (DAPs) between LD

muscles of donkeys with high (H) and low (L) IMF content. We identified

30 DAPs between the H and L IMF content groups, of which 17 were

upregulated and 13 downregulated in the H IMF group. Gene Ontology

(GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) functional

enrichment analysis of these DAPs revealed many GO terms (e.g., bone

morphogenetic protein (BMP) receptor binding) and pathways (e.g., Wnt

signaling pathway and Hippo signaling pathway) involved in lipid metabolism

and adipogenesis. The construction of protein–protein interaction networks

identified 16 DAPs involved in these networks. Our data provide a basis for

future investigations into candidate proteins involved in IMF deposition and

potential new approaches to improve meat quality in the donkey.
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Introduction

Donkeys are domesticated animals that belong to the horse

family (1). They are one of the most important livestock animals

in many countries in Africa and the Middle East, which are

mainly used for farming or other work on large farms (2,

3). With the increase of interest in donkey breeding, it is

increasingly being used as a milk and meat-producing animal

(4, 5). Donkey milk has been shown to be the best substitute for

human milk for children who are allergic to milk proteins (6).

Donkey meat is characterized by high-quality protein, vitamins,

and minerals, which is the preferred meat for many consumers

due to its high protein content (5, 7, 8). According to a previous

study, 100 g of donkey meat contains 22.8 g of protein and

2.02 g of fat (2, 9, 10). With improvements in living standards,

consumers are becoming more concerned about the quality

of livestock meat. In recent years, donkey meat consumption

has increased in many countries, including China and Italy,

and has undoubtedly become one of the livestock meat choices

(6, 11, 12).

Intramuscular fat (IMF), also referred to as marbling, is

the amount of fat that accumulates between muscle fibers or

inside muscle cells (13). Its main components are phospholipids

and triglycerides (14, 15). A previous study reported that IMF

content is mainly determined by the number and size of

intramuscular adipocytes (16). Furthermore, IMF is a complex

quantitative trait, which is influenced by a variety of regulatory

factors, such as gene regulation (17), sex (18), age, or body

weight (19), as well as environmental conditions, cell signals,

and diet (20). A previous study has shown that IMF plays a key

role in many meat quality characteristics and quality (21). For

example, IMF can improve meat quality by improving flavor,

juiciness, and tenderness (22, 23). Therefore, IMF not only

plays a very important role in animal husbandry production

but also is closely related to a healthy and desirous human

food supply. In recent years, the identification of candidate

genes for IMF to improve meat quality has become an

important research topic in livestock breeding. A large number

of studies have investigated candidate genes affecting IMF

content in many species, including cattle (24), pigs (25), sheep

(26), and goats (27). Genes, such as PHKG1 (28), MYH3

(20), and PLIN1 (29), have been identified as candidates for

regulating IMF content in pigs. However, candidate genes and

regulatory mechanisms for IMF content in donkeys are not

fully resolved.

With recent developments in proteomic technologies, it

has become an increasingly important approach to identify

candidate proteins related to meat quality in livestock.

A previous study identified 127 proteins with differential

abundance associated with IMF in the longissimus dorsi (LD)

muscle of pigs between days 120 d and 240 of growth (30). Hou

et al. (31) identified proteins from the pig related to postmortem

meat quality using a TMT (tandem-mass-tagged)-labeled

quantitative proteomic. Similarly, proteomics was used to detect

proteins associated with meat quality traits in other species

including sheep (32), cattle (33), and chickens (34). Current

proteomic studies on the donkey have mainly focused on the

identification of proteins associated with donkey milk (35, 36).

Few studies on proteins related to the regulation of donkey meat

quality have been reported.

In this study, expression profiling of proteins was performed

using LD muscle samples with divergent IMF content

phenotypes (H and L IMF content groups). We used

bioinformatic methods to identify the differentially abundant

proteins (DAPs) between the H and L IMF groups. Gene

Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes

(KEGG) enrichment analysis of the DAPs was conducted.

The aim of this study was to identify candidate proteins that

influence IMF content in donkeys and to provide a basis for

improving the quality of donkey meat.

Materials and methods

Ethics statement

All animal procedures described in this study were

conducted according to the animal husbandry guidelines of

the Shenyang Agricultural University. The studies on these

animals were reviewed and approved by the Ethics Committee

and Experimental Animal Committee of Shenyang Agriculture

University (No. 202006032).

Sample preparation

All animals used in this study were derived from a

population of 30 donkeys described in a previous study (37).

These animals were raised under the same environmental

conditions. At about 15 months of age, all donkeys are

slaughtered in the same abattoir and LD muscle tissue samples

were collected for IMF determination and protein extraction.

Samples for protein extraction were immediately frozen in

liquid nitrogen and then stored at−80◦C until use. The Soxhlet

extraction method (37) was used to determine the IMF content

of the samples.

Protein extraction and digestion

Protein in the samples was isolated after disruption

of the tissue in SDT [4% sodium dodecyl sulfate (SDS),

100mM Tris-HCl,1mM DTT, pH 7.6] buffer, with the protein

concentration quantified with the bicinchoninic acid (BCA)

Protein Assay Kit (Bio-Rad, USA). Protein digestion was

performed using trypsin according to the filter-aided sample
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preparation (FASP) method previously described by Matthias

Mann (38). Briefly, protein from each sample was incorporated

into SDT [4% SDS, 100mM dithiothreitol (DTT), 150mM

Tris-HCl pH 8.0] buffer. The detergent, DTT, and other

low-molecular-weight components were removed using UA

buffer (8M urea, 150mM Tris-HCl pH 8.0). Iodoacetamide

(IAA), 100 µl of 100mM IAA in UA buffer, was added

to block reduced cysteine residues and incubated in the

dark for 30min. The filter was then washed three times

with 100 µl UA buffer and then twice with 100 µl 25mM

NH4HCO3 buffer. The eluted protein suspension was then

digested overnight at 37◦C with 4 µg trypsin (Promega) in

40 µl of 25mM NH4HCO3 buffer and the resulting peptides

were collected as filtrate. Digested peptides for each sample

were desalted on C18 cartridges, concentrated by vacuum

centrifugation, and reconstituted in 40 µl of 0.1% (v/v)

formic acid.

Tandem-mass-tag labeling

Peptides from the three high (H1, H2, andH3) and three low

(L1, L2, and L3) IMF content donkey samples were labeled with

126, 127, 128, 129, 130, and 131 isotope tags, respectively, using

TMT reagents according to the manufacturer’s instructions

(Thermo Scientific, Waltham, USA).

Liquid chromatography–mass
spectrometry analysis

Liquid chromatography–mass spectrometry (LC–MS/MS)

analysis was conducted on a Q Exactive mass spectrometer

(Thermo Scientific, Waltham, USA). MS data were obtained

using a data-dependent top 10 method dynamically choosing

the most abundant precursor ions from the survey scan (300–

1,800 m/z) for high-energy collisional dissociation (HCD)

fragmentation. The automatic gain control (AGC) target was 3

× 106 and the maximum injection time was 10ms. The dynamic

exclusion duration was 40.0 s. Survey scans were obtained at a

resolution of 70,000 at m/z 200 and resolution for HCD spectra

was set to 17,500 at m/z 200, and isolation width was 2 m/z. The

normalized collision energy was 30 eV and the underfill ratio

was 0.1%.

Identification and quantitation of
proteins

The MS raw data for each sample were searched against

the donkey UniProt database using the MASCOT engine

(Matrix Science, London, UK; version 2.2) embedded into

Proteome Discoverer 1.4 software for protein identification and

quantitation. Proteins with fold change (FC)>1.2 or<0.833 and

p < 0.05 were considered to be significantly DAPs.

Gene ontology and KEGG pathway
enrichment analysis of DAPs

The gene ontology (GO) term annotation of selected

DAPs was performed using Blast2GO software (39, 40). The

DAPs were blasted against the Kyoto Encyclopedia of Genes

and Genomes (KEGG) database (http://geneontology.org/) to

retrieve their KEGG orthology identifications, which were

subsequently mapped to the pathways in KEGG (41). GO

and KEGG enrichment was analyzed using the Fisher’s exact

test. GO and KEGG terms with p < 0.05 were considered

significantly enriched.

Protein–protein interactions analysis

For protein–protein interactions, we used STRING

v11.5 (42) to predict and visualize networks according to

default parameters. Protein interactions were illustrated using

Cytoscape software (43).

Results

Characterization of identified proteins

We selected three LD muscle samples with high (H1, H2,

and H3) and three with low (L1, L2, and L3) IMF content from

a population of 30 individuals. Statistical analysis of the data

showed that IMF content was significantly different between

H and L samples (3.04 ± 0.12%, 6.39 ± 0.47%; p < 0.01).

We further characterized the protein abundance profiles of the

six samples using the TMT-labeled proteomic approach. The

entire proteomic experimental flow for this study is shown in

Figure 1. A total of 585,555 spectra were detected from the

six LD muscle samples by LC–MS/MS analysis (Figure 2A).

From this, we identified a total of 20,583 peptides, of which

15,279 were unique, corresponding to 2,540 distinct proteins

(Figure 2A; Supplementary Table S1). A statistical analysis of

the lengths of the identified peptide was conducted, which

showed that the peptides were mainly between 5 and 15 amino

acids with peptides of 7 and 9 amino acids in length being

the highest (Figure 2B). Further analyses of the numbers of

peptides identified in the proteins showed that about 50% of

the proteins contained 1–3 identified peptides (Figure 2C). The

molecular weights of the identified proteins indicated that most

of these proteins have molecular weights between 10 and 70 kDa

(Figure 2D).

Frontiers in Veterinary Science 03 frontiersin.org

https://doi.org/10.3389/fvets.2022.951168
http://geneontology.org/
https://www.frontiersin.org/journals/veterinary-science
https://www.frontiersin.org


Tan et al. 10.3389/fvets.2022.951168

FIGURE 1

Schematic protocol for the identification of longissimus dorsi

muscle proteins from tissue samples with high (H) and low (L)

intramuscular fat (IMF) content using tandem-mass-tagged

(TMT)-labeled quantitative proteomics. The H and L IMF samples

were in triplicate, and each sample used a di�erent TMT label.

Identification of DAPs between high and
low IMF groups

To further explore candidate proteins associated with IMF

deposition in donkeys, we analyzed the differentially abundant

proteins in the high and low IMF content groups. A total of

30 DAPs were identified between the H and L IMF groups,

with 13 upregulated and 17 downregulated in the H IMF group

(Figure 3A). Summary information on these proteins is listed in

Supplementary Table S2. The top upregulated DAP is MAP4K4,

while the top downregulated DAP is Rho-associated protein

kinase 2 (ROCK2) (Supplementary Table S2). We also examined

the abundance patterns of these DAPs in the six samples, which

showed clear abundance differences between the high and low

IMF group samples (Figure 3B).

Gene ontology and KEGG enrichment
analysis of DAPs

To explore the potential biological functions of the

DAPs in IMF deposition, we performed GO and KEGG

functional enrichment analyses of the DAPs. Here, 227, 27,

and 24 GO terms were found to be significantly enriched in

biological process, cellular component, and molecular function,

respectively (Supplementary Table S3). The top 30 significantly

enriched GO terms are shown in Figure 4A. This data suggests

that the DAPs are primarily involved in bone morphogenetic

protein (BMP) receptor binding, which is associated with lipid

metabolism. The KEGG enrichment analysis suggested that the

DAPs are significantly enriched in 19 pathways (Figure 4B).

Interestingly, some of these KEGG participate in the lipogenic

processes, for instance, the Wnt signaling and Hippo signaling

pathways. Further, a DAP, ROCK2, is significantly enriched

in the Wnt signaling pathway. These results suggest that the

enrichment of DAPs in these pathways may be closely related

to the lipogenic process.

Protein–protein interactions analysis for
DAPs

Next, we examined protein–protein interactions of the

30 DAPs to better understand IMF deposition. A protein–

protein interaction analysis of the DAPs was conducted based

on the STRING database, which contains details functional

relationships between proteins, thus allowing predictions on

the functional impact of changing protein abundance (44). The

results of this analysis showed that 16 DAPs are involved in

a protein–protein interaction network (Figure 5). For example,

a DAP, ROCK2, interacts with UBR4, TJP1, MBP, and PTEN.

In addition, the ADGRV1 and USH2A proteins interact with

each other.

Discussion

In recent years, consumers have become increasingly

interested in donkey meat, with China becoming the world’s

largest consumer of this meat (45). IMF plays a vital role in

the quality of livestock meat, therefore, the identification of

candidate proteins affecting IMF is essential for improving meat

quality. Previous studies have applied proteomics to identify

DAPs of IMF in other species including pigs (30) and goats (46).

However, there is a paucity of research on candidate proteins

for quality traits in donkey meat. In this study, we identified 30

proteins that were differentially abundant between LD muscle

samples with high and low IMF content based on proteomic

techniques. Our results suggest that the identified DAPs are

candidates for influencing IMF content in donkey meat.

Further, of these DAPs, many are associated with the

adipogenic processes. For example, ROCK2, a downregulated

protein, inhibits adipogenesis based on knockdown experiments

(47). Protein interaction analysis revealed that ROCK2

potentially binds UBR4, TJP1, MBP, and PTEN proteins. These

results suggest that the ROCK2 protein might act as a suppressor

of IMF deposition in the donkey by binding these proteins.
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FIGURE 2

Characterization of proteins from six longissimus dorsi muscle samples. (A) Overview information of identified proteins in this study. (B)

Distribution of the lengths of the identified peptides. (C) Distribution of the numbers of identified proteins containing di�erent numbers of

peptides. (D) Distribution of the molecular weights of the identified proteins.

Ahbara et al. (48) revealed the SPAG8 gene is a candidate for

growth traits and adipogenesis in sheep. A previous study

identified the RPL27A gene as a candidate gene for bovine

marbling, with an single nucleotide polymorphism (SNP) in its

promoter used as a molecular marker for bovine marbling (49).

Tu et al. (50) found that a high-fat diet increases the expression

level of TPM1. Another interesting finding is that PRMT3 acts

as a co-transcription factor by translocating into the nucleus

and binding to LXRα to regulate downstream gene expression,

thereby promoting lipogenesis (51). These proteins (i.e., SPAG8,

RPL27A, TPM1, MBP, and PRMT3) were identified as DAPs

between the H and L IMF groups in this study, suggesting that

they are important regulators of IMF. However, the mechanism

of action of these DAPs in IMF deposition in donkeys needs to

be further demonstrated.

Our study identified a number of GO terms related to the

lipogenic process based on enrichment analysis of the DAPs,

including tRNA methylation and BMP receptor binding. Zhao

et al. (52) showed that RNA methylation has a crucial role and

is required for adipose differentiation. In addition, it has been

shown that tRNA methylation levels regulate the translation

initiation of genes and thus affect protein synthesis (53). These

data suggest that some DAPs may regulate IMF deposition

by affecting tRNA methylation. BMP signaling is essential for

the differentiation of mesenchymal stem cells (MSCs) into the

adipocyte lineage (54). Jung et al. (55) found that plasma BMP2

levels were positively correlated with IMF content in steers,

suggesting that BMP signaling contributes to meat quality. In

addition, a GO term, positive regulation of c-Jun N-terminal

kinase (JNK) cascade, was significantly enriched in this study. A

previous study demonstrated that JNK signaling inhibits adipose

differentiation by suppressing peroxisome proliferator-activated

receptor-gamma (PPARγ) and fatty acid binding protein 4 (AP2)

expression (56). Taken together, these DAPs may regulate the

deposition of IMF through an association with adipogenesis.

In addition, DAPs were enriched in many key signaling

pathways (e.g., Wnt and Hippo signaling pathways) involved in

the adipogenic process. The Wnt signaling pathway is a highly

conserved critical factor in animals that negatively regulates

adipose differentiation (57). Mechanistically, Wnt signaling
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FIGURE 3

Analysis of di�erentially abundant proteins (DAPs) between high and low intramuscular fat (IMF) groups. (A) Volcano plot showing DAPs between

high and low IMF groups. Red, gray, and blue dots represent upregulated, unchanged, and downregulated proteins, respectively. (B) Heatmap

showing the abundance patterns of the DAPs between the three high and three low IMF samples.
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FIGURE 4

Gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) functional enrichment analysis of di�erentially abundant proteins

(DAPs). (A) Top 30 significantly enriched GO terms. The X-axis represents the –log10 (p value) value of the GO terms and the Y-axis represents

the GO term name. (B) Significantly enriched pathways of DAPs. The X-axis represents the rich factor and the Y-axis represents the pathway. The

size and color of the bubbles represent the number of proteins enriched in the pathway and enrichment significance, respectively.
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FIGURE 5

Protein–protein interactions analysis for di�erentially abundant proteins (DAPs). The red nodes represent DAPs, while the green nodes represent

other proteins that interact with DAPs. The edge represents interactions between proteins.

inhibits adipogenesis by suppressing the expression of PPARγ

and CCAAT/enhancer-binding protein alpha (C/EBP)α (58).

Activation of Wnt signaling, by transgenic overexpression of

Wnt10, in mice leads to significantly reduced adipose tissue

weight (59). A downregulated protein identified in our study,

ROCK2, is significantly enriched in the Wnt signaling pathway,

suggesting that it inhibits IMF deposition by mediating the

Wnt signaling pathway. The Hippo signaling pathway was also

enriched, and it has been shown to be involved in adipocyte

proliferation and differentiation in animals (60, 61). In Hippo

signaling pathway, serine/threonine kinase 24 (Ste20) family

kinases mammalian STE20-like kinase (MST1/2) activate large

tumor suppressor (LATS) kinases through phosphorylation,

which in turn allows phosphorylation of yes-associated protein

(YAP) protein and facilitates the binding of YAP to 14-3-3

proteins (62). Park et al. (63) found that MST1/2 promotes

the differentiation of 3T3-L1 cells through the activation of

PPARγ. Deng et al. (61) demonstrated that YAP1 inhibits

the differentiation of ovine adipocytes by affecting PPARG

and RXR alpha levels. These results suggest that the Hippo

signaling pathway is implicated in the deposition of IMF in

the donkey. However, how DAPs involved in Hippo signaling

regulate the deposition of IMF in donkeys still needs to be

further explored.

Conclusion

In summary, we identified 30 candidate proteins that might

affect IMF content in the LD muscle of donkeys. We provide

evidence that some of the DAPs affect IMF deposition as they

are involved in adipogenic functions or signaling pathways

in other animals. Our data provide evidence for the role of

these proteins in IMF content in the donkey and provide new

insights into the molecular mechanisms of the regulation of

IMF deposition.
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