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Donor specific transfusions have been the basis of tolerance inducing protocols since
Peter Medawar showed that it was experimentally feasible in the 1950s. Though trials of
cellular therapies have become increasingly common in solid organ transplantation, they
have not become standard practice. Additionally, whereas some protocols have focused
on cellular therapies as a method for donor antigen delivery—thought to promote
tolerance in and of itself in the correct immunologic context—other approaches have
alternatively focused on the intrinsic immunosuppressive properties of the certain cell
types with less emphasis on their origin, including mesenchymal stem cells, regulatory T
cells, and regulatory dendritic cells. Regardless of intent, all cellular therapies must
contend with the potential that introducing donor antigen in a new context will lead to
sensitization. In this review, we focus on the variety of cellular therapies that have been
applied in human trials and non-human primate models, describe their efficacy, highlight
data regarding their potential for sensitization, and discuss opportunities for cellular
therapies within our current understanding of the immune landscape.

Keywords: allotransplantation, donor specific transfusion (DST), donor specific antibodies, mesenchymal stem cell,
sensitization, allosensitization, tolerance
INTRODUCTION

Presently, solid organ allotransplantation is hampered by poor outcomes due to the nonspecific
effects of immunosuppressive medications, especially calcineurin inhibtors (1, 2). Indeed,
improvements in long term graft outcomes in both liver and kidney transplant have been
minimal and disappointing in the past 20 years (3–5). In spite of this, there has been a
consolidation of immunosuppressive management, with the vast majority of patients now
managed on a calcineurin-based regimen (6).

In a distinct vein, there has long been an interest in the ability to specifically modify the immune
response to donor antigens. This research has focused on utilizing donor derived biological products
across a number of cell types and preparations to condition the immune system to accept the
allograft and is based, conceptually, on the work of Sir Peter Medawar (7). In spite of Medawar’s
early experiments, however, the ability to not simply blunt the total immune response but rather
org August 2021 | Volume 12 | Article 7147231
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specifically inhibit the response to the donor has been elusive.
Indeed, it has been haunted by the fact that specific inhibition
requires that an immune system be exposed to the antigens
which it may respond to, giving rise to a risk of sensitization. The
use of regulatory cell therapies may be a way to avoid this, but
they remain incompletely explored. An overview of cellular
therapies currently under investigation may be found
in Figure 1.

In the present manuscript, we will review the progress made
in the application of donor specific cellular therapies starting
with an examination of early evidence. We will further describe
the multiple cellular strategies currently being investigated in
clinical trials including the combination of donor specific
transfusion (DST) with novel immunosuppressive regimens,
modified cellular therapies, and specific cell type based
therapies. Finally, we will examine the future landscape of
donor directed therapies and the unmet research need.
THE ORIGINS OF CELLULAR THERAPY
IN TRANSPLANTATION

Few experiments in transplantation are as well-known as those of
Sir Peter Medawar. In his seminal set of studies, Dr. Medawar
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built on the work of Dr. Ray Owen (8) and demonstrated that
intra-embryonic injection of cells from future skin donors led to
tolerance among a subset of mice (7). Ultimately, Medawar was
awarded the Nobel Prize for this work and it remains the
theoretical basis for many tolerance inducing protocols today.
A few specific aspects of the experiment are worth noting. First,
the injections occurred early in the development of the mice;
therefore, the thymus was robust and actively educating T cells.
Thymic development continues to adolescence when involution
begins (9). Therefore, these injections in the fetal period had the
advantage of potentially utilizing the positive and negative
selection programs of the thymus to abrogate responses to
the alloantigens.

Additionally, they utilized a mix of donor cells from the
“testis, kidney, and splenic tissue” (7). Here, the splenic tissue
used suggests a high proportion of B cells as well as professional
antigen presenting cells (APCs) which are known to express
higher levels of major histocompatibility complex (MHC) class II
as well as class I, which is constitutively expressed. That is, there
were a variety of antigens expressed by these tissues and
therefore available to the recipients. Taken together, these
details suggest that both the character of donor derived
infusions and the overall immunologic context (in this case
most modified by the pre-natal environment) may determine
the fate of the immune response.
FIGURE 1 | Cellular therapies in transplantation can be broadly categorized into five groups: donor specific transfusions (DSTs), hematopoietic stem cell transplant
(HSCT), mesenchymal stem cell based therapy (MSC), manufactured immune cell therapy (using various regulatory cells), and modified immune cell (MIC) therapy.
These broad categories can be further subdivided by the source of the cells. Whereas recipient derived cells carry no risk of sensitization (or very little), donor derived
cells inherently may sensitize the recipient. Additionally, 3rd party cells, depending on their genetic similarity with donor and recipient, may or may not be sensitizing.
When evaluating cellular therapies, both the function and origin of cells are of import.
August 2021 | Volume 12 | Article 714723
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Though his experiments were conceptually very important,
the clinical reality of early transplantation was more complex and
the application of cellular products of as treatment remains
elusive (10). As adults were the first recipients of transplanted
organs, the selective programs of the thymus were less available.
Early experience with DST showed the now predictable result of
allosensitization leading to the inability to transplant and a
divisive discussion within the transplant community regarding
the benefit of transfusion pre-operatively (11). Still, results were
heterogenous: some early animal models hinted at the benefit of
DST (12) and a number of early studies indeed showed that non-
leukoreduced transfusions in general (not donor specific)
appeared to lengthen graft survival, though the mechanism was
unknown (13, 14).

Salvatierra and colleagues were some of the first to specifically
evaluate the role of DST on graft survival in a systematic way
(15). In this seminal work, they showed that while 1/3 of patients
became sensitized (as measured by persistently high levels of
alloantibody), 2/3 of patients were able to be transplanted. These
patients had improved graft survival compared to similarly
mismatched controls (94% vs. 56%). Despite a high degree of
donor responsiveness as measured by mixed-lymphocyte
reaction (MLR), patients who received DST had lower rates of
acute rejection in the first 3 months using similar
immunosuppression (44% vs. 82%). From these experiments, it
was difficult to determine the exact differentiating factor which
caused sensitization in some and tolerogenic effects in others.
However, the authors did show that all patients who became
sensitized with DST had also received multiple other blood
transfusions. In this instance, the treatment was standardized
(non-frozen, non-leukoreduced DST) but the context, potentially
measured by the amount of 3rd party (i.e., neither donor nor
recipient) blood transfusions, may have modified the ultimate
immune response to donor antigen. Concomitantly,
experimentation in mouse models showed similar results with
improved skin graft survival with DST but not with 3rd party
transfusion (16).

Over the next decade, several studies continued to illustrate
the principles by which DST may be beneficial. First, evidence
showed that the salutary effect of DST was most apparent in
human leukocyte antigen (HLA) mismatched recipients, whereas
it had little effect in fully haploidentical recipients (17). This was
predictable as HLA matched recipients may have fewer antigens
to tolerize to and therefore the effect would be of a lower
magnitude. Additionally, it is worth noting that even in the
Salvatierra study, the graft survival of the high reactivity MLR
group was worse than that of the low reactivity MLR group
(which did not receive DST), even with the addition of DST (15).
Other studies suggested that at least some degree of HLA
similarity was needed for improved graft survival with DST
(18). Further mechanistic studies were also undertaken around
this time which showed that it was possible that APC-depleted
DST were more effective at inducing tolerance (19), suggesting
that the type of cell was of import. However, due to the continued
risk of sensitization, DST fell out of favor throughout the 1990s
and early 2000s, culminating in a meta-analysis in 2010 which
Frontiers in Immunology | www.frontiersin.org 3
concluded that the risks of DST outweighed the benefits in the
modern immunosuppressive era (20).
COMBINING DST AND COSTIMULATION
BLOCKADE

One area where DST continues to be investigated is in
conjunction with costimulation blockade. Early murine
experiments showed indefinite islet graft survival when DST
with small lymphocytes (with or without T-cell depletion) was
combined with anti-CD154 (21) or when DST with splenocytes
was combined with CTLA4Ig (22) or anti-CD154 (23). Elegant
mechanistic experiments showed that these effects may be
mediated by deletion of alloreactive cells (24), the production
of allospecific suppressor cells (25), or the induction of anergy
(26) and appeared to depend at least in part on indirect
presentation of donor antigens by recipient MHCs, whereas
direct presentation was dispensible (27). Indeed, improved
outcomes were achieved using DST in conjunction with
rapamycin and anti-CD154 in a rhesus macaque model of skin
transplantation, compared to rapamycin and anti-CD154 alone
(28). This prompted further trials which showed operational
tolerance in kidney transplant in both rhesus macaque (29)
and cynomologous (30) models. Trials using belatacept
based costimulation blockade, rapamycin, and DST in the
form of donor bone marrow have been completed with many
patients able to be maintained on belatacept monotherapy with
excellent renal function outcomes (31, 32). In these studies,
alemtuzumab—an anti-CD52 monoclonal antibody which is a
potent depletional induction agent which causes near immediate
(33) and long lasting lymphopenia, up to 6 months (34)—was
used. This potentially allowed for remodeling of the immune
system during its reconstitution (35). Of note, a total of n = 5
(12%) of patients on this protocol developed de novo DSA after
transplant, though it is unclear what clinical significance these
antibodies have.
DST USING MODIFIED CELLULAR
PRODUCTS

Another distinct line of investigations has attempted to deliver
donor antigen itself in a more tolerogenic manner. Beginning
with multiple early studies in mice, Luo and colleagues have
shown that pre-treating cellular infusions (in this case
splenocytes) with ethylene carbodiimide (ECDI) leads to long
term tolerance in a high proportion of mice undergoing islet
transplantation into the kidney capsule (36). Of note, they
showed that this effect was donor specific, with no
prolongation of 3rd party grafts. Multiple findings from this
first study are mechanistically interesting. First, they found that
the ablation of Treg via an anti-CD25 antibody prior to ECDI-
treated cell infusion abrogated tolerance induction but late (120
days after transplantation) depletion of Treg did not.
August 2021 | Volume 12 | Article 714723
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Additionally, they showed that the PD-1 axis was necessary for
tolerance induction.

Following on from these studies, it was demonstrated that
ECDI treated splenocytes could condition tolerance in murine
cardiac allografts (37). Additionally this tolerance could be
achieved not only with splenocytes but also culture-expanded
B cells or cryopreserved cellular products and could be combined
with clinically relevant immunosuppressive regimens (38).
Mechanistically, these infusions cause an expansion of myeloid
derived suppressor cells (MDSCs) both at the site of the
allograft (37) and systemically (39) which appear to be
important in abrogating deleterious T-cell responses. ECDI
treatment leads to apoptosis of the infused cells and therefore
presentation of donor antigen in an apoptotic context. This
should attenuate any inflammatory immune response and is
generally termed efferocytosis—the clearing of apoptotic cells
in a non-inflammatory manner (40). Specifically, it has been
demonstrated that this anti-inflammatory program is mediated
by the receptor tyrosine kinase MerTK which participates in the
phagocytosis of apoptotic cells in an allotransplantation context
via suppression of IFN-a signaling and subsequent expansion of
MDSCs (41).

Recently, this strategy has also expanded into a non-human
primate (NHP) model of islet cell transplantation, again, using
splenocytes as the donor cell source supplemented by culture-
expanded donor B cells from the peripheral blood. This lead to
long term tolerance in a high proportion of recipients (42).
Multiple experiments confirmed that there was a decrease in
donor-specific T-cell response and an increase in the proportion
of MDSCs. Of note, this protocol was not successful when
primates had previous sensitization to donor antigens.
However, in mice, ECDI treated splenocyte infusion when
combined with rapamycin and anti-CD154 (MR1) led to
prolonged survival in sensitized recipients relative to
rapamycin and anti-CD 154 alone (43). Overall, ECDI treated
cells represent one cellular therapy that is donor specific, that
does not appear to cause sensitization, and may allow for the
reduction or withdrawal of immunosuppression in select
patients. Further work is needed to translate this therapy into
vascularized grafts in NHP models in anticipation of
human trials.

Another line of investigation that parallels the treatment of
splenocytes with ECDI is the use of modified immune cells
(MICs). Terness and colleagues initially observed that DCs
treated with mitomycin C become tolerogenic in an in vitro
context, potentially via downregulation of costimulatory
molecules CD80/CD86 and ICAM-1. Intriguingly, T cells
exposed to these DCs became stably tolerized to the antigens
presented as these cells could not be restimulated after co-culture
with these MICs (44). Further experiments showed that MICs
prolonged graft survival in rat heart transplantation and again
showed a phenotype of downregulated costimulatory molecules.
Indeed, they achieved the same clinical effect using antibodies
that coated DC costimulatory molecules and blocked the
productive interaction of other cells with these DCs (45). They
further extended these results from sorted DCs to whole PBMC
Frontiers in Immunology | www.frontiersin.org 4
in both rat and porcine contexts with improved graft survival
with mitomycin C treated PBMC infusion (46). They also
showed improved survival in a vascular composite allograft
context in rats (47). Recently, they completed a trial in humans
where they showed both safety of MICs derived from whole
PBMC as well as specific inhibition of donor responses in
patients treated with MICs (48). However, as this was a phase
1 study, patients were maintained on CNI for immunosuppression
and no comparator group was examined. Of note, they also showed
an increase in regulatory B cells and did not observe any
sensitization in the study. In sum, modified cellular therapies are
a promising but incompletely studied form of cellular therapy that
may specifically inhibit the recipient response to donor.
COMBINED HEMATOPOIETIC STEM CELL
TRANSPLANT AND SOLID ORGAN
TRANSPLANTATION

Another area where a form of DST continues to be investigated is
in chimerism protocols. Early murine models showed tolerance
could be achieved by the depletion of the recipient immune
system followed by concomitant hematopoietic stem cell
transplant (HSCT) and solid organ transplant from the same
donor (49). Within a few years, this result had also been
replicated in NHP (50). Mechanistically, this tolerance is
thought to be due to chimerism (51). Though the outcomes
were exciting, there was some hesitation as macrochimerism can
lead to graft vs. host disease (GVHD), especially with the use of
HLA-mismatched donors (52). Studies using combined HSCT in
conjunction with solid organ transplant in humans were first
pursued among patients with multiple myeloma who also
qualified for kidney transplant. In these patients, they were
conditioned using cyclophosphamide, anti-thymocyte globulin
(ATG), and thymic irradiation. Though initial results with one
(53), and then six subsequent patients (54) were encouraging,
long term follow-up demonstrated GVHD (either acute or
chronic) in 4/7 patients and the need for at least some
immunosuppression in 3/7 patients (55).

In a more targeted way, the same group as above also
performed combined HSCT and kidney transplant in five
patients using a non-myeloablative regimen consisting of
cyclophosphamide, thymic irradiation, and anti-CD2 monoclonal
antibody, and a short course of cyclosporine. Four out of five
patients were able to be weaned off all immunosuppression with
stable graft function. Interestingly, the second patient on this
protocol developed acute humoral rejection with early graft loss
(day 10) in spite of a negative crossmatch, though none of the
patients developed GVHD (56). Other groups have also attempted
to achieve tolerance using combined HSCT and kidney transplant
with variable success. One group has utilized total lymphoid
irradiation and ATG for conditioning with a T-cell depleted
HSCT infusion which has led to at least transient chimerism and
the ability to withdraw immunosuppression in 16/22 (72% of
August 2021 | Volume 12 | Article 714723
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patients) who were HLA-matched (57–59). However, none of the
patients on this protocol who were HLA-mismatched have yet been
able to undergo immunosuppression withdrawal. A final group has
attempted HSCT with fludrabine, cyclophosphamide, and whole-
body irradiation condition in conjunction with kidney transplant
and shown the ability to withdraw immunosuppression in most
patients that have stable chimerism, with some now up to 9.5 years
off all immunosuppression (60–62). However, only 6/20 total
patients and 6/15 who underwent weaning are currently still off
immunosuppression. Though these protocols have been very
successful in achieving tolerance in a small number of patients,
the high morbidity and continued concern regarding GVHD has
limited their widespread adoption.
A SHIFT TO CELL TYPE BASED
THERAPIES—THE RISE OF
MESENCHYMAL STEM CELLS

As the field of transplantation shifted away from DST based
strategies and early enthusiasm for non-CNI based therapies
waned due to concerns about increased rates of acute rejeciton
(63–66), there was a concomitant increase in interest in cellular
therapies of specific cell types, especially ones that may be
derived from the recipient themselves. One early stream of
investigation targeted the use of mesenchymal stem cells
(MSC). MSCs are heterogenous progenitor cells which can
differentiate into mesodermal tissues, are adherent to plastic,
and express certain cell surface markers. Of note, MSCs may be
derived from many tissues but in practice are mostly isolated
from bone marrow via culture methods that take advantage of
the specific propensity of MSCs to adhere to plastic (67).
Regardless, expansion of cells is required as the dose used is
approximately 1.5 x 106 cells/kg body weight (68). It should be
mentioned that the preparations of MSCs do vary widely, and
some groups have shown that both cryopreservation itself and
the way in which MSCs are prepared after cryopreservation, for
example, influences their immunosuppressive effect (69).

The first description of MSCs as immunosuppressive was in
2002 when investigators utilized MSCs in a skin transplantation
model among baboons (70). They noted that MSCs inhibited
MLRs to alloantigens and that MSC administration to baboons
prolonged skin graft survival. Importantly, they also noted that
the effect of MSCs was independent of their origin. That is, MSCs
prolonged skin grafts regardless of whether the grafts were from
the same donor as the MSCs or 3rd party, suggesting a general
immunosuppressive effect, not an allospecific one.

Mechanisms of MSC’s immunosuppressive effect are various
and have been reviewed extensively in the literature (71). For the
purposes of this review, the most salient mechanisms are the
generation of tolerogenic APC. Early experiments showed that
MSCs decreased ability of co-cultured dendritic cells (DCs) to
stimulate T cells, including in an allostimulatory context (72).
Further experimentation showed that this effect was in part due
to the inhibition of DCs from entering the cell cycle (73) and
Frontiers in Immunology | www.frontiersin.org 5
potentially mediated by the soluble factors IL-6, IL-10, and
hepatocyte growth factor (74). Additionally, MSC conditioned
DCs have been shown to preference the generation of Treg via a
CCL18 dependent mechanism (75). Indeed, taken together, these
data together suggest that MSCs may ultimately change the
context in which antigen is presented and therefore promote a
tolerogenic phenotype. However, it is sobering to think that
while MSCs may modify APCs to prevent a productive response
to certain antigens, other cellular therapies may instead
potentiate responses.

Consistent with the above mechanisms, further animal
studies after Bartholemew’s initial description showed
prolongation of graft survival regardless of origin of MSC. An
early study in rat liver transplantation showed graft survival
prolongation with MSC derived from donor, third-party, or
syngeneic animals (76). Further studies in rat corneal
transplant also showed prolongation of graft survival with
third-party derived MSCs (77). Experiments in mouse models
of heart (78) or kidney (79) transplantation showed prolongation
of graft survival with the infusion of syngeneic MSCs when
administered pre-transplant.

The first human trials of MSCs in transplantation were
spurred on by safety in other fields (80, 81) and culminated in
early clinical studies which showed the safety of MSC infusion
among kidney transplant recipients (82, 83). Due to the
nonspecific nature of the immunosuppressive effects of MSCs,
early trials generally used autologously derived MSCs—thought
to be the safest product—combined with kidney transplantation
(84–86). In a randomized controlled trial setting, autologousMSC
infusion with kidney transplantation and tacrolimus showed a
lower incidence of acute rejection and opportunistic infection
(83). However, the incidence of rejection in the standard therapy
group was high (approximately 20%) and longer follow-up
remains to be reported. Later trials in kidney (87, 88), liver
(89, 90), and lung (91) transplantation utilized 3rd party derived
MSCs and demonstrated a similarly good safety profile.

One study did use donor derived MSCs which have the
theoretical benefit of both nonspecific immunosuppression
combined with antigen specificity. Again, the authors
demonstrated a good safety profile and were able to use a
lower dose of tacrolimus in the MSC group compared to the
standard immunosuppression group (92). Of note, there was no
assessment of the development of alloantibody in this trial. In the
opposite manner, a study used MSCs which were mismatched to
the recipient HLA and the donor HLA (i.e., they were no
“repeated mismatches”) and showed good safety (93). This
study did assess for sensitization to the specific 3rd party
alloantigen and did not observe it. Though one recipient had
pre-existing allo-antibody to an MSC donor antigen, the
antibody titer did not change with MSC infusion.

An interesting result from an early autologous MSC safety
trial was the detection of an MSC infiltrate in a kidney graft when
MSCs were administered 7 days after transplant (82). Though
this did not lead to any production of antibody (the MSCs, again,
were autologous) or lasting graft damage, there was a transient
increase in creatinine. This may have been due in part to the
August 2021 | Volume 12 | Article 714723
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proinflammatory environment of the recently implanted kidney.
Indeed, a body of research exists that shows that innate signaling
via molecules such as damage associated molecular patterns
(DAMPs) (94) may modify the alloresponse. Similarly, these
factors may be important when considering the infusion of
dynamic cellular therapies.

One other important consideration of cellular therapies
generally is their safety, which has been extensively reviewed
previously for MSCs (95, 96). Important to transplant, prior
studies have found that MSCs may promote a pro-coagulable
state via the instant blood mediated inflammatory reaction (97),
though administration directly into the bonemarrowmaymitigate
this (98). Regardless, the clinical context of MSC therapy must be
taken into consideration as this hypercoagulability may be deleterious
to certain clinical conditions, for examples, in COVID-19 infeciton
(99). In vascularized organ transplant, the potential for thrombosis of
newly anastomosed vessels should lead to the tracking of these types of
events when cellular therapies are utilized.

Overall, the data show that, while safe and slightly
immunosuppressive in humans in vivo, MSCs do not themselves
appear to condition for tolerance or cause drastic shifts in the
recipient immune system. Indeed, a recent meta-analysis came to
much the same conclusion (100). Of special note, present data do
not suggest that MSCs are sensitizing, potentially due to their
concomitant immunosuppressive effects, which raises the
possibility of utilizing them as a delivery vector for alloantigen.
OTHER CELL TYPE BASED THERAPIES—
TREG AND BEYOND

Besides MSCs, many other cell types have been investigated. The
largest study of regulatory cell based immunosuppressive
products, the ONE study (101), was recently published. In this
Frontiers in Immunology | www.frontiersin.org 6
study, the safety of six different autologously derived cellular
products was assessed using seven single arm studies that were
harmonized for comparison. A single control arm was standard
of care therapy for living donor renal transplant recipients using
basiliximab induction, tapered steroid, mycophenolate mofetil,
and tacrolimus. The six phase 1/2a interventional single arm
studies consisted of two polyclonal Treg studies, two donor-
antigen specific Treg studies, a tolerogenic DC study, and a
regulatory macrophage study. As these were safety studies, no
minimal graft outcomes were reported but all infusions were well
tolerated and rejection events were similar between the control
and interventional studies. Additionally, there were similar rates
alloantibody production between the control and interventional
studies. As all products were derived from recipients, the risk of
sensitization was low, though the donor specific Treg were
incubated with donor cells in order to achieve their specificity.
A recent subset analysis of the natural Treg infusion data from
this study has shown that these patients were more likely to be
weaned to a monotherapy immunosuppression regimen (102).
Still, the preparation of these cells is laborious and the
appropriate timing of infusions remains unknown.
CONCLUSIONS

Cellular therapies, especially those derived from donors, carry
great potential but also great risk. Early studies showed that DST
may have a salutary effect in certain patients, but an inability to
determine who may benefit from these transfusions and the high
degree of sensitization (up to 1/3 of patients) led clinicians to
abandon these therapies. A shift towards specific cell type based
therapies has been productive in improving the field’s ability to
manufacture and deliver consistent therapies but has yet to
revolutionize the way in which we approach immunosuppression.
Modified cellular therapies are on the horizon and represent an
TABLE 1 | Ideal properties of a cellular infusion and whether current therapies meet those criteria.

Characteristic Explanation DST HSCT Modified
immune
cells

MSC Manufactured
regulatory

cells

Readily available The ideal infusion would be readily available for administration at a reasonable
timeframe with relation to transplant. E.g., Autologous therapies that could be derived
over the course of a workup, donor derived therapies that are amenable to generation
even in a time sensitive deceased donor context, or 3rd party infusions that could be
used “off-the-shelf.”

+/- +/- +/- + –

Specific to donor Through either modification of the recipient immune system or delivery of donor
antigens in a tolerogenic manner, the cellular infusion would specifically inhibit the
recipient immune system from responding to donor antigens.

+ + + +/- –

Lack of sensitization Infusions should not cause sensitization (i.e., the generation of productive anti-HLA
antibody) to either the donor or any other individual.

– – + +
(autologous)

+

Effective regardless
of sensitization
status

The ideal infusion would be able to not only prevent the generation of responses to
donor in recipients that were naïve to their donor but also delete pre-existing
responses in order to expand the donor pool for highly sensitized individuals.

+/- +/- +/- + Unknown

Does not interfere
with standard
immunosuppression

Infusions should be compatible with a wide variety of immunosuppressions such that
patients may be placed on the most appropriate therapy for their clinical condition

+/- – + + Unknown
A
ugust 2021
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exciting development that is grounded in long standing
understanding of mechanisms of the immune response.
Combinations of DST with costimulation blockade have emerged
as a promising approach. However, questions remain regarding
sensitization, long-term outcomes, and the pool of patients
appropriate for costimulation blockade-based therapy.
Hematopoietic stem cell transplant in conjunction with solid
organ transplant is less clinically applicable due to the morbidity
involved with conditioning, even in the absence of high rates of
GVHD. Regardless of the cellular therapies pursued, there are key
characteristics that these therapies must possess to be most useful
(summarized in Table 1).

Further phase 1 studies should continue to follow the example
of the ONE study and others who attempt to gain as much
information as possible with the most parsimonious control
group. Additionally, further investigations into modifications
of donor cells may be one way to overcome the significant
hurdle that is sensitization. Transplantation is the original
precision medicine, with HLA matching and crossmatch
testing ensuring that organs implanted function appropriately
and for the longest possible time. Cellular therapies ought to
Frontiers in Immunology | www.frontiersin.org 7
consider this precision in their development given the cost and
potential for adverse events. In the future, the extent to which a
therapy can inhibit a donor specific response relative to its
overall immunosuppressive effect may become the most
important metric, rather than a simplistic view which
preferences only the inhibition of rejection episodes.
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