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Abstract: Monitoring cropland phenology from optical satellite data remains a challenging task
due to the influence of clouds and atmospheric artifacts. Therefore, measures need to be taken
to overcome these challenges and gain better knowledge of crop dynamics. The arrival of cloud
computing platforms such as Google Earth Engine (GEE) has enabled us to propose a Sentinel-2 (S2)
phenology end-to-end processing chain. To achieve this, the following pipeline was implemented: (1)
the building of hybrid Gaussian Process Regression (GPR) retrieval models of crop traits optimized
with active learning, (2) implementation of these models on GEE (3) generation of spatiotemporally
continuous maps and time series of these crop traits with the use of gap-filling through GPR fitting,
and finally, (4) calculation of land surface phenology (LSP) metrics such as the start of season (SOS)
or end of season (EOS). Overall, from good to high performance was achieved, in particular for the
estimation of canopy-level traits such as leaf area index (LAI) and canopy chlorophyll content, with
normalized root mean square errors (NRMSE) of 9% and 10%, respectively. By means of the GPR
gap-filling time series of S2, entire tiles were reconstructed, and resulting maps were demonstrated
over an agricultural area in Castile and Leon, Spain, where crop calendar data were available to
assess the validity of LSP metrics derived from crop traits. In addition, phenology derived from
the normalized difference vegetation index (NDVI) was used as reference. NDVI not only proved
to be a robust indicator for the calculation of LSP metrics, but also served to demonstrate the good
phenology quality of the quantitative trait products. Thanks to the GEE framework, the proposed
workflow can be realized anywhere in the world and for any time window, thus representing a shift
in the satellite data processing paradigm. We anticipate that the produced LSP metrics can provide
meaningful insights into crop seasonal patterns in a changing environment that demands adaptive
agricultural production.

Keywords: land surface phenology (LSP); Google Earth Engine (GEE); Gaussian process regression
(GPR); Sentinel-2; gap-filling; crop traits; hybrid models

1. Introduction

Monitoring vegetation phenology is vital for understanding the influence of vegetation
dynamics on a changing climate [1]. Since climate change is one of the major pressures on
agricultural production, assessing the phenology of cultivated lands is becoming increas-
ingly relevant. Phenological data help to trace plant development, monitor agricultural
production processes, estimate crop yield [2], and thus ensure food and nutritional security
for a growing world population [3–6]. Moreover, the temporal and spatial variabilities
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of phenology variations help to distinguish different vegetation types [7,8], especially
crops [9].

Traditionally, plant phenology is assessed at the ground level and involves visual
observations of phenological events, which is labour and time consuming [10]. Therefore,
spaceborne observations are employed to monitor the spatiotemporal development of
plants at the landscape level, which is also known as ‘land surface phenology’ (LSP) [11].
LSP refers to the seasonal pattern of variation in vegetated land surfaces observed using
remote sensing data [12]. LSP metrics are typically associated with general inter-annual
vegetation changes that are interpretable from optical remote sensing imagery such as those
from the start of greening/season (SOS), the peak of growing season (POS), the onset of
senescence or end of the season (EOS), the length of growing season (LOS) [12,13], as well
as other transition stages (e.g., maturity, senescence) [14]. These phenological metrics
are typically calculated from the normalized difference vegetation index (NDVI) or other
common vegetation indices (e.g., [13,15]) and refer to the day of the year (DOY) or the
number of days. However, the NDVI approach has some shortcomings, such as a limited
sensitivity to the photosynthesis dynamics of vegetation [16]. In contrast, quantitative
vegetation variables such as leaf area index (LAI) (e.g., [2,17,18]), when employed to a
lesser extent, could support a higher accuracy in the extraction of LSP metrics, in particular
for croplands [16,19].

Although the high spatial, spectral, and temporal resolution of the Sentinel-2 (S2)
constellation favors cropland monitoring studies [10], modeling the phenological evolution
of vegetation traits remains a challenging task. This is mainly due to geometry effects
and gaps in the time series caused by clouds and noisy data related to residual calibration
and atmospheric correction artifacts [20–23]. Nonetheless, while the delivery of gap-filled,
spatiotemporally continuous products is typically beyond the catalogue of products offered
by space agencies, the relevance of continuous data streams is well-known.

Since the advent of optical remote sensing science, a plethora of methods for vegetation
trait retrieval has been developed. Essentially, quantification relies on a model, linking
spectral observations to surfaces variables. While numerous retrieval methods have been
presented in the literature (see Verrelst et al. [24,25] for a commonly agreed taxonomy and
comprehensive reviews), when it comes to operational and fast processing, preferences tend
towards the so-called hybrid methods. Hybrid approaches blend the generic properties
of physically based models with the flexibility and computational efficiency of machine
learning regression algorithms (MLRAs). Within such a scheme, simulations by a radiative
transfer model (RTM) are used to train an MLRA. The MLRA learns the nonlinear behaviour
between the pairs of reflectance and vegetation trait of interest, and then predicts the output
values for new data based on those learned relationships. Within the diverse families of
MLRAs, of most interest are those providing associated uncertainty estimates [26]. In this
respect, Gaussian Process Regression (GPR) [27] is particularly attractive as it enables
statistical learning developed within a Bayesian framework. Moreover, GPR requires
relatively small training datasets while maintaining competitive accuracies [25,28].

In order to make these hybrid methods operationally applicable, of similar importance
is the availability of an efficient processing framework. Accordingly, the seamless pro-
cessing of a vast amount of satellite data in space and time demands: (1) moving towards
cloud-computing platforms, and (2) integrating the GPR retrieval algorithms into these
platforms. Such a processing scheme can lead to new opportunities towards an interactive
on-the-fly processing of crop properties in a cloud computing environment. Recently,
the Google Earth Engine (GEE) has emerged as an attractive high-performance computing
platform that enables the cloud-based processing of petabytes of satellite data [29]. GEE
provides powerful computational capability for planetary-scale data processing and even
allows creation and training for well-known machine learning algorithms [30]. Despite the
growing capabilities of advanced machine learning tools in the GEE environment, GPR is
still absent from their standard libraries. This may be due to the high computational costs
and memory demand of these algorithms. Recently, Pipia et al. [31] proposed to introduce



Remote Sens. 2022, 14, 146 3 of 26

lighter GPR models that meet the memory restrictions of cloud platforms. In their study,
lightweight hybrid retrieval models were applied to S2 data in GEE, demonstrating the
temporal mapping of green LAI over the Iberian Peninsula. This implementation of hybrid
models on GEE paved the way toward the mapping of global vegetation properties given
the optical data of a selected sensor such as S2 [31]. Moreover, GEE allows us to overcome
the most common limitation when dealing with optical data, i.e., cloud coverage, which
causes gaps in the data stream. Having easy access to the complete and up-to-date S2
catalogue, the processing of the time series became as straightforward as spatial processing.
Hence, by exploiting the temporal domain, robust fitting algorithms can be implemented
on GEE that can fill up the gaps. Gap-filling is an umbrella term for time series processing
algorithms, which can be broadly categorized into: (1) smoothing and empirical methods,
(2) data transformations, and (3) fitting methods [11]. Among these, curve fitting methods
are conventionally the most often used, with double logistic curves as a popular method
for vegetation seasonality or phenology estimation [32,33].

Analogous to the spatial domain, there is also an ongoing tendency in the temporal
domain to use adaptive MLRAs for continuous, gap-filled time series processing. These
fitting algorithms (4) possess the ability to learn on their own without being explicitly
programmed [34,35]. Among the multiple MLRA approaches currently used for gap-filling,
the probabilistic GPR is again appealing, given its flexibility and possibility to deliver
associated uncertainty estimates. In this respect, recent studies have demonstrated the
efficiency of GPR for LAI time series gap-filling [36–38].

While dealing with a large amount of satellite images in the past was tedious and
computationally intensive, processing became more straightforward with the migration
of retrieval models and the subsequent processing with GEE. Moving along this line,
in principle, cloud-based processing enables the quantification of traits and LSP metrics
anywhere in the world given the available satellite data catalogues. The generation of
these cloud-free, spatiotemporally continuous data streams is an essential prerequisite for
using vegetation products to assess seasonal changes, long-term trends, or abrupt events in
crop phenology [33,39,40]. However, an end-to-end workflow that starts from the retrieval
of crop products using satellite data, to gap-filling and finally to the computation of LSP
metrics within a single processing chain remains to be developed.

Altogether, the above-outlined framework brings us to the main objective of proposing
an S2 phenology end-to-end processing chain in GEE that is based on the retrieval of crop
traits and gap-filling methods. As a secondary objective, we intended to identify the most
suitable crop trait(s) for LSP metric calculation. To achieve this, we implemented the
full phenology processing chain on GEE, including: (i) crop trait mapping using hybrid
GPR models, (ii) the processing of spatiotemporally continuous maps through GPR fitting,
and finally, (iii) the calculation of LSP metrics.

2. Methodology
2.1. General Concept and Workflow

To build the end-to-end processing chain, we combined different methodologies pro-
posed for the hybrid retrieval of crop traits from S2 Level-2A (L2A) bottom-of-atmosphere
(BOA) data [41,42] and the GPR model integration on GEE [31]. The hybrid retrieval work-
flow with corresponding models is shown schematically in the upper part of Figure 1, while
the GEE-based time series processing steps are visualized in the lower part of Figure 1.
The main steps are described in the following sections, namely the GPR model theory
(Section 2.2), hybrid model development (Sections 2.3 and 2.4), gap-filling and hyperparam-
eter optimization for GEE (Section 2.5), and the processing of time series and LSP metric
calculation (Sections 2.6 and 2.7).
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Figure 1. Flowchart of the pursued workflow. Upper: development of hybrid retrieval models
in ARTMO by the coupling of leaf-canopy RTMs for training dataset generation, followed by AL
optimization and GPR model building. Lower: integration of AL-optimized GPR Euclidean distance-
based diversity models (EBD-GPR) on GEE for the retrieval of multiple crop traits from S2 BOA data,
subsequent time series gap-filling, and phenology metric calculation.

2.2. Gaussian Process Regression and Adaptations for Processing on GEE

As the core algorithm of this work, the theoretical framework of GPR is first outlined
here. GPR is found to be among the preferred kernel machine learning regression models
for solving supervised learning problems in GEE. GPR algorithms are straightforward in
the training process; they work well with rather small datasets and adopt very flexible
kernel functions for establishing nonlinear relationships between spectral observations and
variables of interest [43]. Moreover, final retrieval models provide confidence intervals
along with the predictions, which give fidelity to the models’ accuracy as well as insights
into the robustness of the estimates [26]. An extensive theoretical description is provided
in [27], who firstly introduced GPR algorithms, and in the context of Earth Observation
(EO) data analysis, descriptions are provided by Camps-Valls et al. [44,45] and Verrelst et al.
[24,25]. In the following, we briefly adapt the standard GPR formulation in the spectral
domain to crop trait retrieval in GEE and extend the formulation to the time domain for
gap-filling purposes.

2.2.1. Standard GPR Formulation

In general, GPR algorithms establish a relation between input data x ∈ RD and
output noisy observations y ∈ R as y = f (x) + ε, where ε is an additive dimension-
independent Gaussian distributed noise with zero mean and variance σ2

n , and f (x) is
a Gaussian-distributed random vector with zero-mean and covariance matrix K(x, x),
i.e., f (x) ∼ N (0, K). Each element ij of the covariance matrix encodes the similarity be-
tween input vectors xi and xj upon disposal, calculated by means of a kernel function
k(xi, xj). Various kernel functions associated with specific degrees-of-freedom, also called
hyperparameters, can be employed in a GPR algorithm [27,46]. For vegetation variable
retrievals from EO data, the most commonly used kernel is the asymmetric Square Expo-
nential (SE) one, which defines the covariance function as follows:

k(xi, xj) = σ2
s exp

(
− 1

2

D

∑
b=1

[xi(b)− xj(b)
σb

]2)
, (1)
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f (x∗) = kT
∗ (K + σ2

n IN)
−1y

σ2
f (x∗) = c∗ − kT

∗ (K + σ2
n IN)

−1k∗
(2)

where k∗ = [k(x∗, x1), . . . , k(x∗, xN)]
T is an N × 1 vector, y = [y1, .., yN ]

T and c∗ =
k(x∗, x∗) + σ2

n .
The probability of the observations given the model’s hyperparameters p(y|x, θ)

is given by the marginal likelihood over the function values f [27], whose logarithmic
expression is as follows:

log p(y|x, f ) = −1
2

yT
(

K + σ2
n IN

)−1
y− 1

2
log |K + σ2

n IN | −
n
2

log 2π (3)

The first term in Equation (3) corresponds to a data-fit term, the second term is a
complexity penalty, and the last term is a normalizing constant. The maximization of the
marginal likelihood, i.e., the minimization of Equation (3), provides the optimum value of
θ. This optimization procedure is usually referred to as training the GPR [47,48]. Once θ
has been estimated, the prediction of y for a new input vector x∗ is given, along with its
uncertainty, by Equation (2). Alternatively, the mean predicition can be obtained as a linear
combination of N kernel functions, each one centered on a training point:

f (x∗) =
N

∑
i=1

αik(xi, x∗) = kT
∗ α (4)

where {xi}N
i=1 are the training vectors contained in the model, k is the Kernel function

evaluating the similarity between the new input x and the generic training samples xi, i =
1, . . . , N, and αi ∈ R is the element i of the vector α = (K + σ2

n IN)
−1y. This last formulation

is key to the factorization employed in GEE implementation. Finally, the formulation for
the time series domain is straightforward as it is given by imposing D = 1: x is now scalar
and directly indicates the capture time of each time series sample. Substituting x for t,
the hyperparameters of the GPR model retrieving a generic surface property PS become
θt = {σ2

st, σt
2, σ2

nt}, and the corresponding SE kernel for covariance estimation is given by
the following equation:

kt(ti, tj) = σ2
st exp

(
− 1

2

[ ti − tj

σt

]2)
, (5)

where ti and tj denote two generic acquisition dates of non-cloudy acquisitions.

2.2.2. GEE-Integrated GPR Formulation
For the optimal integration of a trained GPR model n GEE, its standard formulation

must be reviewed. As seen in Equation (4), the computational burden of GPR predictions
grows linearly with the number of training samples, which are represented by α. However,
each element of this vector can further be factorized into components that depend on:
(1) only the training samples, (2) only the prediction input, and (3) a combination of the
previous ones. Accordingly, several operations, which are uselessly repeated in the sample-
oriented formulation, can be performed only once in a new parallel approach, thus reducing
the overall computational burden of the final estimation, as outlined in Pipia et al. [31]. Let
D = diag(σ−2

1 , .., σ−2
B ) be the band-dependent hyperparameters of a GPR model trained

on a B-dimensional input vector, X = [x1, x2, ..., xN ] be the B× N matrix containing its
training samples, and X∗ be the B×M matrix containing all the pixels of the input B-band
image to be processed for a new prediction. The matrix K∗ = [k1

∗, k2
∗, ..kM

∗ ], accounting for
the similarity between the whole input image X∗ and the training information X, can be
calculated at once as follows:

K∗ = σ2
s exp

(
− (DX∗ ◦ X∗)T JN,1 J1,M

2

)
◦ exp

(
− (DX ◦ X)T JB,1 J1,M

2

])
◦ exp

(
XT DX∗

)
(6)
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where ◦ denotes the Hadamard (or element-wise) matrix product, and Jl,m stands for
the generic l ×m unit matrix. The prediction for the whole image is finally obtained by
parallelizing Equation (4) as follows:

f (X∗) = KT
∗ (αJ1,M) = JM,1αTK∗. (7)

The same formulation can also be employed for time series gap-filling with minimum
modifications. With t = [t1, ...tNt ]

T being the Nt-dimension date vector of captures available
over a specific area of interest, the covariance Kt of the trained gap-filling GPR model with
hyperparameters θt = {σ2

st, σt
2, σ2

nt} is given by the following:

Kt = σ2
st exp

(
− Dt

(tJ1,Nt − JNt ,1tT)

2

)
, (8)

where σ2
st is the time series signal variance and Dt = σ−2

t . Finally, the mean value pre-
diction at t∗ over a whole area described by the time series parameter cube PS(t) =
[PS(t1), ..., PS(tNt)]

T is given by:

PS(t∗) = kt∗
T(Kt + σ2

nt INt)
−1PS(t) = kt∗

Tαt. (9)

It is worth mentioning that the main hypothesis (i.e., the number of meaningful
time samples Nt is equal for all processed pixels) describes an ideal case: whereas the
number of acquisitions over the same area is known, the number of non-cloudy samples
is pixel-dependent. An efficient workaround to deal with cloudy samples can be found
in the work of Pipia et al. [31].

2.3. Training Data Generation for Hybrid Model Development

When it comes to time series processing for phenology estimation, we move towards
the quantification of crop traits. The pursued strategy to develop hybrid retrieval models
can be summarized as follows: the leaf optical properties model PROSPECT-4 [49] was
coupled with the canopy reflectance model 4SAIL [50], further referred to as PROSAIL,
for the generation of a training dataset. The PROSAIL parameterization information can
be consulted in the appendix section (Table A1). By ranging the key PROSAIL input
variables according to probability density functions, a random dataset of 1000 simulations
of top-of-canopy (TOC) reflectance data was generated according to the 10 and 20 m
bands of S2 (10 bands in total). Subsequently, 40 spectral samples from non-vegetated
surfaces (e.g., water bodies, bare soil, or man-made) were added to the training dataset.
This step is essential to adapt the models to the processing of full heterogeneous scenes,
which are typically characterized by various vegetated and non-vegetated areas. Recent
studies have suggested that 1000 simulations may be too many for achieving optimal
performances, and moreover, the quality rather than the quantity of a training dataset is
key to optimizing GPR-based hybrid models [51,52]. Accordingly, the number of samples
can be efficiently reduced with active learning (AL) methods. AL provides an optimization
strategy by enabling the learner to collect data according to the defined selection criteria [53].
Therefore, the algorithm itself chooses the most representative training samples using an
‘optimal’ statistical approach. As concluded by a systematic literature survey, the Euclidean
distance-based diversity (EBD) method is the most accurate and efficient AL strategy for
solving regression problems within EO data analysis [31,51,54]. Therefore, we adapted the
EBD method for the generation of light GPR retrieval models.

2.4. Field Data for Trait Model Tuning and Validation

The retrieval models were trained through AL (EBD) against a validation field dataset
collected at the Munich-North-Isar (MNI) test site in Southern Germany (N 48◦16′, E
11◦42′). The MNI site is located within communal farmlands owned by the city of Munich.
During the 2017 and 2018 growing seasons, structural and biochemical crop traits were
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sampled subsequently to field hyperspectral measurements from a winter wheat (Triticum
aestivum) and a maize (Zea maize) field. Extensive descriptions of the campaigns and data
collections can be found in Estévez et al. [42], Berger et al. [55], Danner et al. [56], Wocher
et al. [57]. Hence, only a brief description is given here. In the test fields, nine elementary
sampling units (ESU) of 10 × 10 m were defined and re-visited at two-week intervals. Leaf
area index (LAI) measurements, in (m2/m2), were performed with the LI-COR Biosciences
LAI-2200 device. The measurement strategy involved one above-canopy and seven below-
canopy readings, with one repetition at each ESU per date. Note that the optical instrument
used is based on gap-fraction, hence the effective LAI was obtained [58]. However, for the
sake of simplicity, we will use the term ‘LAI’ throughout the manuscript. In addition,
LAI measured by the LAI-2200 device approximates the green LAI simulated by the
PROSAIL model.

Leaf chlorophyll content (Cab), in (µg/cm2) was sampled with a Konica-Minolta SPAD-
502 hand-held instrument from five leaves per ESU (three points per leaf), while also taking
the vertical distribution of the variable into account. Moreover, two leaves were cut at each
ESU (18 samples per date). The samples were brought to the laboratory and analyzed using
an LI-COR Biosciences LI-3000C scanner for leaf area measurements. Leaf water content
(Cw) in (cm) and leaf dry matter content (Cm) in (g/cm2) were calculated from the mass
difference (per unit leaf size) of sample leaves before and after drying at 105 ◦C to a constant
weight. Lastly, the average value over the nine ESU measurements was calculated for each
field sample and considered as representative of a full pixel. Note that the assumption of
homogeneity within a pixel may be limited for early growth stages, particularly in the case
of maize characterized by pronounced row structures. Nonetheless, the sampling design
was adapted to provide representative measurements of all traits over the ESUs, for instance,
by taking into account within-row values for LAI measurements [59]. The upscaling of
measured leaf biochemicals to the canopy level was performed by multiplication with
LAI, resulting in canopy chlorophyll content, i.e., LAI × Cab (laiCab), canopy water content,
i.e., LAI × Cw (laiCw), and canopy dry matter content, i.e., LAI × Cm (laiCm), all given in
(g/m2). Note that field measurements of fractional vegetation coverage (FVC) were not
available from the campaign.

Subsequently, spectral S2 acquisitions corresponding to the in situ traits were acquired.
For that purpose, all available S2 L2A orthorectified BOA reflectance images with a max-
imum cloud coverage of 1% within the two growing seasons were extracted using the
GEE catalog (see Estévez et al. [42]). Note that this low percentage of cloud coverage was
only applied to acquire the S2 spectral signatures related to the measured traits at MNI.
The developed method can then be applied to regions affected by larger cloud coverage
as outlined in Section 2.5. The MNI in situ dataset was used for the optimization process,
applying the EBD method to each trait-specific training dataset, i.e., crop trait with cor-
responding S2 reflectance. Since in situ measurements were missing for FVC, 10% of the
simulated data was kept aside for theoretical validation.

To start the AL procedure, an initial dataset of 5% was randomly selected out of the full
data pool [52,60]. Then, the EBD methods iteratively selected new samples and evaluated
whether they contributed to improving the retrieval model. If the accuracy decreased,
the sample was ignored and the algorithm proceeded to the next sample. The processing
was repeated until all simulated samples were evaluated against the validation dataset.
Finally, trait-specific AL-optimized training datasets were obtained for the building of EBD-
GPR models. Thus, each training dataset was composed of a different sample collection and
size based on the point of optimal performance. Additionally, the usage of full datasets for
model building was tested to evaluate the suitability of the optimized EBD-GPR models for
implementation on GEE. For a quantitative comparison and validation, common goodness-
of-fit statistics, i.e., the root mean square error (RMSE) in variable-specific units, normalized
RMSE (NRMSE in %, which is RMSE divided by a range of observations), and the coefficient
of determination (R2), were provided.
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The development of the hybrid retrieval models was performed with the scientific Au-
tomated Radiative Transfer Models Operator (ARTMO, Verrelst et al. [61]) software frame-
work. Within the ARTMO’s MLRA toolbox, an AL module was recently integrated [52].
The described processing steps were therefore based on desktop computers.

2.5. Hyperparameter Generation for GPR-Based Gap-Filling

In respect to time series gap-filling, the most important limitations of GPR methods
are their (1) memory and (2) high computation time requirements [45] for hyperspectral
parameter optimization, growing quadratically and cubically with the number of training
points, respectively [62,63]. This can become a serious issue in view of processing a large
amount of data, such as in S2 time series tiles. Parallelization strategies for advanced
computation platforms such as GEE need to be developed to speed up the GPR processing
while maintaining superior performance in terms of accuracy, with these facilities not
being devised for per-pixel iterative optimization tasks. To mitigate this computational
burden and address repetitive procedures, we pursued the approach by Belda et al. [64].
The study demonstrated that reliable gap-filling could be achieved by making use of pre-
calculated hyperparameters (length-scale l, signal variance σ2

f , and noise variance σ2
n),

which tremendously speed up the training stage of the GPR algorithm (90 times faster than
the standard GPR estimations).

First, different crop types were chosen, taking into consideration the available land
cover map (i.e., wheat, corn, barley, sunflower, rape, pea, alfalfa, beet, and potato). Secondly,
we randomly selected 100 parcels containing more than 50 pixels. Next, for each variable
and pixel, hyperparameters were optimally determined by GPR using the conventional
per-pixel optimization across the time series. We also estimated a global average of the
hyperparameters over all pixels within the randomly selected parcels (i.e., without any
crop segregation). To facilitate this process, the three hyperparameters were calculated
within the so-called Decomposition and Analysis of Time Series Software (DATimeS) [38],
a stand-alone image processing toolbox developed in house and written in MATLAB.
Afterwards, the hyperparameters were ingested on GEE for crop trait estimation using
Equation (7). The pre-calculated hyperparameters per variable are listed in Table A2.
Finally, the GPR models were run over the time series of the crop traits for gap-filling
purposes, as formulated in Equation (9). It must be noted that the pursued strategy was
not limited to gap-filling, but was also used to apply the fitting function over each pixel
in the temporal dimension. Hence, the entire catalogue of generated trait maps were
reconstructed according to the GPR fitting model, leading to a spatiotemporal continuous
data stream. In addition, the temporal prediction could be produced for any day of the year.
Here, it was decided that the crop products would be reconstructed for the same dates as
the original acquisitions. Eventually, the spatiotemporal processing was performed at the
scale of an S2 tile, making this step the most computationally demanding.

2.6. Phenology Metric Calculation with Double Logistics

The following LSP metrics were calculated from the time series: (1) start of season
(SOS); (2) end of season (EOS); (3) peak of season (POS), i.e., day when the largest value per
season occurs (between SOS and EOS) as well as (4) length of season (LOS), i.e., difference
(in days) between SOS and EOS.

The computation of these LSP metrics is typically achieved through a double logis-
tic curve [32,33,65]. This algorithm, also known as Sigmoid, uses a double-sigmoidal
model [66] by combining two regular sigmoidal functions:

y(t) = a +
b− a

[1 + exp(c + d · t)]× [1 + exp(e + f · t)] (10)

Here, the double-sigmoidal model is uniquely determined by six parameters, two
midpoints (c, d) and two slope parameters (d, e), a maximum value (b), and a base level (a).
The difference between parameters b and a gives the seasonal amplitude. To estimate the
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six parameters on the GEE platform, Li et al. [67] developed a stepwise statistical approach.
According to the authors, the performance of this GEE-based double logistic model is robust
for different land cover types. A more detailed explanation of this procedure is reported
in [68]. Of interest is the fact that this stepwise statistical approach can be implemented at
the pixel level on the GEE platform in a parallel manner, which significantly improved the
efficiency of large-scale mapping. The phenology metrics of SOS and EOS were derived
using a half-maximum criterion method [69]. As such, SOS and EOS were calculated as the
dates when the first derivative of the temporal profile reached the maximum increasing and
decreasing rates during the green-up and senescence phases, respectively. Although other
definitions of SOS and EOS exist, such as inflection points (i.e., at the base of sigmoid
curve) [14], the criterion used in our study provides high temporal stability and can be
applied to different canopy structures [70].

2.7. GEE Implementation and Phenology Metrics Validation

Lastly, in order to evaluate the utility of the LSP metrics derived from the crop traits,
they were compared against those inferred from the NDVI. Conventionally, the NDVI is
used for the calculation of phenological metrics (e.g., [13,15]) and can thus be considered
as a reference method. With this inter-comparison exercise, we intend to evaluate the
plausibility (suitability) of the different metrics as derived from the two approaches in
GEE. Thereby, differences and agreements will be highlighted as a function of crop type.
A case study site was selected to demonstrate the developed processing chain of LSP
metric derivation. For this, an agricultural region in Castile and Leon in the north-west
of Spain was chosen due to the availability of a detailed land cover map. The regional
agricultural agency ITACyL (Instituto Tecnológico Agrario de Castilla y León) generates a
highly detailed land cover map by using a decision tree-based classifier on satellite imagery
time series [71–73]. ITACyL also provided sowing and harvest dates for multiple parcels
for the years 2018 and 2019 (over 130 recordings). Given the location of these recordings,
the S2 tile 30TUM was processed over the year 2019. Cloud masking was performed using
both the SCL and QA60 bands [74]. A zoom-in of the monitored region is provided in
Figure 2. Cropland management recordings were available for parcels of wheat, rye, rape,
and barley. In summary, the analysis was set up as follows: for each crop trait, the time
series of the selected S2 tile was first estimated. Secondly, the gap-filling step was applied,
leading to a continuous data stream. Finally, the LSP metrics were calculated. For the
selected croplands, mean values and associated standard deviations were derived. These
results were then compared to the ground recordings of the sowing and harvest dates,
and lastly against the NDVI-based LSP metrics.
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Figure 2. RGB map of the Iberian peninsula (top), the S2 tile 30TUM (Military Grid Reference System)
(left), and a zoom-in of the crops in the Region Of Interest (ROI) (right). Pixels inside the colored
region were used for the per-parcel LSP calculations.

3. Results
3.1. Active Learning Performance for Crop Traits Estimation

Regarding hybrid methods, training datasets typically contain thousands of sam-
ples [42,75,76]. For GPR models, however, this can lead to overly large matrices as they
scale cubically with the size of the dataset. To avoid exceeding memory capacity in GEE,
light retrieval models should be strived for. As a workaround, the EBD diversity method
was employed, which helped to identify the most representative training sample for each
trait and thus significantly reduced the size of the datasets. Figure 3 demonstrates the
results of the EBD method for each crop trait as run against the MNI validation dataset, plus
the added 40 non-vegetated spectra to ensure that these spectra were kept in the models.
The smoother convergence of the RMSE (Figure 3, left) compared to R2 (Figure 3, right)
can be explained by the inherent usage of RMSE as a criterion within the AL procedure
for keeping or discarding a sample. Nevertheless, the pattern of both metrics is relatively
similar for all the variables, triggering a significant improvement in estimation accuracy.
The AL procedure started at 48 samples (except for FVC that started at 43 samples), adding
a new sample at each iteration, whereby the sample was kept only when it improved
the model. This technique led to a rapid decrease of the RMSE and an increase of R2,
respectively, reaching a stable plateau for the majority of the variables. All in all, only
relatively few samples were needed for optimal model performance, ranging from 171 (for
Cm) to 248 (e.g., for Cab), corresponding to 17–25% of the full data pool.

Additionally, Figure 4 shows the scatter plots of estimated vs. measured data when
selecting the EBD-reduced datasets and validating solely against the MNI validation dataset.
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Overall, good–excellent retrievals were achieved for all traits. An estimation of canopy-
level variables outperformed those of the leaf-level variables, with, e.g., NRMSE = 18.7%
and 8.9% of Cab and laiCab, respectively, or NRMSE = 18.2% and 12.1% of Cm and laiCm,
respectively.
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Figure 3. NRMSE (left) and R2 (right) for several trait estimations using the EBD-GPR retrieval
model. The optimal number of training samples for the best performance point (marked with an
asterisk) is provided in parentheses.

Cab [µg/cm2] Cw [cm] Cm [g/cm2] LAI [m2/m2]

(a) (b) (c) (d)

laiCab [g/m2] laiCw [g/m2] laiCm [g/m2]

(e) (f) (g)

Figure 4. Validation of EBD-GPR model estimates of different crop traits using ground observations
from the MNI site (winter wheat and maize) during the 2017 and 2018 growing seasons: Cab (a), Cw

(b), Cm (c), LAI (d), laiCab (e), laiCw (f) and laiCm (g). Measured vs. estimated values are given along
the 1:1 line with the associated confidence intervals (1 SD).

Subsequently, with the aim of assessing whether the reduced models were sufficiently
generalizable, they were compared with those obtained from training the full data pools.
Table 1 indicates the statistics of observed vs. predicted data of both model types and for
each trait. Overall, the EBD-reduced models performed alike or achieved an improve-
ment in estimating the samples of the field measurements. Additionally, in order to
assess mapping robustness, both model types were applied and compared for an area
of 253 × 315 pixels covering the German MNI location on 6 July 2017. Figure 5 provides
the scatter plots between estimated variables using the fully trained and EBD-optimized
retrieval models. While the canopy-level variables show consistent correlations (R2 > 0.88),
the leaf-level traits reveal higher discrepancies. Given the substantial improvements in
estimation accuracy (see Table 1), this indicates the efficiency of the AL optimization for this
type of traits. Nonetheless, as leaf variables were more poorly estimated than canopy-level
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traits, they will be excluded from the following analysis. The obtained results for canopy-
level variables can be considered as sufficiently precise for a transfer of the EBD-GPR
models to GEE.

Table 1. Goodness-of-fit results of estimated vs. measured crop traits at the MNI site. Results are
given for the GPR model trained with the original datasets (Full) compared to the EBD-optimized
datasets (EBD). Units of RMSE for Cab in (µg/cm2), for Cw in (cm), for Cm in (g/cm2), for LAI in
(m2/m2), for laiCab, laiCw, and laiCm in (g/m2). NRMSE in %.

Variable Cab Cw Cm LAI laiCab laiCw laiCm

Dataset type Full EBD Full EBD Full EBD Full EBD Full EBD Full EBD Full EBD

RMSE 4.2775 4.1869 0.0067 0.0021 0.0013 0.0009 0.4569 0.3695 0.3034 0.1907 142.0915 103.68 53.5665 42.1821
NRMSE 19.1472 18.7417 53.9326 16.8862 26.1028 18.2138 12.3714 10.0056 14.1497 8.8947 16.6034 12.1158 18.7811 14.7895
R2 0.8079 0.8143 0.2219 0.5970 0.1631 0.6590 0.8896 0.9139 0.8629 0.9253 0.8219 0.8490 0.5910 0.7372

Cab [µg/cm2] Cw [cm] Cm [g/cm2] LAI [m2/m2]
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Figure 5. Density scatterplots for comparison of crop trait maps estimated by a full GPR model (not
shown) and the EBD-GPR model: Cab (a), Cw (b), Cm (c), LAI (d), laiCab (e), laiCw (f), laiCm (g), and
FVC (h). Density in %.

3.2. Crop Mapping and Gap-Filling on GEE

Next, the GPR models were integrated on GEE. To demonstrate the functionality,
maps were generated for an S2 tile (30TUM) on 11 April 2020 over the case study site in
the region of Castile and Leon, Spain (Figure 6, upper). The conversion of the tile into a
crop product took about 15 s. Additionally, the NDVI was calculated and mapped on the
same tile based on the rationale that vegetation indices–derived LSP is the conventional
approach (e.g., [13]). NDVI metrics were therefore considered as reference products in the
following analysis.

As the size of an S2 tile is 5491 × 5491 pixels, most of the details are invisible, and the
tile is heavily affected by gaps due to cloud cover. Therefore, a zoom-in of the study site
was added underneath. For the areas not covered by clouds, the zoom-in reveals that the
crop traits were predicted in expected ranges, although with a lack of spatial continuity.

In fact, cloud cover was present on virtually all tiles, causing discontinuous trait
maps. This implies that gap-filling became an indispensable step to proceed towards the
calculation of LSP metrics. To do so, the time series of S2 tiles were first processed into
multiple crop traits with the EBD-GPR models. In total, 73 tiles were processed for the time
window between 1 January 2019 and 31 December 2019.

Subsequently, per-pixel temporal processing was applied over the time series of the
crop products by means of GPR fitting using pre-calculated hyperparameters per crop trait.
Each resulting set of images had a size of 10GB and the processing took approximately 2 h
for each crop trait.
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Hence, with GPR, not only were the gaps filled, but the full maps for the entire tile
were reconstructed using the GPR fitting method. For demonstration, the lower part of
Figure 6 displays the spatially continuous reconstructed NDVI and trait maps. The zoom-
ins allow us to inspect the reconstruction in detail: gap-filling achieved a meaningful spatial
pattern from the agricultural area. Altogether, thanks to the GPR fitting in the temporal
domain, spatiotemporal continuous data streams from the tile were produced, enabling
LSP metric calculation.
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Figure 6. Predicted mean values of NDVI and crop traits for a cloud-gapped tile 30TUM on 11 April
2020 (Castile and Leon, Spain) and a zoom-in of the study site. Underneath, the same maps are shown
after GPR gap-filling. See Figure 2 for the geo-information.

3.3. Calculation of LSP Metrics

The LSP metrics are calculated within a 1-year time window, with SOS typically
occurring in spring and EOS in summer. It took merely 11–12 min per crop trait in
GEE. Figure 7 shows the SOS, POS, EOS, and LOS from the tile 30TUM for the year
2019, generated from NDVI and the different crop traits. Although the LSP metrics can be
calculated for any pixel, they are only meaningful over vegetated surfaces where phenology
events occur. Therefore, we only demonstrate the maps of the croplands. As in Figures 6
and 7, the full tiles over the study site are shown as well as the zoom-ins underneath. The
zoom-ins better enable inspecting similarities and differences. Overall, similar patterns
appear for the different crop traits, suggesting that the same phenology was captured both
by the crop traits and the NDVI. However, some local anomalies can also be observed,
particularly for POS and EOS, with pixels returning much later dates. A closer inspection
of their temporal profiles (Figure A1) revealed that for these pixels, two growth cycles
emerged within one year. Since the LAI remained rather low, this could have been the effect
of weed growth rather than the planting of another crop. Nonetheless, the LSP algorithm
failed in identifying the first (main) growth cycle, but instead considered both growing
cycles as one, resulting in strong shifts of the derived metrics.
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Figure 7. LSP values (SOS, POS, EOS and LOS) of NDVI and crop traits for 30TUM on year
2019 (Castile and Leon, Spain) and underneath zoom-in of the study site. See Figure 2 for the
geo-information.
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Figure 7. LSP values (SOS, POS, EOS, and LOS) of NDVI and crop traits for 30TUM in the year 2019
(Castile and Leon, Spain); underneath, a zoom-in of the study site. See Figure 2 for the geo-information.

3.4. Cropland-Based Phenology Trends

The maps in Figures 6 and 7 reveal that LSP metrics are influenced by the crop trait
used for their calculations, suggesting the need for a closer inspection of the crop-specific
development trajectories. Figure 8 shows the temporal profiles derived from NDVI and
crop traits, as averaged for parcels of four crop types. The red dots indicate the original
estimates, while the green dots give the GPR-reconstructed retrievals. Based on the red
dots, it can be observed that retrievals lack temporal smoothness and can include outliers.
Overall, all crop traits show a consistent seasonality pattern of one pronounced growth cycle
with an increase, a peak, and then a decay. For all the profiles, the GPR gap-filling follows



Remote Sens. 2022, 14, 146 15 of 26

the S2 observations closely, confirming that GPR is an adequate fitting function. Moreover,
apart from the parcel-averaged mean, the standard deviation (SD) is also provided. The SD
suggests that temporal variability is more a function of crop type than of the trait. Especially
for rape and wheat, a large variability can be observed. Conversely, the low SD of the
rye field indicates the most homogeneous development of all crops over the season. The
pronounced growth cycles match the double logistic curves closely, leading to the standard
calculation of SOS, POS, and EOS, indicated by bars in Figure 8. It can be observed that
the NDVI-derived curves are slightly broader than those of the traits, leading to a longer
LOS as calculated by NDVI. Effectively, the calculated SOS and EOS fall in the middle
of the green-up and decay phases, respectively, which is in accordance with the way the
algorithm is designed. The SOS, for instance, is situated between leaf development and
stem elongation, according to the corresponding phenological stages of the crops [77].
Sowing took place from about three (for NDVI) to a maximum of 6 months (for traits)
before the calculated SOS, depending on crop type, Table 2 summarizes this. This large
time gap between sowing and SOS can be explained by winter dormancy, when crop
development remains in the vegetative phase. As soon as the crop resumes growth in
early spring (main development phase of tillering), the plants start to green-up. Ideally,
this point in time should be identified by SOS dates. EOS was correctly associated with
late stages of the crop cycle such as ripening. Table 3 summarizes the EOS dates and the
difference in days between the timing of the EOS and the harvest dates. On average, there
was a time gap of 24 days between the harvest dates and the EOS for NDVI, a gap of
35 days for LAI, and of 30 days for laiCm, suggesting a relatively close correspondence.
The difference of about one month comes from the principle of EOS calculation, using the
right inflection point from the double logistic function. At this point in time, the crops will
only have started senescence (i.e., an increase of non-photosynthetic biomass), but will not
have reached full maturity yet. In addition, the harvest dates depend on several factors,
such as local weather conditions or management decisions. Moreover, we can observe a
temporal consistency among the crop types, with the closest correspondence of EOS and
harvest dates for rape and the largest discrepancy for wheat.

In order to examine the robustness of the approach, the phenology metrics (i.e., SOS,
POS, EOS, and LOS) derived from NDVI were plotted against those from the five crop
traits for the cropland parcels of wheat, rye, rape, and barley (Figure 9).

Regarding SOS (Figure 9, first row), the traits give a systematically later DOY than
NDVI for all crop types. On average, the difference is 33 days. The closest match is provided
by the structural variable FVC showing the highest consistency with NDVI-derived metrics
(NRMSE = 21%). The largest discrepancy can be found between NDVI and laiCm (NRMSE
= 41%). In particular, this crop trait provides a strong mismatch for a cluster of wheat fields.
The POS results suggest the closest correspondence of an LSP metric derived from NDVI
and the traits (see Figure 9, second row). Though NDVI provides slightly earlier DOY for
POS, relatively high correlations are presented for all traits (with max. R2 = 0.8 between
FVC/laiCw and NDVI). Furthermore, a relatively high consistency between NDVI-derived
and EOS DOY values calculated from the traits can be observed (Figure 9, third row).
On average, the difference is only 12.77 days. The dates derived by FVC, LAI, and laiCab
are most similar to the EOS of NDVI. Due to a high discrepancy with some wheat fields,
the doy of EOS derived from laiCm deviates most strongly from NDVI-based calculations
(NRMSE = 15%). Regarding LOS (Figure 9, lower row), relatively strong deviations occur
due to the mismatch provided by SOS calculations, with the highest discrepancy for laiCab
(NRMSE = 55%) and laiCm (NRMSE = 48%).

Overall, these trends suggest that laiCm may be least suitable for deriving phenology
metrics. In contrast, laiCab seems to provide the most realistic and smooth seasonal courses,
with rather low variability. The closest match with the NDVI-based metrics is given by LAI
and FVC (see discussion section).
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Figure 8. Time series profiles of the different crops: red dots indicate the original estimates, the green
dots give the GPR-reconstructed retrievals. See Figure 2 for the geo-information. Derived SOS, EOS,
and POS are indicated along with sowing and havest dates.

Table 2. Mean values of Start of Season (SOS) in day of year and its mean difference from the sowing
date (Diff) in days, for each crop trait and crop type. The smallest differences are written in bold.

SOSNDV I DiffNDV I SOSLAI DiffLAI SOSFVC DiffFVC SOSlaiCab DifflaiCab SOSlaiCw DifflaiCw SOSlaiCm DifflaiCm

Wheat 44 110 75 141 67 133 88 154 78 144 87 153
Rye 78 118 96 136 87 127 104 144 103 143 102 142

Rape 82 181 105 204 101 200 103 202 109 208 104 203
Barley 48 98 73 123 67 117 81 131 81 131 78 128

Table 3. Mean values for End of Season (EOS) in day of year and its mean difference from the harvest
date (Diff) in days, for each crop trait and crop type. The smallest differences are written in bold.

EOSNDV I DiffNDV I EOSLAI DiffLAI EOSFVC DiffFVC EOSlaiCab DifflaiCab EOSlaiCw DifflaiCw EOSlaiCm DifflaiCm

Wheat 156 30 142 44 143 43 145 41 148 38 151 35
Rye 180 27 170 37 171 36 168 39 170 37 172 35

Rape 175 13 165 23 170 18 165 23 168 20 168 20
Barley 148 29 140 37 143 34 142 35 149 28 146 31
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Figure 9. Comparison of Start of Season (SOS), Peak of Season (POS), End of Season (EOS) in day of
the year (doy) as well as Length of Season (LOS), derived from NDVI and multiple crop traits. Case
study site in the region of Castile and Leon, Spain in 2019. See Figure 2 for the geo-information.

4. Discussion

With the ambition of automating the mapping of trait-based LSP metrics over crop-
lands, an optimized machine learning strategy was developed for processing on GEE.
The end-to-end framework consists of the following key steps: (1) optimizing the hybrid
GPR retrieval models of crop traits to facilitate their implementation on GEE; (2) time series
processing of the traits and gap-filling through GPR fitting, and finally, (3) calculation of
common phenological metrics. The three main steps are further discussed below, followed
by encountered limitations, challenges, and future opportunities of the workflow. As the
major part of the workflow is streamlined in GEE, we present a paradigm shift that moves
away from traditional image analysis using desktop software up to cloud-based processing.

4.1. Hybrid Retrieval of Crop Traits from L2A S2 Data

Driven by the need to develop light GPR retrieval models to enable the quantification
of crop traits on GEE, a key achievement was the substantial improvement through the
AL strategy. Using the EBD method for the optimal reduction of the training datasets
led to excellent performances with relatively few simulations for training GPR models,
confirming earlier experiences with AL [31,51,52,60]. The increase in retrieval accuracy can
be explained by the positive effects of this intelligent sampling method, which decreases
redundancy but keeps the variability of reflectance datasets. It allows us to cover the
defined range of the variable, while avoiding the overfitting problem at the same time.
Although the training datasets were heavily reduced as opposed to the full dataset (75% or
more), mapping performances were superior for all variables when using EBD-optimized
models. These results suggest that GPR models benefit from training data quality rather
than quantity, as also found by Berger et al. [51]. Note that the AL sampling selection
is run against in situ field data. Thus, it is essential that this reference dataset covers a
sufficiently broad range of crop growth stages. Nonetheless, the collection of high quality
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field data remains a critical part of the retrieval algorithm development and should be
pursued in future studies. Furthermore, the retrieval models need to be adapted to diverse
spectral surfaces in order to secure the generic processing of all pixels. This was realized by
extracting non-vegetated spectra (i.e., bare soil, water, man-made surfaces, etc.) from the S2
scenes and adding them to the training dataset. Moreover, our results suggest that the GPR
models retrieve traits at the canopy level more accurately than at the leaf level. This can
be explained by the usage of LAI for upscaling, thus accounting for the influence of the
canopy structure on the recorded spectral signal [78].

4.2. Spatiotemporal Crop Trait Processing on GEE

Once the GPR crop trait models were implemented on GEE, in principle, these prod-
ucts can easily be retrieved anywhere in the world and at any time. The advantages of
GEE as an image processing platform are unprecedented; GEE has opened a new big data
paradigm for the storage and analysis of open-access EO data at a scale that is unfeasible
with desktop processing machines [29]. To provide light retrieval models for GEE, the fol-
lowing adaptations were introduced in our study: (1) We expanded the formulation of
standard GPR, (2) aggregated all terms independent of the pixels’ spectral information
that can be pre-calculated to avoid the repeating cumbersome operation for each pixel,
(3) performed data manipulation that can be carried out using an image data type format
before moving to array data type, (4) implemented GPR regression into a matrix algebra
formulation, and (5) converted the results back to image format, adding coordinate infor-
mation that is mandatory for mapping [31]. With this framework in place and a pre-trained
GPR model at our disposal, it can be integrated into the developed workflow after sub-
stituting the new hyperparameter values and the corresponding training samples as well
as normalization matrices. Although the latter still requires manual implementation, it is
foreseen to automate and optimize all steps, which will eventually allow for an intuitive
import of GPR models on GEE.

A subsequent key step of the processing is the resolved spatiotemporal aspect. The pro-
posed gap-filling strategy yielded promising and consistent results. The examples of
cloud-free crop trait collections demonstrate the great potentials of the GPR regression
technique as a gap-filler. In case the persistence of cloud cover exceeds two months,
the gap-filling method becomes less reliable as rapid vegetation dynamics might be lost
or smoothed. Alternative approaches based on multisensor time series fusion should be
taken into consideration. An example is the multi-output Gaussian process regression pro-
posed in Pipia et al. [37], though its implementation in GEE is still missing and represents
a challenge for future development. Two remarks are worth mentioning. First, the gaps
were not only filled here, but in fact all the tiles were reconstructed according to the GPR
fitting, avoiding outliers in the temporal profiles. It also implies that reconstruction can
be achieved for any time interval, e.g., the production of the crop traits on a daily basis.
A second remark is that GPR provides associated uncertainty intervals (not shown here),
which enables us to track the confidence of the reconstruction.

On the downside, being a kernel-based machine learning method, GPR processing
comes with computational costs in its conventional usage. While processing time for a
single pixel time series is negligible (i.e., on the order of 0.1 s), computational demand
for large images significantly increases. It makes this method impractical when aiming to
process data streams of complete S2 tiles, which contain over 30 M pixels at 20 m resolution.
Therefore, computationally efficient alternatives must be sought in order to deal with such
big data. We followed the workaround proposed by Belda et al. [64], whereby the GPR θ
hyperparameters were pre-calculated per crop trait. With an S2 demonstration case, Belda
et al. [64] showed that LAI time series performances stayed alike in terms of RMSE when
compared against the default per-pixel optimized setting, i.e., without pre-calculation. The
approach first requires optimizing the GPR hyperparameters θ over a limited subset of
crop pixels, either homogeneous or heterogeneous, and then fixing their value for the GPR
fitting function. Although this leads to a slight loss in accuracy, it gains tremendously
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in run-time and therefore allows us to process entire time series of S2 tiles onto cloud-
computing platforms. As such, it allowed us to process the entire catalogue of the crop
traits for a single tile within reasonable time, on the order of 2 h for each crop trait per year.
As a result, this led to reconstructed spatiotemporal continuous maps in GEE. At the same
time, as the GPR model follows the general temporal trend, there is no need to apply a
smoothing function. Hence, consistent estimates are generated without outliers. While such
consistency favors the calculation of LSP metrics, it also bears the consequence that sudden
events such as anomalous crop development through abiotic [79] or biotic stresses [80],
or short phenological events such as flowering, are smoothed out. It thus suggests that the
GPR-generated data stream may become less suitable for the detection of sudden changes.

4.3. LSP Metrics Estimation

Thanks to the production of spatiotemporal continuous data streams, LSP metrics
can be processed in the final step. Following the approach of Li et al. [67], calculation was
straightforward and fast, leading to the mapping of SOS, EOS, POS, and LOS. Typically,
these LSP metrics are derived from indices such as the NDVI (see [11,81] for reviews).

However, the usage of two-band indices faces limitations such as a reduced exploita-
tion of the spectral information content. In addition, indices may be influenced by geometry
effects (i.e., the sun zenith angle) as demonstrated by Ma et al. [82] for NDVI temporal
profiles, or by soil brightness [83]. More fundamentally, the NDVI is only an indicator of
greenness, lacking a quantitative meaning. To overcome these index-related drawbacks,
we introduced a few novelties in our study. First, we retrieved a suite of quantifiable crop
traits, which are supposedly more robust than vegetation indices. These traits provided a
tighter shape for the seasonal courses, which may be due to the weaker influence of external
factors compared to NDVI. The GPR retrieval models exploit ten S2 bands based on generic
training datasets as produced by a coupled leaf-canopy RTM that is configured by multiple
biochemical leaf, structural canopy, and also geometry variables. Hence, the RTM takes
the variability of illumination conditions into account. A second novelty is that we pro-
cessed an S2 tile into traits with a machine learning fitting algorithm (GPR) on GEE. Earlier
studies have demonstrated that GPR outperformed other fitting functions in the recon-
struction of time series data streams [37,38], providing realistic gap-filled, spatiotemporal
continuous data.

Regarding the usage of traits as opposed to NDVI, the following general findings can
be derived: (1) laiCm often detected a second smaller peak before or after the crop cycle.
While that may indicate non-photosynthetic (dry) vegetated material, this trait appeared to
be unstable for reliable LSP metric calculation, usually providing a single pronounced peak
(POS). Hence, this suggests that this trait is less suitable for LSP calculation. (2) Metrics
derived from FVC and LAI most resembled those from the NDVI approach and identified
a pronounced growing cycle. Since PROSAIL-based FVC and LAI variables are sensitive
to vegetation greenness, they may behave similarly to NDVI. (3) Although these traits
show similar patterns, laiCab was the most realistic for LSP metric derivation. It followed a
smooth course over the season without deriving a second or a third peak (such as laiCm
or NDVI), and provided the lowest variability. Moreover, the combination of a leaf-level
biochemical variable (Cab) with a biophysical structural variable (LAI) may be the optimal
synergy to realistically derive the actual crop development.

An interesting finding is that some traits identified a second yet smaller cycle. It
remains to be verified whether this is due to crop rotation or rather due to the occurrence
of weeds. Nevertheless, the used approach to calculate the LSP metrics, i.e., the double
logistic function, was unable to distinguish between the two cycles. Follow-up research
is foreseen to explore whether the function can be operated more flexibly, e.g., to force
falling SOS and EOS more to the tails of the curves. Some adaptations were proposed to
tune the SOS and EOS more closely towards the crop calendar [84,85], e.g., estimating the
phenological transition dates by using local extremes for the rate of change in the curvature
of the fitted double logistic model (Zhang et al. [14]). In time series software packages
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that calculate LSP metrics, thresholds can be set. For instance, both in TIMESAT [86] and
DATimeS, the detection of SOS and EOS can be tuned based on conventional threshold
methods, analogous to [86–91]. Therefore, threshold values can be set by searching the
seasonal trajectories for each defined season and tuning the definition of the amplitude.
This allows for a calibration stage, e.g., by making use of PhenoCam images, carbon flux
measurements, or manual phenology observations [92,93].

Furthermore, it may also be worth exploring more irregular temporal curves, e.g., with
less pronounced or multiple peaks. This may especially be necessary when multiple
crops are cultivated within one year. For these cases, alternative fitting functions should
be explored as well in GEE, including for instance the hyperbolic tangent function. This
function is similar to the double logistic, but with the addition of a seventh parameter [77,94].
Though calibration will enable a closer match of the EOS with the harvest date, it also
introduces additional challenges for generic processing on GEE. This research avenue will
be further explored in follow-up studies.

4.4. Limitations, Challenges, and Future Opportunities

While this study forged ahead towards generic LSP mapping onto a cloud-computing
environment, the pursued approach poses some limitations and challenges. They are briefly
listed below, followed by proposed solutions.

(1) The GPR models need to be kept sufficiently small to avoid memory problems
in GEE. At the same time, the developed trait retrieval models may be less robust than
expected. Validation was only performed at one site and one point in time, i.e., during
summer. Hence, the robustness of the models throughout the full season remains to
be evaluated.

(2) The occurrence of cloudy periods (particularly during the winter months) may
lead to larger data gaps, limiting highly accurate retrievals throughout the entire year.
To circumvent this, GPR fitting provided spatiotemporally consistent and smoothed data
streams. The sole drawback of this approach is that pre-computed hyperparameters are
required to enable fast processing. This not only implies that those hyperparameters first
need to be generated based on representative data, but it is also to be questioned whether
the introduced end-to-end approach is generically valid. Further research is required to
evaluate its robustness. For instance, other gap-filling methods may be as flexible as GPR
without relying on hyperparameter tunings. Promising experiences were obtained with the
Whittaker fitting method [38]. In addition, note that part of the processing was performed
with ARTMO and DATimeS software tools (desktop processing requiring a Matlab license),
and only the final models were subsequently incorporated in GEE. Further research could
explore the use of open-source alternatives to integrate the full processing chain in GEE.

(3) When aiming to use EOS as an indicator for cropland harvest detection, the applied
double logistic method may need some adaptations: while the algorithm was optimized
for running on GEE [67], EOS should be tuned to rather fall at the tail of the senescence
stage. Additional efforts are required to enhance the sensitivity of the algorithm towards
identifying multiple cycles within a year. Despite all limitations, we demonstrated that
crop traits can be efficiently quantified over multiple years and anywhere in the world
using the GEE computing platform. With this, GEE opens doors for higher-level processing,
such as gap-filling based on the global time series of Sentinel-2 satellite data, offering
deca-metric spatial resolutions and high temporal repetition times. Land surface phenology
metrics estimated from these dense time series can be incorporated into precision farming
management activities [95], enabling crop monitoring and thus supporting agricultural
decision systems to mitigate the risk of food shortage. By providing such information,
our proposed workflow could assist in the progress towards the Agriculture 5.0 era [96],
supporting the evolution of precision farming with cutting-edge technologies. For instance,
timely information about crop development is of high interest for arid and semi-arid
environments, as can be found in Spain in some areas where high rainfall variability occurs,
leading to inter-annual fluctuations in primary production [79]. A comparison of actual
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cropland profiles with those of other seasons or with the long-term average may indicate
trends or anomalies, which could trigger timely measures and on-field interventions to
secure agricultural productivity.

5. Conclusions

This study presents an integral workflow for the retrieval of crop traits and their
associated land surface phenology metrics in the GEE cloud platform. We propose the
following S2 BOA end-to-end processing chain: (1) the building of hybrid GPR retrieval
models of crop traits optimized with AL, (2) migration of these models onto GEE, (3)
generation of spatiotemporally continuous maps and time series with the use of gap-filling
through GPR fitting, and (4) calculation of LSP metrics. Predicted mean and cloud-free
maps were generated for an agricultural test site in the region of Castile and León, Spain.
Subsequently, LSP metrics were obtained over this area. Comparison to crop calendar
data and NDVI reference products proved the successful implementation of the pursued
workflow. While the metrics derived from FVC and LAI captured a pronounced growing
cycle, behaving similarly to NDVI, the most sensitive LSP metric derivation was laiCab; the
combination of a leaf-level biochemical variable (Cab) with a biophysical structural variable
(LAI) may be the optimal strategy for realistically deriving the actual crop development.
However, this has to be further investigated using data of exact phenological stages. As
a future perspective, this work opens the possibility to incorporate uncertainty estimates
on GEE, being one of the most interesting characteristics of GPR. Follow-up research is
required to evaluate the robustness of hyperparameter pre-computation and overall global
validity using multiple reference datasets. Overall, our work provides a roadmap towards
the automatic derivation of quantitative and spatiotemporally continuous crop phenology
information at a global scale. Over the next decades, we expect an abundance of space-
based open-access satellite observations, which will further increase GEE capabilities and
thus support the monitoring and management practices of cultivated areas.
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Appendix A.

Table A1. Parameterization of leaf (PROSPECT-4) and canopy (4SAIL) parameters, with the notations,
units, ranges, and distributions of inputs used to establish BOA synthetic reflectance databases.
x̄: mean, SD: standard deviation. LHS: Latin hypercube sampling.

Model Variables Units Range Distribution

Lea f variables: PROSPECT-4
N Leaf structure parameter unitless 1.3–2.5 Uniform
Cab Leaf chlorophyll content (µg/cm2) 5–75 Gaussian (x̄: 35, SD: 30)
Cm Leaf dry matter content (g/cm2) 0.001–0.03 Gaussian (x̄: 0.005, SD: 0.001)
Cw Leaf water content (cm) 0.002–0.05 Gaussian (x̄: 0.02, SD: 0.01)
Canopy variables: 4SAIL
LAI Leaf area index (m2/m2) 0.1–7 Gaussian (x̄: 3, SD: 2)
αsoil Soil scaling factor (brightness) unitless 0–1 Uniform
ALA Average leaf angle (°) 40–70 Uniform
HotS Hot spot parameter (m/m) 0.01 -
skyl Diffuse incoming solar radiation (fraction) 0.05 -
FVC Fractional vegetation cover (fraction) 0.05–1 -
Illumination/ observation conditions: 4SAIL and 6SV
θs Sun zenith angle (°) 20–30 Uniform
θv View zenith angle (°) 0 -
φ Sun-sensor azimuth angle (°) 0 -

Table A2. Averaged hyperparameters estimated using the global approach: l defines the gap-filled
time series smoothness, σf is the amplitude scaling factor, and σn accounts for the noise variance.

NDVI LAI FVC laiCab laiCw laiCm

l 32.917 28.2361 31.6638 28.1263 28.0052 29.0619
σf 0.1818 0.8967 0.2189 0.2333 176.4995 38.9518
σn 0.0552 0.3156 0.0703 0.0831 63.9533 13.1938

Figure A1. Time series profiles of crop traits for a wheat pixel presenting double seasonality.
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