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Abstract

Background: The opioid epidemic in the United States is averaging over 100 deaths
per day due to overdose. The effectiveness of opioids as pain treatments, and the
drug-seeking behavior of opioid addicts, leads physicians in the United States to
issue over 200 million opioid prescriptions every year. To better understand the
biomedical profile of opioid-dependent patients, we analyzed information from
electronic health records (EHR) including lab tests, vital signs, medical procedures,
prescriptions, and other data from millions of patients to predict opioid substance
dependence.

Results: We trained a machine learning model to classify patients by likelihood of
having a diagnosis of substance dependence using EHR data from patients
diagnosed with substance dependence, along with control patients with no history
of substance-related conditions, matched by age, gender, and status of HIV, hepatitis
C, and sickle cell disease. The top machine learning classifier using all features
achieved a mean area under the receiver operating characteristic (AUROC) curve of
~ 92%, and analysis of the model uncovered associations between basic clinical
factors and substance dependence. Additionally, diagnoses, prescriptions, and
procedures prior to the diagnoses of substance dependence were analyzed to
elucidate the clinical profile of substance-dependent patients, relative to controls.

Conclusions: The predictive model may hold utility for identifying patients at risk of
developing dependence, risk of overdose, and opioid-seeking patients that report
other symptoms in their visits to the emergency room.

Keywords: Opioid epidemic, Opioid dependence, Electronic health records,
Electronic medical records, Machine learning, Artificial intelligence

Introduction
In a highly visible report it was described how drug overdose deaths have substantially

increased in the United States from 2010 to 2015 [1]. The estimated societal costs of

prescription opioid overdoses, abuse, and dependence in the United States in 2013 to-

taled $78.5 billion [2]. The challenges for physicians combating the opioid epidemic in-

clude: 1) Determining which patients are at risk of developing opioid dependence

when prescribed these medications for conventional pain treatment; 2) Determining

which patients known to be addicted to opioids are most at risk of opioid overdose;

and 3) Identifying drug-seeking patients who visit the Emergency Department (ED) for
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the secondary gain of obtaining an opioid prescription. Strategies to identify

drug-seeking patients rely mostly on checking Prescription Drug Monitoring Programs

(PDMPs) [3], examining past clinical perceptions (clinical gestalt), or exam findings

such as withdrawal symptoms [4, 5]. Urine toxicology tests can detect opioid metabo-

lites, but these tests are prone to false positives and negatives, and opioid metabolites

only remain present in the urine for a short period [6].

Previous studies of biomedical variables predictive of opioid misuse and abuse have un-

raveled several salient factors, including chronic opioid prescriptions, history of psychiatric

illness, non-opioid substance disorders, having a family member diagnosed with an opioid

use disorder, the use of multiple pharmacies to fill prescriptions, having hepatitis C, and to-

bacco addiction [7–10]. These studies are based on various types of data, including phar-

macy prescriptions, insurance claims, vital signs, and medical notes from electronic health

records (EHR). For example, Ciesielski et al. [7] and Rice et al. [8], in two separate studies,

used pharmacy and insurance claims information from over half a million patients to

construct a multivariate logistic regression model to predict likelihood of opioid abuse.

Similarly, Cochran et al. [9] and Dufour et al. [10] analyzed insurance claims databases

to identify variables with predictive power to classify opioid use disorder patients. In a

related study, Hylan et al. [11] tracked for four years 2752 patients that received

chronic opioid treatment for their pain condition. To determine and predict opioid

misuse, Hylan et al. also utilized natural language processing to analyze clinicians’

notes. All these past studies point to few common clinical factors that contribute to

opioid pathology. Their observations support that the construction of predictive

models of opioid misuse and abuse based on prior knowledge about the patient is feas-

ible. So far, no prior work examined the predictive value of biological measures from

standard lab tests for opioid misuse and abuse. In addition, all prior studies used either

univariate statistics or multivariate linear models to discern associations between opi-

oid misuse diagnosis and other clinical variables.

Finding a clinically objective signature of opioid abuse would assist physicians in

offering the proper treatment to those patients who attempt to hide their addiction

for other clinical conditions. Such a signature will be a composite biomarker that

can be detected by machine learning methods. EHR systems have proliferated in

the past decade, and are increasingly used to perform predictive diagnosis with

non-linear machine learning methods [12–14]. EHR data include demographics,

diagnoses, laboratory tests, vital signs, clinical notes, prescriptions, and procedures

data. Examples of previous predictive studies that utilized EHR systems implement-

ing machine learning methods include predicting the incidence of cardiovascular

disease in patients with severe schizophrenia, bipolar disorder, or other

non-organic psychosis [15]; length of hospital stay and time to readmission based

on Research Domain Criteria in psychiatric patients [16]; unplanned readmission

after discharge [17]; in-hospital mortality [18]; patient physiological age [19]; and

many more. Here we describe the application of a machine learning classifier to

predict substance dependence based on lab tests and vital signs using patient data

derived from the Mount Sinai Medical Center (MSMC) EHR system. The lab tests

and vital signs that are found to be the most useful in distinguishing substance

dependent patients from controls were identified. Furthermore, the substance

dependent population was clinically phenotyped by the over-representation of their
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diagnoses, prescriptions, and procedures during the five years prior to their first

diagnosis of substance dependence.

Methods
Constructing the case and control populations

The MSMC EHR (Epic Systems, Verona, WI) data were organized into a de-identified col-

lection. 42,825,357 diagnoses from the EHR were queried to find all patients with diagno-

ses belonging to the 304. * family of the International Classification of Diseases (ICD-9)

codes (12,112 cases), referring to various forms of substance dependence [20]. Patients

were excluded if their first 304.* diagnosis was made before they turned 20 years of age to

avoid patients who were born with substance dependence or acquired substance depend-

ence during childhood or adolescence. This filtering reduced the number of cases to

11,573. Lab tests and vital signs were obtained for all patients within a 20-day window

around their 304 diagnosis. Initially, this analysis produced 873 types of lab tests and 51

types of vital signs. To construct a control population, the requirements were that all lab

tests and vital signs are from patients older than 20 years, have no history of diagnoses in

ICD-9 code families 291–293: alcohol- and drug-induced mental disorders and with-

drawal; 303–305: alcohol/drug dependence, abuse; and 964.9–978.0: poisoning by psycho-

active substances. This filtering step left 828,062 patients as controls.

Modified z-scores [21] were calculated for all lab tests and vital signs for the cases

and controls. Some values in the EHR data are mistakenly entered, for example, a

height of 2376 ft was observed. To remove outliers from the case and control popula-

tions, all lab tests and vital signs with modified z-scores below −2.5 or above 2.5 were

removed. Additionally, percentages below 0 or above 100 were removed. After remov-

ing outliers, we retained 9518 cases and 707,015 controls.

The distribution of lab tests and vital signs per case contains a large portion of cases

with fewer than 20 lab tests and vital signs, while the rest of the lab tests and vital signs

per case distribution forms an approximate bell curve (Fig. 1a). To retain only cases

without sparse data points, cases with fewer than 17 lab tests and vital signs were ex-

cluded. This yielded 7797 cases with 889 unique lab tests (838) and vital signs (51); and

191,476 controls. Similarly, lab tests and vital signs with 90% or more missing values

across all cases were removed. After these two steps, the distribution of lab tests and

vital signs per case was approximately normal (Fig. 1b), leaving a case population of

7797 patients and 109 lab tests and vital signs (94 labs, 15 vitals). 14 lab tests and vital

signs had more than 90% missing values in the controls, and these were removed from

both the cases and controls, bringing the total number of lab tests and vital signs to 95

(82 labs, 13 vitals). The distribution of lab tests and vital signs per control patient was

approximately normal (Fig. 1c). Separate experiments were conducted where sparse lab

tests and vital signs were imputed using the mean or the median. Histories of HIV,

hepatitis C, and sickle cell disease were considered for case-control matching. As diag-

noses of HIV and hepatitis C may happen after a patient was diagnosed with substance

dependence, we labeled a patient as having HIV or hepatitis C if the diagnosis was

made any time between birth and one year after diagnosis of substance dependence.

Age, sex, and gender, along with status of HIV, hepatitis C, and sickle cell disease were

used for case-control matching. For selecting an age for each control, the mean age
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was used from the patient’s respective lab tests and vital signs. Disease status was

one-hot encoded, and gender was binary encoded. Nearest neighbor by Euclidean dis-

tance matching was applied with replacement to match 10 controls to each case. Ac-

counting for matching with replacement, cases were matched to 43,243 unique

controls. The data from these cases and matched controls was all recorded between

2000 and 2015. A schematic that illustrates the steps taken in constructing the case

and control groups is provided (Additional file 1: Figure S1).

Methods to compare cases and controls

Using the lab tests and vital signs from the cases and matched controls, median effect

sizes were calculated for all 95 lab tests and vital signs. The value of the lab test or vital

sign from each case is used to calculate an effect size, then for each lab test or vital

sign, the median of these effect sizes is taken. Medians were calculated because they

are more robust to outliers. Mean effect sizes were also calculated to check for

consistency of their direction. Additionally, we examined the values of the lab tests and

vital signs in both cases and controls during the 100 days prior to the diagnosis of sub-

stance dependence. For comparing these profiles to the controls, we examined the 100

days prior to the mean day of their lab tests and vital signs. Finally, diagnoses, prescrip-

tions, and procedures in the five years preceding the first diagnosis of substance de-

pendence were compared to those found in the age matched controls using odds ratios.

Opioid prescriptions analysis

To examine opioid prescriptions in the MSMC-EHR, the percentages of patients with

at least one or more opioid prescriptions were calculated along with the percentage of

A B

C

Fig. 1 a Distribution of tests (labs and vitals) per case before filtering. b Distribution of tests (labs and vitals)
per case after removing patients with less than 17 tests and tests with 90% or greater missing values. c
Distribution of tests (labs and vitals) per control after removing tests with 90% or greater missing values
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total opioid prescriptions. Additionally, the distribution of opioid prescriptions by pa-

tient was examined, and a Wilcoxon rank-sum test was applied to quantify the differ-

ence between the number of opioid prescriptions given to patients with an opioid

dependence prior to the substance abuse diagnosis, and the number of opioid prescrip-

tions given to patients who have at least one opioid prescription, but no history of opi-

oid dependence.

Classification of patients by substance dependence status

A Random Forest classifier was implemented with Scikit-learn [22] with 100 estimators,

a Gini criterion, and a random state of 42. Cases and matched controls were iteratively

classified using a bootstrapping procedure. 100 bootstraps of equal size to the case

population were sampled from the matched controls, and 10-fold cross-validation was

applied on each bootstrap. Area under the receiver operating characteristic curve

(AUROC) was calculated as one way to assess classifier performance [23]. Gini import-

ance was measured for each lab test and vital sign to assess the contribution of each fea-

ture. The 10 lab tests and vital signs (features) with the highest Gini importance were

tested, and AUROCs were calculated. 10 random sets of 10 features were tested to de-

termine baseline performance using random lab tests and vital signs. Finally, a dummy

classifier making predictions by randomly picking from the population was employed

to establish a performance baseline. F1 scores were calculated for all precision-recall

combinations along the precision-recall curve, and confusion matrices were calculated

using the threshold corresponding to the highest F1 score.

In the experiments using imputation by the mean or the median, classification per-

formance was measured for including all patients, only those with no less than 17 lab

tests and vital signs, and only those with less than 17 lab tests and vital signs. Addition-

ally, we ran a test case with patients that had ICD-9 code families in the range of 291–

293 but did not have ICD-9 codes in the 304.* family. These 291–293 ICD codes de-

note alcohol- and drug-induced mental disorders and withdrawal. Because the data in

these analyses had higher dimensionality, i.e., more lab tests and vital signs due to the

retention of all patients, only 10 bootstraps of equal size were sampled from the

matched controls, and 10-fold cross-validation was conducted on each bootstrap.

The lab tests and vital signs during the 20 days prior to the first diagnosis of sub-

stance dependence, as well as 10 days before and 10 days after the first diagnosis, were

used as the features to train the main set of classifiers. However, other classifiers were

developed using only the diagnoses, prescriptions, and procedures during the 5 years

prior to the first diagnosis of substance dependence. Furthermore, rather than predict-

ing substance dependence status, we also constructed models to predict non-medical

opioid poisoning events, i.e. overdose, denoted by ICD-9 codes 965.0, 965.00, 965.01,

965.02, 965.09, E850.0, E850.1, E850.2, using lab tests and vital signs during the 6

months prior to the event.

Results
Descriptive statistics of the case population

From the 12,112 patient records within the MSMC-EHR that had at least one sub-

stance dependence diagnosis, 64.12% were males (7745) and 35.84% were females
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(4329). Out of these we retained 11,573 cases whose first diagnosis of substance de-

pendence was made at 20 years of age or later. The mean age of these patients at their

first substance dependence diagnosis was 45.6 years, with the youngest patient being

20 years old, and the oldest 89.4 (Fig. 2). 9528 of these patients had 1,525,293 recorded

lab tests and vital signs measurements during the period of 10 days before and 10 days

after their diagnosis of substance dependence. 9518 cases remained after outlier re-

moval. The final case population was obtained after removing patients with less than

17 lab tests and vital signs, leaving 7797 patients. The case population consists of 65.4%

males (5103), and 34.6% females (2694). The breakdown of ICD 304.* sub-diagnoses by

drug is 53.5% opioids (4168), 19.98% cocaine (1558), 9.4% cannabis (736), 7.0% combo

without opioids (547), 4.3% unspecified (337), 3.8% sedatives (295), 2.2, 1.2% amphet-

amines (94), and 0.8% other (59).

Opioid prescriptions in the Mount Sinai EHR

Out of the 880,605 patients that have at least one prescription in the MSMC-EHR,

356,734 patients (40.51%) had at least one opioid prescription. Out of 45,392,334 total

prescriptions, 2,029,008 prescriptions (4.47%) were for opioids. While 356,734 patients

had at least one opioid prescription, 214,757 had at least two, 155,120 had at least

three, 118,208 had at least four, 42,515 had at least five, and 5312 had at least fifty

(Fig. 3). Prescriptions showed an approximate uniform distribution across ages 20–80,

with a slight increase for infants, possibly due to newborns born to substance

dependent mothers (Fig. 3). Total prescriptions in the EHR steadily increased from the

year 2000. For patients with an opioid dependence diagnosis, the average number of

days between their first opioid prescription and first diagnosis of opioid dependence

was 64 days. The median was one day, likely due to patients that are prescribed metha-

done for the treatment of their previously existing opioid dependence. Patients diag-

nosed with an opioid use disorder had significantly more opioid prescriptions in the

EHR. An average of 26.7 opioid prescriptions were observed for patients with opioid

use disorder diagnosis, and an average of 5.27 for patients without opioid use disorder

diagnosis (p = 9.14E-208, Wilcoxon Rank Sum test). In terms of cases and their

Fig. 2 Distribution of ages for 11,573 cases given their first substance dependence diagnoses at 20 years of
age or older
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matched control populations, similar percentages had a prior non-methadone opioid

prescription (cases: 24.57%, controls: 24.69%). However, for the patients that had a

prior opioid prescription, the case patients had a mean of 13.07 prescriptions, and the

controls had a mean of 4.25 prescriptions.

Quantifying differences between the case and control groups

Effect size is a common method to measure differences between measured variables in

case and control groups. Lab tests and vital signs with the highest median effect sizes

were blood gases (pO2, O2 SAT, pCO2, CO2) and white blood cell (WBC) markers

(lymphocytes, basophils) (Table 1). This can be explained by prior observations that in-

dicated that respiratory disturbances are related to pain and pain scores [24, 25]. It is

also possible that if patients use narcotics, their respiratory rate is suppressed, and this

causes their pCO2 to rise. WBC counts have been noted to change in the short term in

response to stressors such as surgery and trauma [26, 27]. Looking at the 100 days prior

to diagnosis of substance dependence, pain score ratings are significantly elevated in the

cases compared to controls at ~ 80 days prior to diagnosis (Additional file 2: Figure S2).

This prior elevation in pain scores may indicate the typical time from an initial opioid pre-

scription to the point of substance dependence diagnosis. However, it is established that

progression from an opioid prescription to a diagnosis of dependence generally takes

many months to years. It is alternatively likely, that a high early pain score suggests opioid

tolerance, and a diminished threshold for pain.

A

B

Fig. 3 Histograms of (a) opioid prescriptions per patient, and (b) prescriptions per age in years
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Machine learning classifier to predict opioid dependence

Lab tests and vital signs from the cases and matched controls were used to train vari-

ous Random Forest classifiers. A bootstrapping method was used to match different

sets of controls to equal size of the case population. The initial set of n = 7797 case pa-

tients was achieved by the filtering steps described in the methods. Stratified 10-fold

cross-validation was implemented to evaluate the performance of the classifiers.

Classifiers that use only labs and vitals dense data without imputation

The initial Random Forest classifier achieved, across 100 bootstraps, each with 10 folds,

AUROCs ranging from 0.813–0.875, with a mean of 0.846 (Additional file 3: Figure S3A).

To select the optimal probability threshold for making a binarized prediction, F1 scores

were calculated across all possible threshold values. The probability threshold (0.42) yielded

the highest F1 score (0.776) and was used to calculate confusion matrices. The confusion

matrix shows that the classifier correctly labeled 67.9% of the controls and 83.8% of the

cases (Additional file 3: Figure S3B). When only using the lab tests and vital signs with the

top 10 highest Gini important features, AUROCs dropped to a range from 0.72–0.796, with

a mean of 0.76 (Additional file 3: Figure S3C). The probability threshold (0.38) that yielded

the highest F1 score (0.722) was used to calculate confusion matrices showing the classifier

correctly labeled 51.4% of controls and 84% of cases (Additional file 3: Figure S3D). Using

10 random sets of 10 features, AUROCs ranged from 0.587–0.789, with a mean of 0.72

(Additional file 4: Figure S4A). The probability thresholds across the 10 sets of features

ranged from 0.16–0.36 that yielded the highest F1 scores in the range of 0.669–0.715, were

used to calculate confusion matrices showing for each of the 10 sets that showed the classi-

fiers correctly labeled 16.1–52.1% of controls and 82.2–92.4% of cases (Additional file 4:

Figure S4B). Additionally, we tested the performance of random predictions from a dummy

classifier to establish a baseline classification performance not using any features. AUROCs

for all 10 folds ranged from 0.457–0.54, with a mean of 0.5 (Additional file 4: Figure S4C),

and the confusion matrix showed the classifier correctly labeled 50% of controls and 50%

of cases (Additional file 4: Figure S4D) as expected. The average precision (AP) scores for

the classifiers were as follows: 0.843 (all features), 0.744 (top 10 features by Gini), 0.499

(dummy), and the range for the 10 sets of 10 random features was 0.615–0.751. Overall

this analysis suggests that by using all features, classification improves. The features with

Table 1 Top 10 lab tests and vital signs by median effect size

Lab Test/Vital Sign Median Effect Size Mean Effect Size

Absolute lymphocyte count 1.103 1.132

Oxygen saturation 1.1 1.289

Lymphocytes percentage 1.1 1.147

Partial pressure of oxygen 1.092 1.208

Estimated glomerular filtration rate 1.056 1.276

Total carbon dioxide level 1.048 1.067

Platelet count 1.045 1.081

Carbon dioxide pressure 1.044 1.072

Alkaline phosphatase 1.036 1.098

Aspartate aminotransferase 1.035 1.111
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the highest mean Gini importance across the 10 folds when using all features are related to

white blood cells (lymphocytes, neutrophils), blood-specific measures RCDW, hematocrit,

hemoglobin, bilirubin), and protein (total protein, albumin) (Table 2). These are consistent

with boxplots of the Gini importance for the top 20 features (Fig. 4) and the raw

values for the top nine features (Additional file 5: Figure S5). Additionally, we

tested the classification performance using the top 10 lab tests and vital signs by

median effect size. These lab tests and vital signs were sparser across patients, and

hence performed significantly worse than the top 10 features by Gini importance

and p-value. The mean AUROC was 0.619, with the confusion matrix showing cor-

rect identification of 11.6% of controls and 95.4% of cases.

Classifiers that use imputed data with all labs and vitals

Because a significant number of lab tests, vital signs, and patients were discarded due

to sparsity, an alternative approach is to impute the missing values with expected

values. Using the imputation strategies of substituting missing values with the mean or

the median yielded similar results. Without imputation, the AUROCs ranged from

0.832–0.87, with a mean AUROC of 0.856 (Additional file 6: Figure S6A). The confu-

sion matrix showed that the classifier correctly identified 74.5% of controls and 81% of

cases (Additional file 6: Figure S6B). Imputing by the mean, the AUROCs ranged from

0.822–0.87, with a mean AUROC of 0.847 (Additional file 6: Figure S6C). The confu-

sion matrix showed that the classifier correctly identified 72.7% of controls and 80.9%

of cases (Additional file 6: Figure S6D). Imputing by the median, the AUROCs ranged

from 0.824–0.867, with a mean of 0.844 (Additional file 6: Figure S6E). The confusion

matrix showed that the classifier correctly identified 72.1% of controls and 81% of cases

(Additional file 6: Figure S6F).

Classifiers that use only dense labs and vitals data with imputation

The imputation strategies increased the AUROC when limiting to the original set of

non-sparse patients to patients with at least 17 or more lab tests and vital signs. When

retaining only patients with non-sparse data and using no imputation, AUROCs ranged

from 0.805–0.858, with a mean of 0.835 (Fig. 5a). The confusion matrix showed that

the classifier correctly identified 65.1% of controls and 84% of cases (Fig. 5b). Retaining

Table 2 Top 10 features by Gini importance

Lab Test/Vital Sign Mean Gini SD Gini Case Mean Control Mean Case SD Control SD

Red blood cell distribution width 0.026 0.001 14.620 14.1 1.687 1.592

Albumin testing g/dL 0.025 0.001 3.793 3.99 0.753 0.749

Total bilirubin mg/dL 0.025 0.002 0.191 0.19 0.115 0.111

Lymphocytes percentage 0.024 0.001 25.509 22.236 10.253 10.488

Total protein g/dL 0.024 0.001 7.181 7.078 0.855 0.832

Neutrophils percentage 0.022 0.001 63.032 67.512 12.542 12.707

Phosphorus mg/dL 0.019 0.001 3.608 3.482 0.729 0.742

Absolute neutrophil count 0.019 0.001 4.826 5.566 2.396 2.674

Hemoglobin g/dL 0.018 0 12.545 12.886 2.021 2.031

Hematocrit test 0.018 0 37.164 38.05 5.851 5.892
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non-sparse patients and imputing by the mean, AUROCs improved to 0.902–0.931 with

a mean of 0.918 (Fig. 5c). The confusion matrix showed that the classifier correctly

identified 75.8% of controls and 91.7% of cases (Fig. 5d). Retaining non-sparse patients

and imputing by the median, AUROCs improved to 0.899–0.933, with a mean of 0.917

(Fig. 5e). The confusion matrix showed the classifier correctly identified 74.7% of con-

trols and 92.4% of cases (Fig. 5f ). Hence, by imputing patients with dense data, we

achieved the maximally improved quality predictions.

Patients with drug or alcohol induced mental disorders as a test case

In constructing our control sample, we excluded patients with a diagnosis of a drug- or

alcohol-induced mental disorders, specifically, ICD-9 codes in the range of 291–293.

Examining these patients as a potential test cases, there were 6573 patients who had

these ICD-9 codes, but only 1466 of these patients had the 291–293 ICD-9 codes with-

out additional diagnosis in the 304.* family. The classifier predicted that 57.6% of these

patients belonged to the case group, compared to 21.3% of an equally-sized set of

matched controls, suggesting that patients with drug- or alcohol-induced mental disor-

ders are much more likely to also misuse opioids and develop dependence.

Classifiers that use lab test and vital signs from 20 day prior to initial diagnosis

So far, all classifiers described used vital signs and lab test from 10 day prior to initial

diagnosis of substance dependence and 10 day post this diagnosis. Next, we modified

the cases dataset to include only lab tests and vital signs during the 20 days prior to the

initial diagnosis of substance dependence. We did this to assess whether the machine

Fig. 4 Gini importance values for the top 20 features by mean Gini importance
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learning approach can operate in a practical clinical setting before diagnosis of sub-

stance dependence is detected and reported. Without imputation, AUROCs ranged

from 0.791–0.857, with a mean of 0.833 (Additional file 7: Figure S7A). The confusion

matrix showed that the classifier correctly identified 64.4% of controls and 84.5% of

cases (Additional file 7: Figure S7B). Imputing by the mean, AUROCs ranged from

0.787–0.85, with a mean of 0.823 (Additional file 7: Figure S7C). The confusion matrix

showed that the classifier correctly identified 63.8% of controls and 83.1% of cases

(Additional file 7: Figure S7D). Imputing by the median, AUROCs ranged from 0.781–

0.849, with a mean of 0.82 (Additional file 7: Figure S7E). The confusion matrix showed that

the classifier correctly identified 66.4% of controls and 81.1% of cases (Additional file 7:

Figure S7F). For these classifiers using lab tests and vital signs from 20 days prior to diagno-

sis of substance dependence, the AP scores were as follows: 0.829 (no imputation,

Additional file 8: Figure S8A), 0.821 (mean imputation, Additional file 8: Figure S8B), and

0.818 (median imputation, Additional file 8: Figure S8C). Hence, we can retain comparable

A B

C D

E F

Fig. 5 Receiver operating characteristic curves, normalized, and non-normalized confusion matrices for
classifiers using no imputation (a, b), imputation by the mean (c, d), and imputation by the median (e, f),
retaining only patients with more than 17 labs and vitals
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high quality predictions by shifting the window of 20 days to those days before initial

diagnosis.

Classifiers that use diagnoses, prescriptions, and procedures

In addition to predicting substance dependence status from lab tests and vital signs, we

also tested whether substance dependence status could be predicted only from 5-year

clinical history of diagnoses, prescriptions, and procedures. Total number of diagnoses,

prescriptions, and procedures from the 5 years before the first diagnosis of substance de-

pendence were classified, with and without imputation. Without imputation, AUROCs

ranged from 0.838–0.889, with a mean of 0.863 (Additional file 9: Figure S9A). The confu-

sion matrix showed the classifier correctly identified 75.2% of controls and 81.8% of cases

(Additional file 9: Figure S9B). Ranking all diagnoses, prescriptions, and procedures by

Gini importance, the top 10 features were: methadone prescription, major depression

diagnosis, trazodone prescription (used to treat major depression), interview/evaluation

procedure, nicotine prescription, sodium chloride prescription, thiamine prescription,

HIV diagnosis, lorazepam prescription, and personal history of allergy to penicillin diag-

nosis. Imputing by the mean, AUROCs ranged from 0.827–0.875, with a mean of 0.853

(Additional file 9: Figure S9C). The confusion matrix showed that the classifier correctly

identified 72% of controls and 82.4% of cases (Additional file 9: Figure S9D). Imputing by

the median, AUROCs ranged from 0.796–0.858, with a mean of 0.821 (Additional file 9:

Figure S9E). The confusion matrix showed the classifier correctly identified 72.1% of con-

trols and 75.4% of cases (Additional file 9: Figure S9F). For these classifiers, using the

5-year clinical history of diagnoses, prescriptions, and procedures prior to diagnosis

of substance dependence, the AP scores were as follows: 0.865 (no imputation,

Additional file 10: Figure S10A), 0.849 (mean imputation, Additional file 10: Figure

S10B), and 0.829 (median imputation, Additional file 10: Figure S10C). Hence, we

conclude that this strategy is also highly predictive. The most important features

are consistent with the features described below when clinical phenotyping was ap-

plied to the original classifiers that utilized vital signs and lab tests.

Classifiers that predict overdose

Aside from predicting substance dependence status, we tested whether the diagnosis of a

non-medical opioid poisoning, an overdose, could be predicted from lab tests and vital

signs from data collected 6months prior to the overdose event, with and without imput-

ation. Lab tests and vital signs from the 6months before the diagnosis of a non-medical

opioid poisoning were classified, with and without imputation. Because these cases and

control populations were small (477 cases, 4527 matched controls), the results showed

more variability. Without imputation, AUROCs ranged from 0.694–0.922, with a mean of

0.822 (Additional file 11: Figure S11A). The confusion matrix showed the classifier cor-

rectly identified 67.2% of controls and 80.7% of cases (Additional file 11: Figure S11B). Im-

puting by the mean, AUROCs ranged from 0.69–0.951, with a mean of 0.815

(Additional file 11: Figure S11C). The confusion matrix showed that the classifier cor-

rectly identified 69.2% of controls and 79.3% of cases (Additional file 11: Figure S11D).

Imputing by the median, AUROCs ranged from 0.665–0.933, with a mean of 0.811

(Additional file 11: Figure S11E). The confusion matrix showed that the classifier correctly
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identified 72.1% of controls and 77.5% of cases (Additional file 11: Figure S11F). Overall,

these results suggest that non-medical opioid poisoning is somewhat predictive with prior

knowledge about vital signs and lab tests. It is expected that with more cases, prediction

quality will improve.

Clinical phenotyping of cases based on diagnoses, prescriptions, and procedures

The most differentially represented diagnoses during the 5 years prior to the diagnosis

of substance abuse in the cases were mostly psychiatric, including depression, episodic

mood disorder, dysthymic disorder, bipolar disorder, and unspecified psychosis (Fig. 6,

Table 3). This supports the observation that patients with substance abuse are more

likely to have psychiatric conditions than non-substance abusers, and these conditions

may predispose patient toward substance abuse. Human immunodeficiency virus (HIV)

and hepatitis C were overrepresented in the cases. It is known that globally, intravenous

drug users are 28 times more likely to contract HIV than the rest of the adult popula-

tion [28]. Intravenous drug use is also responsible for ~ 90% of new hepatitis C infec-

tions [29].

Medical non-adherence, a condition where patients do not follow therapeutic recom-

mendations, is overrepresented in the cases. This finding may support a socioeconomic

difficulty in adhering to medical advice, or general apathy to medical treatment, or a re-

fusal to take alternative medications that are not opioids, or a refusal for any psychiatric

treatment. Lumbago, an older term for low back pain, is also overrepresented in the

cases. Patients with lumbago are often treated with opioids, and may become addicted;

or conversely, opioid users with correspondingly lower thresholds for pain may present

to clinics or emergency departments with lumbago. Other pain-related diagnoses are

also overrepresented in the cases. These include limb pain (OR = 4.56, p = 1.66E-112),

backache (OR = 4.04, p = 5.82E-75), abdominal pain (OR = 2.68, p = 5.23E-66), chronic

pain (OR = 6.47, p = 6.32E-63), chest pain (OR = 1.95, p = 3.49E-43), and others. Diag-

noses underrepresented in the cases include those related with pregnancy, such as

“supervision of other normal pregnancy,” “outcome of delivery, single liveborn,” and

“post term pregnancy, delivered, with or without mention of antepartum condition.”

This is related to the suggestion that pregnant patients are among the least likely to

seek care from multiple institutions, while HIV and chronic pain patients are among

the most likely to seek care from multiple institutions [30].

Among prescriptions that are differentially represented during the 5 years prior to the

first diagnosis of substance abuse in the cases are nicotine patches. It was previously re-

ported that 85–98% of patients undergoing methadone maintenance treatment con-

sume tobacco [31]. Other differentially represented medications among cases include

the psychoactive medication trazodone, as well as the “banana bag” cocktail of

thiamine, folic acid, and multivitamins with sodium chloride, given to malnourished al-

cohol users [32]. Important to note, these are not prescriptions but rather inpatient or-

ders. Other prescriptions are for methadone and lorazepam. Lorazepam is an anxiety

medication that is also used for alcohol withdrawal symptoms (Table 4). Prescriptions

underrepresented in the cases included cefazolin, an antibiotic; ondansetron, a 5HT-3

antagonist used as an anti-emetic; and midazolam, a short-acting sedative. Midazolam

is a benzo, just like lorazepam, but shorter-acting. Lorazepam is given to alcohol
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withdrawal patients and agitated patients, while midazolam is given for procedural sed-

ation such as shoulder dislocation, or lumbar puncture. Medical procedures that are

differentially represented during the 5 years prior to the diagnosis of substance abuse in

the cases are various forms of evaluations and interviews, in agreement with the over-

representation of psychiatric diagnoses (Table 5).

Discussion
Using lab tests and vital signs proximal to the diagnosis date of substance dependence

as input, we tested the ability of a Random Forest machine learning classifier to predict

whether a patient will be diagnosed with substance dependence. Using a baseline of 50/

50 chance to diagnose a patient as substance dependent, the best classifier performed

well above chance. The best classifier correctly predicted whether a patient is not

substance-dependent ~ 76% of the times, and whether a patient is a

substance-dependent ~ 92% of the times. While these results are promising, there is

room for improvement before a clinical implementation. The measurements that dis-

tinguished substance-dependent patients from non-substance dependent patients, as

Fig. 6 Scatter plot of 483 diagnoses with statistically significant over- or underrepresentation in the cases
compared to the controls measured using the Fisher Exact test. Each point is a diagnosis that was
statistically significant. 31 diagnoses have odds ratios of less than 1
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determined by effect size, Gini importance, or by the Wilcoxon rank-sum test, were

mostly related to white blood cells, protein, blood gases, blood volume and blood cell

width. The relationships between these lab tests and vital signs in the context of sub-

stance dependence diagnosis can be explained. It is encouraging that the laboratory re-

sults and vital signs identified by the classifier have well-known relationships to pain

syndromes and opioid use. Respiratory rate, for instance, has been shown to be elevated

in many painful conditions, and decreased in opioid overdose. Respiratory rate will dir-

ectly affect blood gases. White blood cell counts have also been shown to fluctuate in

response to trauma and surgery, with a decline in lymphocytes and an increase in poly-

morphonuclear leukocytes (PMNs). Compared to the substance-dependent cases, our

control cohort showed the same pattern as prior studies of trauma patients. In addition

to classification using clinical measures, we attempted to classify patients with, as well

as examined the prevalence of, diagnoses, prescriptions, and procedures in the case and

control populations during the five years before diagnosis of substance dependence.

The diagnoses most overrepresented were psychiatric, supporting the close association

between substance abuse and psychiatric comorbidities as reported before [7–10].

Agreeing with this, the medical procedures most overrepresented in the cases were

Table 3 Top 10 differentially represented diagnoses during the 5 years prior to diagnosis of
substance abuse (ranked by odds ratio)

Diagnosis Odds ratio p-value (Bonferroni-corrected)

Unspecified episodic mood disorder 11.779 1.03E-138

Dysthymic disorder 6.209 1.48E-114

Depressive disorder, not elsewhere classified 6.081 0

Personal history of noncompliance with medical
treatment, presenting hazards to health

5.933 4.29E-107

Other unknown and unspecified cause of morbidity
and mortality

4.896 2.69E-112

Accidents occurring in unspecified place 4.845 9.87E-110

Pain in limb 4.565 1.66E-112

Cough 4.54 9.00E-115

Lumbago 4.301 1.54E-110

Human immunodeficiency virus [HIV] disease 3.467 1.28E-136

Table 4 Top 10 differentially represented prescriptions during the 5 years prior to diagnosis of
substance abuse (ranked by odds ratio)

Prescription Odds ratio p-value (Bonferroni-corrected)

Methadone 45.956 0

Nicotine 26.239 0

Thiamine 12.861 1.58E-277

quetiapine 11.553 3.27E-241

Trazodone 9.863 0

Clonazepam 8.38 7.21E-165

Haloperidol 6.82 8.28E-178

Folic Acid 5.28 5.03E-202

Lorazepam 4.745 2.02E-231

Ibuprofen 4.64 2.58E-202
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various types of psychiatric evaluations and interviews. The prescriptions most overrep-

resented in the cases were related to opioid treatment and malnourishment, as many

drug abusers arrive at the hospital in a malnourished state. Examining all opioid pre-

scriptions in the MSMC-EHR, opioids were prescribed to a large portion of patients,

and patients diagnosed with an opioid use disorder had significantly more opioid pre-

scriptions than patients who were given few opioid prescriptions. Future work may in-

clude other features for predicting substance dependence status. These can be

combined with the clinical features we already used here. Additionally, other machine

learning methods such as deep learning may perform better than the Random Forest

classifier we employed. The case and control populations could also be made larger by

integrating other EHR systems. It is possible that results will vary when examining dis-

tinct populations across hospitals in different cities and countries. The current study is

focused on patients with diagnoses in the 304 family (drug dependence), but there are

other ICD-9 families related to drug abuse. The 305 family, which denotes

non-dependent substance abuse, was commonly used for patients with alcohol and to-

bacco use disorders. For this reason, we focused on the 304 family of ICD-9 diagnoses.

Finally, future studies can examine gene variants that are enriched in the cases com-

pared to the controls. Such analysis can identify genetics variants that may influence

propensity for drug abuse and at the same time point further to mechanisms of action.

The machine learning classifiers developed here can increase the size of the case popu-

lation to improve the statistical power needed to identify true variants.

Conclusions
Through analyzing of the health records of hundreds of thousands individuals in the

MSMC-EHR with a machine learning framework, we furthered characterized opioid

dependent patients using physiological measurements. We found that opioid dependent

patients have significantly higher WBC and respiratory disturbances. Opioid dependent

patients are also commonly malnourished which is characterized by low RCDW and

blood albumin compared to controls. Clinical phenotyping analysis discovered that opi-

oid dependent patients are more likely to suffer from psychiatric disorders and manifest

pain-related symptoms. The predictive model may hold utility for identifying patients

at risk of developing dependence, risk of overdose, and opioid-seeking patients that

Table 5 Top 10 differentially represented procedures during the 5 years prior to diagnosis of
substance abuse (ranked by odds ratio)

Procedure Odds ratio p-value (Bonferroni-corrected)

Other group therapy 19.8 1.23E-69

Interview & Evaluation NEC 11.578 4.06E-42

Psychiatric Mental Determination 10.597 1.24E-29

Exploratory verbal psychotherapy 10.371 2.41E-57

Brief interview & evaluation 6.224 9.00E-201

Limited interview/evaluation 5.804 2.71E-279

Interview & evaluation NOS 5.745 6.16E-102

Comprehensive interview/evaluation 5.065 1.71E-147

Other counselling 4.3 3.93E-36

Other fetal monitoring 0.218 1.14E-30
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report other symptoms in their visits to the emergency room. It should be noted that

marking a patient with an opioid dependency ICD code, which is commonly used for

insurance purposes, is often inaccurate and inconclusive. Hence, we recommend that

the results from our study should be considered preliminary, and the quality of the real

cases disputable. The study should be validated by other independent EHR systems and

different computational approaches. Regardless, the multi-variate non-linear character-

istic of the classifiers developed here, combine unique mixture of the values of many

measured variables together to produce predictions not possible by looking at a single

biomarker. The complex relationships between measured variables would be difficult to

detect via an in-person clinical assessment alone. Hence, the predictive machine learn-

ing classifiers we developed can alert physicians about the potential of patients to have

opioid dependency from routine lab tests and vital signs. However, there are still tech-

nical, administrative, and bureaucratic barriers for real implementation.
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