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A hybrid algorithm which combines particle swarm optimization (PSO) and iterated local search (ILS) is proposed for solving
the hybrid flowshop scheduling (HFS) problem with preventive maintenance (PM) activities. In the proposed algorithm, different
crossover operators and mutation operators are investigated. In addition, an efficient multiple insert mutation operator is developed
for enhancing the searching ability of the algorithm. Furthermore, an ILS-based local search procedure is embedded in the
algorithm to improve the exploitation ability of the proposed algorithm. The detailed experimental parameter for the canonical PSO
is tuning. The proposed algorithm is tested on the variation of 77 Carlier and Néron’s benchmark problems. Detailed comparisons
with the present efficient algorithms, including hGA, ILS, PSO, and IG, verify the efficiency and effectiveness of the proposed

algorithm.

1. Introduction

The hybrid flowshop scheduling (HFS) problem has been
researched by more and more literatures during last decades.
HES is a typical version of the flowshop scheduling problem
(FSP), which has been proved to be an NP-hard problem.
Therefore, HFS is also an NP-hard problem and has been
researched by more and more heuristics or metaheuristics [1-
11]. In the most present literature about HFS, the common
situation is assumed that all machines are available in the
production horizon. However, for some critical factors, such
as machine random breakdown and preventive maintenance
(PM) activity, machines are not available during the whole
production horizon. Allaoui and Artiba solved the HFS with
maintenance constraints by using an integrating simulation
and optimization [12]. Xie and Wang discussed the complex-
ity and algorithms for two-stage flexible flowshop schedul-
ing with availability constraints [13]. Allaoui and Artiba
again considered the two-stage HFS with maintenance con-
straints [14]. Ruiz et al. considered scheduling and preven-
tive maintenance in the flowshop sequencing problem [15].

Naderi et al. applied variable neighborhood structure (VNS)
algorithm for solving flexible flow line problems with
sequence dependent setup times and different preventive
maintenance policies [16]. Berrichi et al. presented a biobjec-
tive optimization algorithm for joint production and mainte-
nance scheduling in the parallel machine environments [17].
Luo et al. developed a genetic algorithm for solving two-stage
HES with blocking and machine availability [18]. Allaoui
and Artiba investigated Johnson’s algorithm for solving opti-
mally or approximately flowshop scheduling problems with
unavailability periods [19]. Jabbarizadeh et al. developed a
hybrid algorithm for solving the hybrid flexible flowshops
with sequence-dependent setup times and machine availabil-
ity constraints [20]. Besbes et al. tackled hybrid flowshop
problem with nonfixed availability constraints [21]. Ma et
al. gave a survey of scheduling with deterministic machine
availability constraints [22]. Luo et al. solved the HEFS
with batch-discrete processors and machine maintenance in
time windows [23]. Safari and Sadjadi tackled the flowshop
scheduling problem with condition-based maintenance con-
straint and machines breakdown through a hybrid method
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[24]. Wang and Liu solved the two-stage hybrid flowshop
scheduling with preventive maintenance using multiobjective
tabu search method [25]. Rabiee et al. developed an intelligent
hybrid metaheuristic for solving a case of no-wait two-stage
flexible flowshop scheduling problem with unrelated parallel
machines [26]. Allaoui and Artiba surveyed the maintenance
constraints in HFS scheduling problems [27].

In this study, we developed a hybrid algorithm combining
particle swarm optimization (PSO) and iterated local search
(ILS) algorithms for solving the hybrid flowshop scheduling
problems with PM activity. The rest of this paper is organized
as follows: Section 2 briefly describes the problem. Next,
the related algorithms are presented in Section 3. Section 4
reports the framework of the proposed algorithm. Section 5
illustrates the experimental results and compares them to the
present performing algorithms from the literature to demon-
strate the superiority of the proposed algorithm. Finally, the
last section gives the concluding remarks and future research
directions.

2. Problem Definition

In this study, we consider a hybrid flowshop scheduling
problem in reality production system. The PM activity is
considered in the considered HES problems. Firstly, we give
the following assumptions.

(1) Each machine can process only one operation at a
time, while each operation can be processed by only
one machine at a time.

(2) Preemption is not allowable; that is, each operation
must be completed without interruption before its
completion.

(3) At each stage, more than one machine from identical
parallel machines can be selected for each operation.

(4) The processing time for each operation at each stage
is determined.

Under the above assumption, the mathematical model for
the problem is given as follows.

2.1. Variables

i:jobindex,i=1,2,...,n,

j:stageindex, j = 1,2,...,s,

k: machine index, k = 1,2,...,m,

pij: the processing time of job i at stage j,
s; ;: the starting time of job i at stage j,
¢;,;: the completion time of job i at stage j,

5 ;- the starting time of job i at stage j considering the
PM activity,

G, ;- the completion time of job i at stage j considering
the PM activity,

PMf: the starting time point of the PM activity on M,
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PM f : the completion time point of the PM activity on

Mk .
1, if machine k is selected to process job i
Zijk = at stage j
0, otherwise, )
. k k
N L [PME, PME) A Zyy = 1
Y 0, otherwise.

2.2. Problem Formula

f =min {}ngxcm} )
s.t.
G 25+ Pi; + Vi (PMy - PMY), (3)
Sit1 j 2 g + T,j’ (4)
Sit1 jt+1 2 Q’ (5)
Z Zl]k - 1, Vl, ], (6)
1<k<m

Y, ={0,1} Vi j, ™)

In the mathematical model, the objective is given in for-
mula (2). Constraint (3) guarantees that the PM time should
be considered in processing any operation. In Constraint (4),
the operation sequence is realized for the same job; that is, the
following operation cannot be started until the completion
of the predecessor operation of the same job. Constraint (5)
shows that, on the same machine, the following operation
must wait for the completion of the predecessor operation.
Constraint (6) guarantees that each job can select only one
available machine at each stage.

3. The Related Algorithm

In this study, we consider combining PSO and ILS to con-
struct a hybrid algorithm for solving the HFS with PM activ-
ity. The following is to illustrate the literature review of the
two related algorithms.

3.1. ILS Algorithm. Iterated local search (ILS), firstly pro-
posed by Stiitzle [28], is a metaheuristic to increase the ability
to jump out of the local optima for the canonical local search
methods. It has attracted much attention of researchers for
its simplicity, effectiveness, and efficiency, and it has been ap-
plied successfully to traveling salesman problem, flowshop
scheduling problem, job shop scheduling problem, and vehi-
cle scheduling problem, [28-31] during recent years. The
main frame of the canonical ILS is as follows.
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Step 1. Generate an initial solution x; let x' = x and x* = x.

Step 2. Generate a certain number of neighboring solutions
around the given solution x', find the best neighboring
solution x”’, and update the best solution found so far.

Step 3. Let x = Accept(x”, x).

Step 4. If the stop condition is not satisfied, generated x' =
perturb(x), go back to Step 2; otherwise, stop the algorithm.

3.2. Particle Swarm Optimization. In 1995, mimicking the fly-
ing behavior of a swarm of birds, a novel optimization algo-
rithm named particle swarm optimization (PSO) was devel-
oped by Kennedy and Eberhart, which has been verified effi-
cient for solving both continuous and discrete optimization
problems [32]. During recent years, many researchers have
applied PSO for solving lots of optimization problems [33-
43].
The flowchart of the canonical PSO is given as follows.

Step 1. Set the system parameters, such as the initial popula-
tion size, the possibility (p;) for learning from local best, and
the possibility (p,) for learning from the best solution found
so far.

Step 2. Generate the initial population of particles.

Step 3. Store each particle into a vector named local best,
where each solution corresponds to the local best of the
corresponding particle. Memorize the best solution found so
far.

Step 4. For each particle, perform the following steps until
the stop condition is satisfied.

Step 5. Randomly generate a number r, between 0 and 1, if
r, is less than p;, and then perform the learning process from
the local best of the current particle.

Step 6. Randomly generate a number r; between 0 and 1, if
is less than p,, and then perform the learning process from
the global best of the current particle.

Step 7. Record the local best for each particle and the global
best found so far.

Step 8. Learn by itself.

Step 9. Go back to Step 4.

4. Framework of the Proposed Algorithm

4.1. Solution Representation. For solving the HFS scheduling
problems with PM activity, we use the permutation represen-
tation mechanism. Give a HFS scheduling problem # jobs,
s stages, and m machines; each solution is represented by a
vector of integer values, where each integer value represents
ajob number. Therefore, the length of the solution equals the
number of jobs. For example, for a HES problem with ten jobs
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FIGURE 2: Situation 1 of PM activity.

and three stages, Figure 1 gives one solution representation,
where the scheduling sequence is J,, J5, ..., and J,.

The sequence in Figure1 is only for the first stage; that
is, at the first stage, each job is scheduled according to the
above sequence, while for the following stages, the decoding
mechanism is given as follows.

4.2. Decoding without Disruption. It can be seen from the so-
lu-tion representation that the machine selection is not in-
cluded in the solution representation. The decoding for the
above solution representation is given as follows.

Step 1. For the first stage, each job is scheduled according to
their sequence in the solution representation. In Figure 1 the
first job to be scheduled is J, and the last one is J;. Each job
selects the first available machine.

Step 2. In the following stages, each job is to be scheduled just
after its completion of the previous stage, and select the first
available machine from the candidate machines.

4.3. Decoding with PM Activity. When considering the PM
activity, that is, at time ¢, there is a PM activity occurring on
a given machine M. Then two situations we should consider,
that is, the first is that when an operation is just being pro-
cessed on M, when the disruption event occurs. The second
situation is that the affected machine M, is idle and no op-
eration is affected by the PM activity.

(1) Situation 1. For the first situation, an operation is affected
by the PM activity. Figure 2 gives the example chart for the
situation. From Figure 2, we can see that, at time point t,, the
machine M, shows a PM activity. It will restart its work at
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FIGURE 3: Situation 2 of PM activity.

time point t,. However, before the PM activity of the machine,
the operation J; has started its work and cannot complete its
work at time point t,. In this situation, we have to do the
following works for different realistic production systems.

(i) When an operation is being processed and the pro-
cessing machine needs to be maintenanced, we have
to drop the affected operation and all its following
operations. This is appliable for some certain realistic
production system, such as steelmaking-casting sys-
tem. Because of temperature restriction, an operation
cannot wait for the restart work of the machine and
has to be erased from the system because of its
temperature loss. For example, for iron body, when its
temperature decreases, its component structure will
be destroyed.

(ii) In another situation, the affected operation will keep
its previous work and wait for the restart of the
affected machine. When the affected machine is
available, the affected operation can restart its work
and continue the following work.

(2) Situation 2. For the second situation, no working opera-
tion is affected by the PM activity. In this situation, we should
consider whether there is any operation which is allocated
to the affected machine during the PM activity. That is, if
an operation is scheduled to be processed on the affected
machine before its restart, then we should reconsider the
assignment rule, which is given as follows.

(i) If an operation is scheduled to be processed on the
affected machine, then the start time of the operation
is located between the start and end time point of
the PM activity. At that situation, we should assign
a new machine for the affected operation if there is
another available machine for the affected operation.
For example, in Figure 3, the start time of the job J;
is between the start and end time of the PM event on
M,. When the PM event occurs on the machine, we
should assign another machine for J;; here, we can
select M, for processing J.
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(ii) Another situation is that we cannot select another ma-
chine for the affected operation, because of the in-
stability of the system. At that situation, we can only
choose to keep the assignment machine for the af-
fected operation and start its work after the availabil-
ity of the affected machine.

4.4. Initialization Heuristic. In the initialization phase, we
presented two heuristics, which are presented as follows.

(1) The First Initial Heuristic. The first initial heuristic is very
simple and easy to implement, which is named INT-I with the
following steps.

Step 1. Perform the following step for P, times.
Step 2. Randomly generate a particle.

Step 3. Evaluate the new-generated particle and insert it into
the current population.

(2) The Second Initial Heuristic. The second initial heuristic is
named INT-IL, which is given as follows.

Step 1. Generate a particle using the NEH approach [44] and
insert it into the initial population.

Step 2. Perform the following step for P, — 1 times.

Step 3. Randomly generate a particle and evaluate the new-
generated particle.

Step 4. If the new-generated particle is not equal with any
individual in the current population, then insert it into the
initial population; otherwise, ignore it.

4.5. Discrete PSO Process. Each particle in the current pop-
ulation updates its status through the following three pro-
cedures: (1) learning through its history status, (2) learning
through itslocal best, and (3) learning through the global best
found so far.

Similar to [34], the discrete version of PSO is realized as
follows.

(i) For the process of learning through its history status,
we embed the mutation operator in the PSO algo-
rithm. The mutation operators include swap, insert,
multiple swap [34], and multiple insert. The multiple
insert operator is developed firstly in this study.
The detailed steps are as follows. Firstly, randomly
produce a position r; range at [2,1,, — 1], ¢, where [
represents the length of the solution. Secondly, insert
the element in the position (r; — 1) to the position at
(r; + 1). Thirdly, evaluate the new-generated solution
and replace the current solution if a better individual
is found.

(ii) For the process of learning through its local best and
learning through the global best, apply the crossover
operator between the two selected solutions.



The Scientific World Journal

The detailed implementation of the crossover
operators is discussed in the following section.

4.6. Crossover Operators. In [45], the authors verified many
crossover operators for the regular flowshop (PMX or par-
tially mapped crossover, OP or one point order crossover, TP
or two-point order crossover, OX or order crossover, UOB or
uniform order based, and several others). The results showed
that the offspring generated after crossover tended to be worse
than their progenitors on many occasions. In this study, we
tested the following crossover operators in HFS with PM
environments:

(i) PMX or partially mapped crossover;
(ii) OP or one point order crossover;
(iii) TP or two-point order crossover;
(iv) PTL crossover [34].

4.7 ILS-Based Local Search. To further improve the searching
ability of the proposed algorithm, we apply the ILS-based
local search for the best solution found so far in each iteration.
That is, after the three learning processes discussed in the
above section, the ILS-based local search will be applied for
the best solution for enhanced searching. The detailed steps
of the ILS-based local search are given as follows.

Step 1. For the best solution, perform the following steps until
the stop condition is satisfied.

Step 2. Destruction phase: randomly generate aposition in
the current solution. Delete the corresponding element from
the current solution.

Step 3. Construction phase: for the deleted element, perform
the following steps.

Step 3.1. For each candidate position in the current solution,
insert the deleted element and evaluate the partial solution.

Step 3.2. Select the best position for the deleted element and
insert it into the best position.

4.8. Framework of the Proposed Algorithm. In this study, we
proposed a hybrid algorithm for solving the HFS problem
with PM activity. In the decoding procedure, we select the fol-
lowing rules to decode each solution; in Situation 1, we choose
to keep the work of the affected operation and continue its
work after the affected machine is available. In Situation 2, we
choose to assign another machine for the affected operation.

The flowchart of the proposed algorithm is given as
follows.

Step 1. Set the system parameters.
Step 2. Produce the initial population of particles.

Step 3. Evaluate each particle and record the best solution
found so far.

Step 4. If the stop condition is satisfied, stop the algorithm.
Otherwise, perform the following steps.

Step 5. Perform learning phase.

Step 5.1. Perform the procedure of learning by itself.

Step 5.2. Perform the procedure of learning through its local
best.

Step 5.3. Perform the procedure of learning through the global
best.

Step 6. ILS-based local search phase: for the best solution
found so far, perform the ILS-based local search procedure.

Step 7. Go back to Step 4.

5. Numerical Analysis

The proposed algorithm is coded in C++, on DELL i7
CPU with 16 GB memory. For each instance, we conduct 20
independently runs, and the best, worst, and average values
are collected for comparisons.

5.1. Experimental Data. The proposed PSO-ILS algorithm
was tested using the variation of the benchmark problems
provided by Carlier and Néron [46]. There are 77 instances in
Carlier and Néron’s benchmark problems, which range from
10 jobs and 5 stages to 15 jobs and 10 stages. Each instance is
represented by a three-number file name. The three numbers
are number of jobs, number of stages, and problem structure
index, which can be referred in [46]. For simplicity, the
variations of the 77 benchmark problems are set with the
same name. The variation implementation is implemented as
follows.

(i) For each instance, run the proposed algorithm with-
out considering any PM activity and get the baseline
result.

(ii) In each baseline result, at each stage, randomly select a
time point t at which a machine (hereafter called m,,)
is working.

(iii) Select the working machine (m;) and generate a
random PM activity duration d,.

(iv) Record the PM activity data, including the PM time
window [t,t + d, ], and the affected machine m,.

5.2. Parameter Tuning for PSO. In the canonical PSO algo-
rithm, the parameters are as follows:
(i) population size: P,;
(ii) learning probability from the local best: ¢;;
(iil) learning probability from the global best: c,;
(iv) learning probability by itself: p,,,;
(V) crossover operator type;

(vi) mutation operator type.
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TaBLE 1: Crossover type. TaBLE 2: Comparisons of different crossover types.

Crossover type Description Case RPD

CT-1 OP CT-I CT-II CT-1II CT-IV CT-v

CT-II TP j10c5a2 0.00 0.00 0.00 0.00 0.00

CT-1I1 PMX j10c5a3 0.00 0.00 0.00 0.00 0.00

CT-IV SJ20X j10c5a4 0.00 0.00 0.00 0.00 0.00

CT-v PTL j10c5a5 0.00 0.00 0.00 0.00 0.00
j10c5a6 0.00 0.00 0.00 0.00 0.00
j10c5bl 0.00 0.00 0.00 0.00 0.00
j10c5b2 0.00 0.00 0.00 0.00 0.00

For each instance, we memorized the best solution found

by all the compared algorithms and calculated the relative %10C5b3 0.00 0.00 0.00 0.00 0.00
percentage deviation over the best solution for each com- jl0csb4 0.00 0.00 0.00 0.00 0.00
pared algorithm, which is computed as follows: j10c5b5 0.00 0.00 0.00 0.00 0.00
j10c5b6 0.00 0.00 0.00 0.00 0.00
Comp — Best; j10c5cl 0.00 0.00 0.00 0.00 0.00
RPD; = Best x 100, ®) j10c5c2 0.00 135 135 135 135
es i . . . . .
j10c5¢3 0.00 0.00 0.00 0.00 0.00
where Compf is the optimal solution found by the kth j10c5c4 1.52 0.00 0.00 0.00 0.00
compared algorithm, while Best; is the best solution found j10c5¢5 0.00 0.00 0.00 0.00 0.00
by z?ll the compared algorithms. In. the comparison re.su.lts, j10c5¢6 0.00 0.00 0.00 0.00 0.00
we just calculat.ed the average relative percentage deviation 10c5d1 0.00 0.00 0.00 0.00 0.00
(RPD) for each instance. jloc5d2 0.0 0.00 0.00 0.00 0.00
) ) j10c5d3 0.00 0.00 0.00 0.00 0.00
5.2.1.  Crossover Type.. To test the impact of different j10c5d4 0.00 0.00 0.00 0.00 0.00
crossover operators, we implemented five kinds of crossover 10c5d5 0.00 152 3,03 152 1.5
operators, that is, one-point crossover (OP), two-point J 10656 0'00 0'00 0'00 0’00 0'00
crossover (TP), partially mapped crossover (PMX), similar Jhe : : ’ ’ :
job 2-point crossover (SJ20X), and PTL crossover operator ).10c10a1 0.00 0.00 0.00 0.00 0.00
[34]. The description of the given crossover operators is given j10c10a2 0.00 0.00 0.00 0.00 0.00
in Tablel. The comparisons results of different crossover j10c10a3 0.00 0.00 0.00 0.00 0.00
types are given in Table 2. In Table 2, the instance name is j10c10a4 0.00 0.00 0.00 0.00 0.00
given in the first column, while the following five columns j10c10a5 0.00 0.00 0.00 0.00 0.00
report the RPD values for the five compared algorithms. j10c10a6 0.00 0.00 0.00 0.00 0.00
From the results we can see that (1) the algorithm with PTL j10c10b1 0.00 0.00 0.00 0.00 0.00
crossover operator gets better Valu.es for 75 out of 77 instances, jloclob2  0.00 0.00 0.00 0.00 0.00
Exceplt fpr tl}lle tv§10 1nstapces, that is, hC;ii 13 gn.d C.ase 22; (2) j10c10b3 0.00 0.00 0.00 0.00 0.00
or so Vll’llgt e glyen 77 instances wit act1v1ty, n average, j10c10b4 0.00 0.00 0.00 0.00 0.00
the algorithm with PTL crossover operator obtains a relative 10cl0bS 0,00 0.00 0.00 0.00 0.00
better result, which is obviously better than the other four e ’ ‘ ’ ’ :
compared algorithms. The following algorithms are SJ20X, !IOCIObG 0.00 0.00 0.00 0.00 0.00
TP, PMX, and OP, respectively. j10c10cl 0.00 0.00 0.00 0.00 0.00
j10c10c2 0.00 0.00 0.00 0.00 0.00
5.2.2. Crossover Probability. The crossover probability for j10c10c3 0.86 0.00 0.00 0.00 0.00
learning from the local best (¢;) and the learning probability ~ jl0cl0c4 0.0 0.00 0.00 0.00 0.00
from the global best (c,) are critical for the algorithm. In j10c10¢5 0.00 0.00 0.00 0.00 0.00
order to test different learning probabilities, we test five kinds j10c10c6 0.00 0.00 0.00 0.00 0.00
gp J
of probabilities, which are given in Table 3. The comparison jl5c5al 0.00 0.00 0.00 0.00 0.00
results for different learning probability are given in Table 4. jl5c5a2 0.00 0.00 0.00 0.00 0.00
It can be seen fr(?m Table 4 that CP-Iis the bestamong th.e‘ﬁ've jl5c5a3 0.00 0.00 0.00 0.00 0.00
compared algorithms. That is, the two crossover probabilities jl5c5a4 0.00 0.00 0.00 0.00 0.00
¢, and ¢, are set to 0.2 and 0.2, respectively. {15c525 0.00 0.00 0.00 0.00 0.00
23 M on T T hei £ diff . j15c5a6 0.00 0.00 0.00 0.00 0.00
523. utatzorl ype. lotestthe 1mpacto 1 e.rent mutation j15c5b1 0.00 0.00 0.00 0.00 0.00
operators, we implemented four kinds of mutation operators, !
. . . . . j15c5b2 0.00 0.00 0.00 0.00 0.00
that is, the swap, insert, multiple swap, and multiple insert
j15¢5b3 0.00 0.00 0.00 0.00 0.00

operators, which are given in Table 5. Table 6 gives the
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TaBLE 2: Continued. TABLE 5: Mutation probability.
Case RPD Mutation type Description
Cr-I CI-ll  CI-l CI-IV  CTV Mg Swap

jI5c5b4 0.0 0.00 0.00 0.00 0.00 MT-II Insert

j15¢5b5 0.00 0.00 0.00 0.00 0.00 MT-IIT Multiple swap

j15c3b6  0.00 0.00 0.00 0.00 0.00 MT-IV Multiple insert

j15¢5cl 1.18 1.18 0.00 1.18 0.00

j15¢5¢2 0.00 0.00 0.00 0.00 0.00 TaBLE 6: Comparisons of different mutation types.

j15¢5¢3 115 0.00 115 0.00 0.00 _

jl5c5c4 112 112 112 112 0.00 Case RPD

j15¢5¢5 2.67 0.00 0.00 0.00 0.00 MT-I MT-IT MT-IIII MT-1V

j15¢5¢6 0.00 0.00 0.00 0.00 0.00 Average 0.08 0.08 0.02 0.01

j15¢5d1 0.00 0.00 0.00 0.00 0.00

j15¢5d2 118 0.00 0.00 0.00 0.00 TaBLE 7: Mutation probability.

J:15C5d3 0.00 0.00 0.00 0.00 0.00 Mutation probability o

).15c5d4 2.38 1.19 1.19 1.19 0.00 MP-I 01

J.15C5d5 0.00 1.25 1.25 0.00 0.00 MP-II 02

).15c5d6 1.23 1.23 0.00 1.23 0.00 MP-III 05

).15610211 0.00 0.00 0.00 0.00 0.00 MP-IV 0.8

j15c10a2 0.00 0.00 0.00 0.00 0.00 MP-V 0.9

j15c10a3 0.00 0.00 0.00 0.00 0.00

j15c10a4 0.00 0.00 0.00 0.00 0.00 . ) .

j15c10a5 0.00 0.00 0.00 0.00 0.00 TaBLE 8: Comparisons of different mutation types.

j15c10a6 0.00 0.00 0.00 0.00 0.00 Case RPD

j15c10b1 0.00 0.00 0.00 0.00 0.00 MP-I MP-II MP-II1 MP-1V MP-V

j15c10b2 0.00 0.00 0.00 0.00 0.00 Average 0.12 0.09 0.06 0.08 0.02

j15c10b3 0.00 0.00 0.00 0.00 0.00

jl5cl0b4 0.0 0.00 0.00 0.00 0.00 TasLE 9: Population size.

j15c10b5 0.00 0.00 0.00 0.00 0.00

j15c10b6 0.0 0.00 0.00 0.00 0.00 Population size ps

Average 017 0.1 0.12 0.10 0.04 PS-I 10
PS-II 20
PS-1I1 30

TABLE 3: Crossover probability. PS-IV >0

PS-v 100

Crossover probability I I

CP-1 0.2 0.2 TaBLE 10: Comparisons of different population sizes.

CP-II 0.2 0.8 —

CP-1II 0.5 0.5 Case RPD

CP.IV 0.8 02 PS-1 PS-11 PS-III PS-1V PS-v

CP-V 08 08 Average 0.06 0.08 0.03 0.06 0.00

TaBLE 4: Comparisons of different crossover probabilities.

RPD
Case
CP-1 CP-1I CP-III CP-1V CP-V
Average 0.08 0.20 0.15 0.13 0.11

comparison results of different mutation types. It can be
seen from Table 6 that the proposed multiple insert mutation
operator performs the best among the compared algorithms.

TaBLE 11: Different parameters for the canonical PSO.

Parameter Value Description
1 Crossover type CT-v PTL
2 Crossover probability CP-I ¢ =02,6=02
3 Mutation type MT-1V Multiple insert
4 Mutation probability MP-V 0.9
5 Population size PS-v 100

5.2.4. Mutation Probability. To test the impact of different
mutation probabilities, we implemented five kinds of muta-
tion probabilities, that is, 0.1, 0.2, 0.5, 0.8, and 0.9, which
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TaBLE 12: Comparisons of the best RPD values.

Case RPD

PSO-ILS ILS 1G PSO hGA
j10c5a2 0.00 0.00 0.00 0.00 0.00
j10c5a3 0.00 0.00 0.00 0.00 0.00
j10c5a4 0.00 0.00 0.00 0.00 0.00
j10c5a5 0.00 0.00 0.00 0.00 0.00
j10c5a6 0.00 0.00 0.00 0.00 0.00
j10c5b1 0.00 0.00 0.00 0.00 0.00
j10c5b2 0.00 0.00 0.00 0.00 0.00
j10c5b3 0.00 0.00 0.00 0.00 0.00
j10c5b4 0.00 0.00 1.64 0.00 0.00
j10c5b5 0.00 0.00 0.00 0.00 0.00
j10c5b6 0.00 0.00 0.00 0.00 0.00
j10c5cl 0.00 7.35 5.88 0.00 0.00
j10c5¢2 0.00 2.70 2.70 0.00 0.00
j10c5¢3 0.00 4.17 2.78 0.00 0.00
j10c5c4 0.00 4.55 4.55 0.00 0.00
j10c5¢5 0.00 5.13 1.28 0.00 0.00
j10c5¢6 0.00 4.35 1.45 0.00 0.00
j10c5d1 0.00 4.55 1.52 0.00 0.00
j10c5d2 0.00 1.35 0.00 0.00 0.00
j10c5d3 0.00 313 1.56 0.00 0.00
j10c5d4 0.00 2.86 2.86 0.00 0.00
j10c5d5 0.00 4.55 4.55 1.52 1.52
j10c5d6 0.00 4.84 3.23 0.00 0.00
j10c10al 0.00 0.00 0.00 0.00 0.00
j10c10a2 0.00 2.53 3.16 0.00 0.00
j10c10a3 0.00 1.35 0.00 0.00 0.00
j10c10a4 0.00 0.00 0.00 0.00 0.00
j10c10a5 0.00 0.00 0.00 0.00 0.00
j10c10a6 0.00 2.05 4.11 0.00 0.00
j10c10bl1 0.00 0.00 0.00 0.00 0.00
j10c10b2 0.00 0.64 0.64 0.00 0.00
j10c10b3 0.00 0.00 0.00 0.00 0.00
j10c10b4 0.00 0.00 0.00 0.00 0.00
j10c10b5 0.00 0.00 0.00 0.00 0.00
j10c10b6 0.00 0.00 0.00 0.00 0.00
j10c10cl 0.00 2.61 1.74 0.00 0.00
j10c10c2 0.00 2.52 1.68 0.00 0.00
j10c10c3 0.00 3.45 2.59 0.00 0.00
j10c10c4 0.00 2.50 1.67 0.00 0.00
j10c10¢5 0.00 1.59 3.17 0.00 0.00
j10c10c6 0.00 1.89 3.77 0.00 0.00
j15c5al 0.00 0.00 0.00 0.00 0.00
j15c5a2 0.00 0.00 0.00 0.00 0.00
j15c5a3 0.00 0.00 0.00 0.00 0.00
jl5c5a4 0.00 0.00 0.00 0.00 0.00
j15c5a5 0.00 0.00 0.00 0.00 0.00
j15c5a6 0.00 0.00 0.00 0.00 0.00
j15¢5bl1 0.00 0.00 0.00 0.00 0.00
j15¢5b2 0.00 0.00 0.00 0.00 0.00
j15¢5b3 0.00 0.00 0.00 0.00 0.00
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TABLE 12: Continued.

Case RPD

PSO-ILS ILS 1G PSO hGA
j15c5b4 0.00 0.00 0.00 0.00 0.00
j15¢5b5 0.00 0.60 0.00 0.00 0.00
j15c5b6 0.00 0.00 0.00 0.00 0.00
j15¢5¢1 0.00 5.88 8.24 0.00 118
j15¢5¢2 0.00 4.40 4.40 0.00 0.00
j15¢5¢3 0.00 10.34 8.05 0.00 0.00
j15¢5¢c4 0.00 3.37 5.62 0.00 0.00
j15¢5¢5 0.00 9.46 10.81 0.00 1.35
j15¢5¢6 0.00 7.69 6.59 0.00 0.00
j15¢5d1 0.00 0.00 0.00 0.00 0.00
j15¢5d2 0.00 9.52 9.52 1.19 0.00
j15c5d3 0.00 7.23 6.02 0.00 0.00
j15c5d4 0.00 714 5.95 119 119
j15¢5d5 0.00 8.86 8.86 1.27 0.00
j15¢5d6 0.00 4.94 4.94 1.23 1.23
j15c10al 0.00 0.00 0.00 0.00 0.00
j15c10a2 0.00 2.00 2.00 0.00 0.00
j15c10a3 0.00 0.00 1.01 0.00 0.00
j15c10a4 0.00 0.00 1.78 0.00 0.00
j15c10a5 0.00 0.55 0.00 0.00 0.00
j15c10a6 0.00 1.00 0.00 0.00 0.00
j15c10b1 0.00 0.00 0.00 0.00 0.00
j15c10b2 0.00 0.00 0.00 0.00 0.00
j15c10b3 0.00 0.00 0.00 0.00 0.00
j15c10b4 0.00 0.00 0.00 0.00 0.00
j15c10b5 0.00 0.00 0.00 0.00 0.00
j15c10b6 0.00 0.00 0.00 0.00 0.00
Average 0.00 2.00 1.82 0.08 0.08

are given in Table 7. Table 8 gives the comparison results of
different mutation probabilities. It can be seen from Table 8
that mutation probability with the value 0.9 performs the best
among the compared algorithms.

5.2.5. Population Size. To test the impact of different popula-
tion sizes, we implemented five kinds of population sizes, that
is, 10, 20, 30, 50, and 100, which are given in Table 9. Table 10
gives the comparison results of different population sizes. It
can be seen from Table 10 that population size with the value
100 performs the best among the compared algorithms.

5.2.6. The Final Parameters. After the comparison results for
each kind of parameter, we can conclude the best parameters
for the canonical PSO algorithm, which are given in Table 11.

5.3. Comparisons Analysis. To make a pair comparison with
the present efficient algorithms, we coded the following
algorithms to solve the HFS problem with PM activity. These
compared algorithms include hGA by Ruiz and Maroto [47],
IG by Ruiz and Stiitzle [48], ILS by Dong et al. [31], and PSO
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TaBLE 13: Comparisons of average RPD values.

Case RPD

PSO-ILS ILS 1G PSO hGA
j10c5a2 0.00 0.00 0.00 0.00 0.00
j10c5a3 0.00 0.00 0.00 0.00 0.00
j10c5a4 0.00 0.00 0.00 0.00 0.00
j10c5a5 0.00 0.00 0.00 0.00 0.00
j10c5a6 0.00 0.73 1.45 0.00 0.00
j10c5b1 0.00 0.00 0.00 0.00 0.00
j10c5b2 0.00 0.00 0.00 0.00 0.00
j10c5b3 0.00 0.55 0.00 0.00 0.00
j10c5b4 0.00 0.49 3.44 0.00 0.00
j10c5b5 0.00 0.00 0.00 0.00 0.00
j10c5b6 0.00 0.00 0.00 0.00 0.00
j10c5cl 0.29 8.82 8.53 0.00 0.00
j10c5c2 0.81 3.50 3.77 0.00 0.00
j10c5c3 0.00 5.83 4.17 0.00 0.00
j10c5c4 0.00 6.36 6.06 0.00 0.00
j10c5¢5 0.00 6.41 3.59 0.00 0.00
j10c5¢6 0.00 5.80 4.93 0.00 0.00
j10c5d1 0.00 5.15 4.85 0.00 0.00
j10c5d2 0.00 2.97 2.70 0.00 0.00
j10c5d3 0.00 6.25 5.94 0.00 0.00
j10c5d4 0.00 3.71 4.57 0.00 0.00
j10c5d5 0.00 511 5.11 0.60 0.60
j10c5d6 0.00 6.45 5.81 0.00 0.00
j10c10al 0.00 0.00 0.00 0.00 0.00
j10c10a2 0.00 3.67 3.67 0.00 0.00
j10c10a3 0.00 2.03 0.68 0.00 0.00
j10c10a4 0.00 0.00 1.48 0.00 0.00
j10c10a5 0.00 0.00 3.24 0.00 0.00
j10c10a6 0.00 3.70 4.79 0.00 0.00
j10c10bl1 0.00 0.00 0.00 0.00 0.00
j10c10b2 0.00 0.89 2.80 0.00 0.00
j10c10b3 0.00 0.12 0.00 0.00 0.00
j10c10b4 0.00 0.00 0.00 0.00 0.00
j10c10b5 0.00 0.00 0.12 0.00 0.00
j10c10b6 0.00 0.36 0.36 0.00 0.00
j10c10cl 0.00 3.83 3.48 0.00 0.00
j10c10c2 0.00 3.53 2.69 0.00 0.00
j10c10c3 0.00 3.61 3.09 0.17 0.34
j10c10c4 0.00 3.17 2.83 0.00 0.00
j10c10c5 0.00 4.92 5.71 0.00 0.00
j10c10c6 0.00 2.45 4.53 0.00 0.00
j15c5al 0.00 0.79 0.56 0.00 0.00
j15c5a2 0.00 0.00 0.00 0.00 0.00
j15c5a3 0.00 0.00 0.00 0.00 0.00
j15c5a4 0.00 0.00 0.26 0.00 0.00
j15c5a5 0.00 0.00 0.49 0.00 0.00
j15c5a6 0.00 0.00 0.00 0.00 0.00
j15¢5b1 0.00 0.00 0.00 0.00 0.00
j15c5b2 0.00 0.00 0.00 0.00 0.00
j15c5b3 0.00 0.00 0.13 0.00 0.00
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TaBLE 13: Continued.

Case RPD
PSO-ILS ILS 1G PSO hGA
j15c5b4 0.00 0.54 0.68 0.00 0.00
j15¢5b5 0.00 1.93 1.08 0.00 0.00
j15c5b6 0.00 0.00 0.11 0.00 0.00
j15¢5c¢l 0.00 7.71 8.88 0.23 0.47
j15¢5¢2 0.00 6.81 6.59 0.22 0.00
j15¢5¢3 0.00 11.72 10.11 0.23 0.23
j15¢5¢4 0.00 5.58 5.80 0.22 0.00
j15¢5¢5 0.00 10.46 12.06 0.80 1.88
j15¢5¢6 0.00 9.45 9.01 0.00 0.00
j15¢5d1 0.00 0.00 0.00 0.00 0.00
j15¢5d2 0.00 9.48 9.48 0.95 0.47
j15c5d3 0.00 7.93 7.45 0.24 0.00
j15c5d4 0.00 7.58 7.58 0.71 0.71
j15¢5d5 0.25 10.53 10.53 0.25 0.00
j15¢5d6 0.00 6.14 6.39 0.74 0.74
j15c10al 0.00 0.17 0.00 0.00 0.00
j15c10a2 0.00 3.30 3.20 0.00 0.00
j15c10a3 0.00 0.61 2.32 0.00 0.00
j15c10a4 0.00 0.00 1.96 0.00 0.00
j15c10a5 0.00 0.77 0.77 0.00 0.00
j15c10a6 0.00 2.70 0.10 0.00 0.00
j15c10b1 0.00 0.00 0.00 0.00 0.00
j15c10b2 0.00 0.00 0.21 0.00 0.00
j15c10b3 0.00 0.00 0.00 0.00 0.00
j15c10b4 0.00 0.00 0.00 0.00 0.00
j15c10b5 0.00 0.60 0.20 0.00 0.00
j15c10b6 0.00 0.00 0.00 0.00 0.00
Average 0.02 2.67 2.73 0.07 0.07

by Liao et al. [49]. The parameters for the compared algo-
rithms are set to the same values in their literature, except that
the stop condition is set to 20 seconds.

The comparison results for the best RPD values are given
in Table 12. It can be seen from Table 12 that (1) for solving
the HFS with PM activities, the proposed algorithm obtains
all optimal results for 77 benchmark instances, which is
obviously better than the other compared algorithms; (2) in
average, the proposed algorithm is also better than the other
compared algorithms; (3) the proposed PSO-ILS algorithm is
better than the canonical PSO algorithm, which also verifies
the efficiency of the ILS-based local search; (4) the proposed
algorithm is better than the canonical IG algorithm, which
shows the exploration ability of the proposed algorithm.

Table 13 reports the comparison results for the average
RPD values. It can be seen from Table 13 that (1) the proposed
algorithm obtains 74 optimal values out of 77 instances;
(2) in average, the PSO-ILS algorithm obtains the best
average RPD values, which is obviously better than the other
algorithms. The following algorithms are PSO, hGA, ILS, and
IG, respectively.
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6. Conclusions

In this study, we proposed a hybrid algorithm for solving
the HFS with PM activities. In the proposed algorithms, dif-
ferent crossover and mutation operators are applied for the
learning procedure. The ILS-based local search procedure is
embedded in the proposed algorithm to further improve the
searching ability of the algorithm. Variation versions of 77
Carlier and Néron’s benchmark problems are presented to
adapt to the realistic industrial horizon. Experimental com-
parisons with four present algorithms show the efficiency
and effectiveness of the proposed algorithm. The future work
is to apply the proposed algorithm for solving rescheduling
problems in hybrid and flexible environments [50-52].
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