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Abstract One general principle of sensory information processing is that the brain must

optimize efficiency by reducing the number of neurons that process the same information. The

sparseness of the sensory representations in a population of neurons reflects the efficiency of the

neural code. Here, we employ large-scale two-photon calcium imaging to examine the responses of

a large population of neurons within the superficial layers of area V1 with single-cell resolution,

while simultaneously presenting a large set of natural visual stimuli, to provide the first direct

measure of the population sparseness in awake primates. The results show that only 0.5% of

neurons respond strongly to any given natural image — indicating a ten-fold increase in the

inferred sparseness over previous measurements. These population activities are nevertheless

necessary and sufficient to discriminate visual stimuli with high accuracy, suggesting that the neural

code in the primary visual cortex is both super-sparse and highly efficient.

DOI: https://doi.org/10.7554/eLife.33370.001

Introduction
The efficient-coding hypothesis is an important organizing principle of any sensory system (Bar-

low, 1981; Olshausen and Field, 1996). It predicts that neuronal population responses should be

sparse, although the optimal level of sparseness depends on many factors. Most of the experimental

evidence of sparse coding comes from the responses of individual neurons that were exposed to a

large set of natural image stimuli, measured using single-unit recording techniques (Haider et al.,

2010; Hromádka et al., 2008; Rust and DiCarlo, 2012; Vinje and Gallant, 2000). The sparseness

of a neuron’s response to a large set of stimuli in these studies was used to infer the sparseness of

the population responses. The first direct measurement of population response sparseness

was performed with two-photon (2P) GCaMP6 signal imaging in rodents (Froudarakis et al., 2014).

One potential confound in this work, however, is that GCaMP6 responses are subject to saturation

at neuronal firing rates above 60–80 Hz (Chen et al., 2013; Froudarakis et al., 2014), leading to the

potential to under-estimate the sparseness measures that can capture the peakedness or sharpness

of the population response distributions. Thus, direct and accurate measurement of the population

sparseness of neuronal response, particularly in non-human primates, is required.

In this study, we provided the first direct measurement of population sparseness from V1 of

awake macaques. We performed 2P imaging on a large population of neurons using the genetically

encoded calcium indicator GCaMP5 (Akerboom et al., 2012; Denk et al., 1990), delivered with
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adeno-associated viruses (AAVs). We showed previously that GCaMP5 exhibits linear non-saturating

responses across a wide range of firing rates (10–150 Hz) (Li et al., 2017), allowing us to measure

accurately the response sparseness of almost all of the neurons in layer two in V1 within a 850 mm x

850 mm field of view—the spatial scale of about one hypercolumn.

Results and discussion
Our 2P imaging of GCaMP5 recorded neuronal population calcium (Ca2+) responses to 2250 natural

images in V1 layer two in two awake macaques (about 1000 neurons each). Each monkey performed

a fixation task while stimuli were presented to the appropriate retinotopic position in the visual field.

Each trial sequence consisted of: a blank screen presented for one second, followed by a visual stim-

ulus for one second. Each activated cell’s region-of-interest (ROI) was defined as the compact region

(>25 pixels) in which brightness exceeded three standard deviations (stds) above baseline, for each

individual differential image. The standard ratio of fluorescence change (DF/F0) of each of these

regions of interest (ROIs) during stimulus presentation was calculated as the neuron’s response (see

’Materials and methods’).

The receptive fields (RFs) of the neurons were characterized using oriented gratings and bars pre-

sented in various positions. The RF centers of the imaged neurons were located between 3o and 5o

in eccentricity. In each trial, a stimulus of 4o x 4o in size was presented, randomly drawn from a set

of 2250 natural image stimuli (Figure 1, Figure 1—figure supplement 1c). The entire set of stimuli

was repeated three times. These natural images evoked robust visual responses in the imaged neu-

rons (Figure 1a,b, Figure 1—figure supplement 1c).

We recorded data from 1225 neurons in monkey A and 982 neurons in monkey B, and found that

only a few neurons in each monkey responded strongly to any given image (Figure 1a,b), though

most of the neurons responded strongly to at least one of the images in the set (Figure 1c). The

rank-ordered distributions of the population responses were always sharply peaked (Figure 1d,e).

On average, the percentage of neurons that responded above each’s half-maximum was 0.49% (6.0/

1,225) for monkey A and and 0.42% (4.1/982) for monkey B (Figure 1f,g). This is a measure of popu-

lation sparseness that can capture the peakedness of the population response distribution (see

’Materials and methods’). In other words, only about 0.5% of the cells responded strongly to each

image, indicating a very high degree of sparseness in the strong population responses or a very

sharp population response distribution.

We also examined each neuron’s stimulus specificity or life-time sparseness (Willmore et al.,

2011). Interestingly, we found that most cells responded strongly to only a small number of images

in the whole stimulus set (Figure 2a,b). The preferred images for individual neurons often shared

common features. For example, neuron 653 of monkey A was most excited when its receptive field

(0.8o in diameter) covered the lower rim of the cat’s eye (indicated by the red dashed line in the

inset in Figure 2b). The neuron’s preference for the specific curve feature was further confirmed by

checking its selectivity to a variety of artificial patterns (Figure 2b). Similarly, neuron 949 of Monkey

A was selective to a different specific curvature embedded within the natural stimuli (Figure 2d). A

more systematic characterization of these cells using artificial stimulus patterns has been reported

previously (Tang et al., 2018), and this work showed that many of these neurons are highly selective

to specific complex patterns. To measure the sharpness of each neuron’s stimulus tuning curve — its

life-time response sparseness — we computed the percentage of the stimuli that excited each

neuron to >50% of the peak response found from the entire stimulus set. This population average

was 0.49% (11/2,250) for Monkey A and 0.41% (9.3/2,250) for Monkey B (Figure 2e,f). This suggests

that a high degree of stimulus specificity or life-time sparseness goes hand-in-hand with a height-

ened population sparseness.

To understand how much information was carried in the sparse ensemble of population activities,

we evaluated how well the sparse neural responses allow a decoder to discriminate the 2250 stimuli

(Quian Quiroga and Panzeri, 2009; Froudarakis et al., 2014). The entire population’s decoding

accuracy was 54% for Monkey A and 38% for Monkey B, whereas the chance accuracy was 0.04% (1/

2,250) (Figure 3a,b, horizontal dashed lines). These population decoding accuracies estimate the

highest achievable decoding performance from the activities recorded for the full population, and

serve as the upper limit of accuracy performance that can be achieved by decoders that are made

from any subset of neurons in the population (Figure 3a,b, horizontal dashed lines).

Tang et al. eLife 2018;7:e33370. DOI: https://doi.org/10.7554/eLife.33370 2 of 12

Short report Neuroscience

https://doi.org/10.7554/eLife.33370


Now that we know the highest achievable decoding performance of the entire population, we

can build on that idea to assess the contribution of strong sparse responses to the overall decoding

accuracy. We zeroed all responses below the top 0.5% response threshold and built a new decoding

model to discriminate the 2250 stimuli. Here, we assume that only the strong signals above the

threshold would be conveyed to downstream neurons successfully. Remarkably, a decoding accuracy

of 28% for monkey A and 21% for monkey B could be achieved with only the top 0.5% of the stron-

gest signals included (Figure 3a,b vertical gray lines). This means that transmitting the top 0.5% of

the strongest responses for each image was sufficient to realize 50% of the maximum achievable

decoding performance for either monkey.

Figure 1. Population sparseness of neuronal responses of V1 layer two neurons to natural scenes. (a, b) Calcium images of the neuronal population

response to two different natural images (shown in the insets). Typically, only a few neurons, among the nearly 1000 neurons measured (1225 neurons

for Monkey A or 982 neurons for Monkey B), responded strongly to a single patch of natural scenes. (c) The overall neuronal population responses to all

2250 natural images. Each cell was color-coded according to the response intensity to its optimal stimulus. (d, e) The distributions of neuronal

population responses to the two natural images. Abscissa indicates the 1225 neurons that showed a significant response to natural images, in ranked

order according to their responses to each image. Ordinate indicates DF/F0. (f, g) Frequency histograms showing the distributions of the number of

stimuli (out of 2250) (y-axis) with different population sparseness, measured by the number of neurons activated strongly (x-axis). On average, fewer

than 0.5% of the cells (6 cells out of 1225 for monkey A, and 4.1 cells out of 982 for monkey B) responded above half of their peak responses for any

given image.

DOI: https://doi.org/10.7554/eLife.33370.002

The following figure supplements are available for figure 1:

Figure supplement 1. Two-photon calcium imaging in awake macaque monitoring the neuronal activity in V1 layer 2 evoked by natural stimuli.

DOI: https://doi.org/10.7554/eLife.33370.003

Figure supplement 2. Two-photon images and neuronal responses in monkey B.

DOI: https://doi.org/10.7554/eLife.33370.004

Figure supplement 3. The ROIs overlaid over a two-photon image of a 850 � 850 mm region under a 16X objective, showing that the ROIs extracted

on the basis of activities were well matched to the cell bodies.

DOI: https://doi.org/10.7554/eLife.33370.005
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Conversely, we can assess the necessity of the top 0.5% of responses by repeating the decoding

experiment after removing the strongest signals by setting them to 0, and keeping the remaining

99.5% of the signals intact. The blue curves in Figure 3a and b show the decoding performance

with signals above a range of percentage threshold ‘removed’. The intersections of the blue curves

with the gray lines indicate that the decoding performance dropped by 50% when the strongest

0.5% of the signals are removed. Thus, we showed that these strong and sparse signals contain the

information necessary to realize half of the decoding performance.

Figure 3a and b also provides a more complete picture of the decoding performance as a func-

tion of percentage threshold. Although the top 0.5% of the signals are both necessary and sufficient

for realizing 50% of the performance, 99% of decoding performance is not reached until the top

40% (for monkey A) and top 30% (for monkey B) of the responses are included (saturation of the red

curves). However, without the top 5% responses, the decoding performance drops to

practically zero (blue curve). Thus, the strongest 5% of the responses are necessary for

the achievement of full performance, but insufficient by themselves. In other words, the presence of

other weaker signals in the population is required to achieve the full performance. The decoding

results revealed that significant information contents are indeed carried by the superb sparse strong

responses.

We note that, in the analyses described above, the selection of responses that were kept or

removed was based on the absolute response magnitude of the cells, rather than on a normalized

response magnitude for each cell as determined by its peak response. We made this decision

because we assumed that downstream neurons may know where the signals come from, but it is not

clear whether they can know (or remember from historical responses) the peak response magnitude

of the neuron that is providing the signals. For better comparison with the population sparseness

Figure 2. Life-time sparseness in the neuronal responses of V1 layer two neurons to natural scenes. (a, b) The response of one example cell (cell 653) to

the entire set of natural scene stimuli, exhibiting a high level of stimulus specificity. (c, d) Another example cell (cell 949) also shows high stimulus

specificity. (e, f) The distributions of the stimulus specificity of neurons, in terms of the half-height width of the stimulus tuning curves. Each cell would

typically respond strongly to fewer than 0.5% of the natural images in our test set.

DOI: https://doi.org/10.7554/eLife.33370.006

The following figure supplement is available for figure 2:

Figure supplement 1. Reliability analysis of neuronal responses.

DOI: https://doi.org/10.7554/eLife.33370.007
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Figure 3. Image decoding performance as a function of the percentage of only the strongest responses used for

(a) Monkey A and (b) Monkey B. Y axes show the cross-validated decoding accuracy on the 2,250-way image

classification task. Dash lines are the referential ‘achievable decoding performance’ in accuracy obtained using the

original entire neural population responses; red lines (‘top only’ in key) show the decoding accuracies when

Figure 3 continued on next page
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measure, we repeated the decoding experiment but this time chose the percentage threshold rela-

tive to the peak response of each individual neuron. The results were qualitatively similar, and

showed that strong sparse responses still carry a disproportionate amount of information (Figure 3—

figure supplement 1). Quantitatively, the top 1.5% of the responses are now required to achieve

50% of the decoder’s highest achievable performance. This suggests that absolute response

strengths may potentially convey more discriminable information to downstream neurons. The

decrease in performance based on the top 0.5% of responses selected on the basis of a relative

threshold (Figure 3—figure supplement 1, red curve) is understandable because the relative thresh-

old will include some useless contribution from neurons that have weak peak responses and

will exclude the more useful contribution of some neurons that have high peak responses, amplifying

the effect of noises particularly when a small number of neurons were selected.

In conclusion, this study provides the first simultaneous recording of a large dense population

of neurons in V1 at single-cell resolution in response to a large set of natural stimuli, using 2P imag-

ing in awake macaque. Earlier studies had provided life-time sparseness measurements in rodents

(Hromádka et al., 2008; Haider et al., 2010), non-human primates (Rolls and Tovee, 1995;

Vinje and Gallant, 2000; Rust and DiCarlo, 2012) and humans (Quiroga et al., 2005), as well as

population sparseness measurement in rodents (Froudarakis et al., 2014), but our study provides

the first direct measurement of sparseness of large-scale neuronal population responses, carried out

in awake macaque monkeys and made possible by large-scale 2P imaging techniques. We found

that a very small ensemble of neurons from V1’s superficial layer are activated at any one time in

response to any given natural image. Using decoding analysis, we showed that the small ensembles

of neural responses provide a surprisingly large amount of information to downstream

neurons, providing for the discrimination of complex image patterns in natural scenes.

Earlier studies inferred population sparseness on the basis of measurements of life-time sparse-

ness. For the first time, we have shown that direct measurements of population sparseness are

indeed comparable to life-time sparseness measurements. However, the level of sparseness that we

observed (0.5% at half maximal response) was considerably higher than that predicted by the earlier

life-time estimates of sparseness, which were based on single unit recording in macaques (Rust and

DiCarlo, 2012). Studies on rodents have yielded a considerable range of estimates of sparseness

that vary across measurement techniques (Haider et al., 2010; Hromádka et al., 2008;

Froudarakis et al., 2014). A single-unit study that used the cell-attached patch technique might

have been the most accurate to date (Hromádka et al., 2008), and it showed that neurons were

mostly silent in the awake auditory cortex, inferring that less than 2% of the neuronal population

showed ‘well-driven’ responses (>20 Hz response frequency) to natural sounds. Our imaging

shows that neurons in the superficial layers of V1 are densely packed and have small cell bodies.

Thus, it may not be possible to obtain stable and well isolated single-unit signals over several hours

using extracellular recording methods. Our study has reduced the biases inherent to previous extra-

cellular recording studies — in neuronal sampling, in stimulus sampling, and in single-cell isolation —

by invoking a response in virtually all of the neurons in a single field of view and in a particular layer

by using a large set of natural stimuli.

The high degree of population sparseness that we observed is consistent with two recent conjec-

tures from theoretical neuroscience. First, based on the metabolic costs of spiking, one group posits

Figure 3 continued

different percentages of the top responses were kept and lower responses were removed (set to zero); blue lines

(‘top excluded’ in legends) show the decoding accuracies when different percentages of top responses were

removed (set to zero) and lower responses were kept. X axes show the percentage of top responses included (red

curves) and excluded (blue curves). Check ’Materials and methods Decoding Analysis’ for details. Gray vertical

lines highlight the decoding accuracies including or excluding the top 0.5% responses. Since our classification task

is a 2250-way one, the chance accuracy is 1/2,250, or about 0.4%.

DOI: https://doi.org/10.7554/eLife.33370.008

The following figure supplement is available for figure 3:

Figure supplement 1. Image decoding performance as a function of the percentage of top-responding neurons

selected to be included or excluded, using a threshold relative to the peak response of each neuron.

DOI: https://doi.org/10.7554/eLife.33370.009
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that fewer than 1% of the neurons should be substantially active concurrently in any brain area (Len-

nie, 2003). Second, and more importantly, theoretical sparse-coding studies have suggested that

because V1 neurons are at least 200 times more abundant than their thalamic input, V1 neurons

could be quite specialized in their feature selectivity and thus highly sparse in their population

responses (Olshausen, 2013; Rehn and Sommer, 2007). We have indeed observed this very finding

using 2P imaging techniques in the V1 superficial layers (Tang et al., 2018). These findings are remi-

niscent of the highly specific codes exhibited by neurons in the human medial temporal lobes

(Quiroga et al., 2005), suggesting that many V1 neurons might be akin to highly specific ‘grand-

mother neurons’, although they may encode information in the form of an extremely sparse popula-

tion code. The observed high degree of population sparseness and life-time sparseness are also

consistent with our earlier observation that V1 neurons in this layer were tuned to complex patterns

with a great degree of specificity (Tang et al., 2018, see also Hegdé and Van Essen, 2007). These

findings reveal the complexity and specificity of feature selectivity and the super-sparse neural repre-

sentation within a V1 hypercolumn, providing new understanding of the neural codes in the macaque

primary visual cortex.

Materials and methods

Key resources table

Reagent type (species)
or resource Designation Source or reference Identifiers Additional information

Strain, strain
background (Macaque)

Rhesus monkeys Beijing Prima Biotech Inc http://www.primasbio.com
/cn/Default

http://www.primasbio
.com/cn/Default

Recombinant
DNA reagent

AAV1.hSyn.GCaMP5G Penn Vector Core V5072MI-R

Software, algorithm Matab 7.12.0 (R2011a) MathWorks Matab 7.12.0 (R2011a) https://www.mathworks.com

Software, algorithm Codes for the decoding
analysis and image
movement correction

This paper Codes for the decoding
analysis and image
movement correction

https://github.com/leelabcnbc/sparse
-coding-elife2018 (copy archived at
https://github.com/elifesciences-
publications/sparse-coding-elife2018)

All experimental protocols were approved by the Peking University Animal Care and Use Commit-

tee, and approved by the Peking University Animal Care and Use Committee (LSC-TangSM-5).

Subjects
The study used two adult rhesus monkeys (A and B), who were 4 and 5 years of age and weighed 5

and 7 kg, respectively (Li et al., 2017). Two sequential surgeries were performed on each animal

under general anesthesia and strictly sterile conditions. In the first surgery, a 16 mm hole was drilled

in the skull over V1. The dura was opened to expose the cortex, into which 50–100 nl AAV1.hSynap.

GCaMP5G.WPRE.SV40 (AV-1-PV2478, titer 2.37e13 (GC/ml), Penn Vector Core) was pressure-

injected at a depth of ~500 mm. After AAV injection, the dura was sutured, the skull cap was placed

back, and the scalp was sutured. Then the animal was returned to its cage for recovery. Antibiotic

(Ceftriaxone sodium, Youcare Pharmaceutical Group Co. Ltd., China) was administered for one

week. After 45 days, a second surgery was performed, in which three head-posts were implanted on

each animal’s skull, two on the forehead and one on the back of the head. A T-shaped steel frame

was connected to these head-posts for head stabilization during imaging. The skull and dura were

later opened again to explore the cortex. A glass cover-slip (diameter 8 mm and thickness 0.17 mm)

was glued to a titanium ring and gently pressed onto the cortical surface. A ring-shape GORE mem-

brane (20 mm in outer diameter) was inserted under the dura. The titanium ring was glued to the

dura and skull with dental acrylic to form an imaging chamber. The whole chamber (formed by thick

dental acrylic) was covered by a steel shell to prevent breakage of the cover-slip when the animal

was returned to the home cage.
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Behavioral task
During imaging, each monkey sat in a standard primate chair with head restraint and performed a

fixation task, which involved fixating on a small white spot (0.1˚) within a window of 1˚ for over 2 s to

obtain a juice reward. Eye position was monitored with an infrared eye-tracking system (ISCAN, Inc.)

at 120 Hz.

Visual stimuli
Visual stimuli were generated using the ViSaGe system (Cambridge Research Systems) and displayed

on a 17’ LCD monitor (Acer V173, 80 Hz refresh rate) positioned 45 cm from the animal’s eyes. Each

stimulus was presented for 1 s after a 1 s blank within a fixation period of 2 s. We estimated the RF

sizes and positions of the imaged neurons with small drifting gratings and bars presented at differ-

ent locations. The RFs were estimated to be 0.2˚ to 0.8˚ in size with RF locations between 3˚ and
5˚ in eccentricity for both monkeys.

Drifting and oriented gratings were tested to examine the visual responses of imaged neurons

(Li et al., 2017). Small patches (0.8˚ in diameter) of gratings with 100% contrast square waves were

presented to the center of RFs of imaged cells, with two spatial frequencies (4.0 and 8.0 cyc/deg) at

two temporal frequencies (1 and 2 Hz), six orientations, and two directions (30˚ apart).
A natural stimulus set (NS) of 2,250 4˚ � 4˚ stimulus patches extracted from different natural

scene photos was used to examine the neuronal responses to natural stimuli. The order of the stimuli

was randomized in each session. These stimuli were tested on monkeys A and B, each with at least

three repetitions.

Eye movement control
We analyzed the distribution of eye-positions during stimulus ON periods. The monkeys’ fixation

during stimulus presentation (from 1 to 2 s in the graph) was stable and accurate. The distribution of

eye positions during stimulus presentation, with standard deviations smaller than 0.05˚, was signifi-

cantly smaller than the typical receptive field sizes (ranging from 0.2˚ to 0.8˚) of neurons at 3–

5˚ eccentricities. To examine whether the eye movement made a significant contribution to the dis-

tribution of neuronal population responses, we compared the standard deviations (stds) of eye posi-

tion in different population response classes of neurons: (1) weak responses (DF/F0 <0.5), (2) sparse

strong responses (one or two cells responded), (3) dense responses (more than ten cells responded).

We found no statistically significant differences in the distribution of eye position data in these three

classes (Tang et al., 2018), indicating that the observed effects were not caused by movement dif-

ferences. The ROC and decoding analysis (Figure 1—figure supplement 2), demonstrating the reli-

ability of the neural responses across trials, confirm that the sparse population responses were

repeatedly evoked by stimuli, and not by random eye-movement jitters.

Two-photon imaging
After a recovery period of 10 days after the second surgery, the animals were trained to maintain

eye-fixation. Two-photon imaging was performed using a Prairie Ultima IV (In Vivo) 2P microscope

(Bruker Nano, Inc., FMBU, formerly Prairie Technologies) powered by a Ti: Sapphire laser (Mai Tai

eHP, Spectra Physics). The wavelength of the laser was set at 1000 nm. With a 16 � objective (0.8 N.

A., Nikon), an area of 850 mm � 850 mm was imaged. A standard slow galvonometer scanner was

used to obtain static images of cells with high resolution (1024 � 1024). The fast and resonant scan

(up to 32 frames per second) was used to obtain images of neuron activity. The images were

recorded at 8 frames per second by averaging each 4 frames. Infected cells of up to 700 mm in depth

were imaged. We primarily focused on cells that were 160 mm to 180 mm deep, which included a

high density of infected cells.

Imaging data analysis
All data analyses were performed using customized Matlab software (The MathWorks, Natick, MA).

The images from each session were first realigned to a template image (the average image of 1000

frames) using a normalized cross-correlation-based translation algorithm, this corrected the X-Y off-

set of images caused by the relative movements between the objective and the cortex (Li et al.,

2017).
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The cell density was high in superficial V1, and many cell bodies were quite dim at rest. It was dif-

ficult to identify these cells directly by eye or by algorithm on the basis of their morphology as cap-

tured in static images. We therefore identified ROIs for cell bodies on the basis of their responses.

The differential images (which were averaged frames of the ON stimulus period, from which we then

subtracted the average of the stimulus OFF period, for each stimulus condition) were first filtered

using low-pass and high-pass Gaussian filters (5 pixels and 50 pixels). Notably, these two filters were

used solely for ROI identifications. In all further analyses, we used the raw data without any filtering.

Connected subsets of pixels (>25 pixels) with average pixel value greater than 3 stds in these differ-

ential images were identified as active neuronal ROIs. Note that these 3 stds empirical value was

used only for deciding the ROIs of the activated cells, and was not used as a cutoff threshold for

measuring neuronal responses (Figure 1—figure supplement 3). The ratio of fluorescence change

(DF/F0) of these ROIs was calculated for each activated cell. DF = F F0, where F0 is the baseline

activity during the blank screen prior to stimulus onset in each trial and F is fluorescence activity in

the ROI during stimulus presentation in the trial. A neuropil-correction was performed with an index

of 0.7 (Chen et al., 2013).

Sparseness measure
The sparseness measure is used to quantify the peakedness of the response distribution. There are

several different definitions of sparseness and corresponding sparseness measures (Willmore et al.,

2011). One intuitive one for sparse codes, described by Willmore et al., 2011, is that “the popula-

tion response distribution that is elicited by each stimulus is peaked (exhibits population sparseness).

A peaked distribution is one that contains many small (approximately zero) magnitude values and

only a small number of large values. Thus, a neural code will have high population sparseness if only

a small proportion of the neurons are strongly active at any given time." A measure consistent with

this intuition is the percentage of neurons that responded strongly, above a certain threshold rela-

tive to their peak response. This measure has been used in other studies (Rust and DiCarlo, 2012),

typically with a half-peak response threshold.

The sparseness measures based on the calculation suggested by Rolls and Tovee (1995) and by

Vinje and Gallant (2000) are popular for quantifying the sparseness of spiking data, but they are

very sensitive to measurement noise and uncertain baselines because of nonlinearities and missing

responses in the low spiking-rate range (<10 Hz) in calcium imaging (Li et al., 2017). The sparseness

measure that we used in this study, which is based on the percentage of the cells or stimuli above

the half-maximum of each neuron, is much less sensitive to low-level activities (iceberg effect) or

baseline fluctuations in the calcium signal.

Stability and reliability of the neuronal measurements
For each single neuron, we examined whether the sparse strong responses (DF/F0 >50% max)

observed across the 2250 stimuli were reliable across trials by performing the following ROC analysis

(Quiroga et al., 2005). We set all the stimuli that produced mean responses greater than 50% of the

observed maximum mean peak of the cell to be in the ON class, and all other stimuli to be in the

OFF class. We computed the ROC for classifying the ON class against the OFF class based on the

response of each single trial. If the responses above the half-maximum are stable across all trials,

then the AUC (the area under the ROC curve) will be close to 1.0, because the ON and OFF classes

are readily discriminable. The null hypothesis is that sparse strong responses will be spurious single-

trial epileptic responses, and not repeatable across trials. To test this hypothesis, we shuffled all the

responses against the stimulus labels, and recomputed the mean responses for all the stimuli across

the trials. We performed 1000 shuffles. We found that most of the shuffled cases have much lower

average peak responses because of the mismatch of the rigorous sparse responses across trials, sug-

gesting that the sparse responses in the original data are reliable. To make an even stricter and

more fair comparison with the original data on ROC terms, for each shuffle, we recomputed the

maximum responses, and used the half of this mean maximum as the threshold to sort the stimuli

into ON and OFF classes and repeated the ROC analysis to obtain the AUC for this shuffle. The

probability of the null hypothesis is the percentage of the time that the AUCs of the 1000 shuffles

reach the AUC of the original data. With this ROC analysis, we found >96% neurons that adhered to

the null hypothesis (p<0.01) (Figure 1—figure supplement 2).
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Decoding analysis
We used a nearest centroid classifier to discriminate the 2250 images on the basis of the population

responses in each trial. As each image was tested three times, the nearest centroid classifier was

trained on the basis of two trials for all images and tested on the hold-out trials. We repeated the

procedure for each trial, performing 3-fold cross-validations.

For each monkey, we constructed neural response matrices (with dimension 2250 � 1225 for

monkey A, and 2250 � 982 for monkey B) for three trials X(1), X(2), and X(3) that store the neural

responses to all images in each trial as rows in its matrix. We trained and tested nearest-centroid

classifiers via a three-fold cross-validation procedure across trials in a 2250-way image decoding

task. Specifically, for trial t, during training, we computed the centroids of the other two trials C(t) (if

t = 1, C(1)= (X(2) + X(3))/2; if t = 2, C(2)= (X(1) + X(3))/2, etc.) and stored C(t) in the classifier; during test-

ing, given some row k of X(t), which is the population neural response vector to image k in trial t, the

(trained) classifier computed the Euclidean distances between row k of X(t) and every row of C(t). The

model outputted the index (1,2,. . .,2249,2250) of the row in C(t) that gives the smallest distance. The

correct output is k and all other outputs are incorrect. The average decoding accuracy for this trial is

defined as the percentage of correct outputs over all rows of X(t). We repeated the above procedure

for each trial and reported the average of three (average) decoding accuracies.

In our experiments, we first set the X(t)s defined above to be the original recorded neural

responses and computed the decoding accuracies for both monkeys. We refer to the accuracies

obtained from the original neural data as ‘achievable decoding accuracies’. Later, to evaluate the

amount of information in the strong sparse portions of the neural data, we set X(t)s to be thresh-

olded versions of the original data. We tried two classes of thresholding methods: ‘top only’ (red in

Figure 3) and ‘top excluded’ (blue in Figure 3). In ‘top only’, we only kept the largest responses (p

%) across images and trials in the thresholded version and set the smaller responses (100-p%) of the

to be zero. In ‘top excluded’, which is complementary to ‘top only’, we set the largest responses (p

%) to be zero and kept the smaller responses (100-p%). For both ‘top only’ and ‘top excluded’, we

evaluated decoding accuracies at the following percentages (crosses in Figure 3): 0, 0.1, 0.2, 0.3,

0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 20, 30, 40, 50, 60, 70, 80, 90, and 99.

Given that the population sparseness was computed on the basis of the half-maximum of each

individual neuron’s response, we also repeated the decoding experiment using a percentage thresh-

old that is relative to each neuron’s peak response, rather than the absolute response threshold, to

select the ‘top responding’ neurons to be included or excluded and reset the responses to be

excluded in the data matrix to 0 accordingly for training and testing the decoder as before.

Software available
The code used for the decoding analysis and image movement correction can be found in https://

github.com/leelabcnbc/sparse-coding-elife2018 (Zhang et al., 2018; copy archived at https://

github.com/elifesciences-publications/sparse-coding-elife2018).
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